Computer Networks
X 400487

Lecture 10
Chapter 6: The Transport Layer—Part 2

@ Lecturer: Jesse Donkervliet

08/10/2024

Roadmap: Transport Layer

1. Transport layer responsibilities and challenges
2. Connection establishment and release
3. Reuvisiting reliable delivery and flow control

1. Reliable delivery
2. Flow control

4. Congestion control and bandwidth allocation
5. TCP and UDP

The End-To-End Argument

The lower layers

If the lnetwork|is unable to provide a feature by
itself, it should be removed from the network
and provided by the |hosts.

Transport layer or higher

Q: Can you think of an example of a feature provided by the hosts?

Q: Can you think of a feature provided by the network?

Error control in
the transport layer

The transport layer is responsible for providing a reliable data stream over
an unreliable network.

Q: Did we not take care of this in the data link layer?

Trarspgn I'a\yer

checks the W’*

end-to-end 2908597 '}a !a?
58

1t f 5
correctness o _lli{» J il

Q: Why not do error control only at the transport layer?

Reliable Delivery through
Retransmissions

Improving Performance by using
Error control on lower layers

1 (Wim\ass link

Wired link
C e

Link layer retransmission
{loss = transmission efror)

08/10/2024

Error control and Error control and crash recovery
crash recovery
Protocol under normal circumstances. Protocol when machines fail.

e

E ! (2] . E) ,
ass on to ass on to
@ Segment i layer k + 1. @ Segment i layer k + 1.

time.

@ ACK '—t :
ACK not transmitted!

@) Segmenti + 1 @ Segment i

time

Crash recovery Error control and crash recovery
Protocol under normal circumstances. Protocol when machines fail.
time © Segment i Pass on to time @ Segment i..."u.
© ACK layer k + 1. @ ACK e,
-
@ Segment i + 1 © Segment i + 1

Crash recovery on layer k Roadmap: Transport Layer

We cannot create fool-proof crash recovery in layer k. 1. Transport layer responsibilities and challenges

2. Connection establishment and release
Recovery from a layer k crash can only be done by layer s . .
Q: What does this mean in practice?

1. Reliable delivery
When a crash occurs, the transport layer leaves it to the
application layer to fix it!

2. Flow control
4. Congestion control and bandwidth allocation
5. TCP and UDP

08/10/2024

Regulating sending rate i Regulating sending rate

e Y
—
Flow control W5 Congestion control FE
Flow control is needed to m Small Congestion control is m
slow down the sender if the B s needed to slow down the iy
receiver cannot handle the | sender if the network cannot I
data rate P handle the data rate gy m
nEn m handle high data rate m [m]
[1y m m [M]) [v]

Stop-and-Wait: Stop-and-Wait:
A 1-Bit Sliding Window Protocol A 1-Bit Sliding Window Protocol

1- li
wmdbc::\ls Ig;:gcol 1-bit sliding
P! window protocol
“”"‘l n\,nz s

(n/“ ¢

=P =

Bandwidth inefficient for high-latency channels

Sliding window protocols Recap: Link Utilization: s,
physical channel): B,
+ Bandwidth (frames per second):

B, f
Send multiple frames at the same time before It takes BL seconds to send frame, —fﬁ =B + Propagation delay (in seconds): D
P

\Slizgl)ng for an acknowledgement. (i.¢., filling the It takes D s for the frame to arrive at the receiver, takes D s for
the (0-bit) acknowledgment to come back at the sender
Goack N selectv repeat 1fréme per - + 2 x D seconds| Elgl S04z le]))

&) B Mbps networku

4 <D

Flow control and
buffer management

Received packets have to be buffered at the receiver.
Q: Why do we need this?

We have to wait for the application to read the data

Perform buffer management separately.
Use available buffer space as the receiver window size.

Piggybacked! xouters [INETE

available

Limit window siz

X — len(M) buffers
available

Used by TCP!

08/10/2024

Roadmap: Transport Layer

Transport layer responsibilities and challenges
Connection establishment and release
Reuvisiting reliable delivery and flow control
Congestion control and bandwidth allocation
TCP and UDP

aprwbdpRE

Today

1. Congestion Control in TCP/IP
2. DNS

3. Email

4. Quiz?!

Copyright Jesse

Donkerviiet 2024

Both packet loss and
end-to-end delay can be
used to signal
congestion!

Congestion control

Both the network layer and the transport layer are responsible for
congestion control.

The transport layer controls the workload; implements congestion control
and flow control by reducing sending rate.
Network

capacity
Delay

Network load Network load

Goodput

Congestion control requires
resource management

Congestion occurs if the workload is too large for the available network
resources.

The workload of all users combined should not be too large for the
available network resources.

Coordinate to divide network resources

Copyrignt Jesse
Donkerviet 2024

Fair bandwidth allocation

How to divide the available bandwidth over multiple senders?
Assume that we wave a total bandwidth B and N machines.

Q: How much bandwidth does each machine get?
May be impossible to implement with overlapping paths!

2 -
u\ Bahdwidth = 1

N=3 — B=2

u,__ = é—é\ Bafdwidth = 1

Does not fit on link!

Fair bandwidth allocation
Max-min fairness

Maximizes minimum bandwidth, then uses excess bandwidth where

possible.

-~ 2 1
f
ﬂ\ 32 i
= = = ——
2 B=2

1
-
3

Available bandwidth is unknown

Q: Why is this the case?

The transport layer is not aware of the
network topology, or who else is using the
network.

Q: How to solve this problem?

Because there is no centralized control, we

need to dynamically adjust bandwidth usage)
using trial and error. “ﬁ'

08/10/2024

Fair bandwidth allocation
Convergence

When new connections enter the network, the bandwidth needs to be
reallocated.

Max
bandwidth
Ideal scenario. In practice, convergence:
takes more time.
Q: Why is
that?

Bandwidth I
Gray starts
transmitting

Dynamically adjust bandwidth
using trial and error

Keep tcrIvirjé; to increase Slow down when you
bandwidth usage. receive congestion signal.

Max
bandwidth

Alice’s
bandwidth

Can we send use
this much
bandwidth?

No!

time

Sharing bandwidth example

Sharing bandwidth example

PR Alice has 100% bandwidth
Bob has 0% bardwidth

Both use 100% bandwidth
Network congestion (total 200%)

Q Both use 0% bandwidth \width
bandwidth Network not used dwidth

| S|

\ Bob's
% bandwidth

{r
[

Sharing bandwidth
Efficiency and fairness

100% r Rl Fairness line
N H PP (Alice and Bob
SNl 4 Eavg e%ur?l
Nt s andwidtl
‘ \\v g)

‘N,
e N,

N,
N, Efficiency line
‘s\"" (sum is 100%)

0% 100%
Bob's
Q . bandwidth

Alice's
bandwidth

Copyrignt Jesse

Donkerviet 2024

Additive increase

Additive decrease -¥E

00 o ,
Q: What s, 0." /'
happens if a["}/ » il
we use this ° A // . 5’9!3"% 10_?% .
Py Y o BEEERPZARREE bandwidth utilization
approach? ._.‘\ '/ No congestion
a ¥
A: 80, B: 10 sum: 90 RN
A: 90, B: 20 sum: 110)l
A: 80, B: 10 sum: 90 /7
A: 90, B: 20 sum: 110 4
4
/

Copyright Jesse
Donkerviiet 2024

Regulating sending rate
Efficiency and fairness

Additive Increase Multiplicative Decrease (AIMD)
converges to optimum

7080, 8: 10 500 i « [
A: 90, B: 20 sum: 110 o\ increase/decrease
A: 45, B: 10 sum: 55 SN L
A: 55, B: 20 sum: 75 o
A: 65, B: 30 sum: 95
A: 75, B: 40 sum: 115 Alice's N
A’ 37, B: 20 sum: 57 bandwidth .)/é' Additive
4 s\‘ j increase/decrease

L 0% 100%
Decrease: 141 = = S
m T bandui

Increase: ryy =m+a o

Copyrignt Jesse

Donkerviet 2024

08/10/2024

Regulating sending rate

Approaches

Multiple approaches to increase/decrease
sending rate:

1. Additive (rate +x, rate —x).
2. Multiplicative (rate x x, rate x i).

3. Combination of both:

. Additive increase, additive decrease.

. Additive increase, multiplicative decrease.

. Multiplicative increase, additive decrease.

. Multiplicative increase, multiplicative decrease.

B WNE

Multiplicative increase
Multiplicative decrease it

100% o P Vector ,¢ A:80,B:10 sum: 90
N from origin kg A: 120, B: 15 sum: 135
/7 A: 80, B: 10 sum: 90
\‘\ ,’,

V-..\‘. /'

, .
X m Rkl Below 100% bandwidth
'/ \‘ utilization No congestion
/ N, — "
rfrxm e AN Efficiency line
P4 S (sum is 100%)

A: 120, B: 15 sum: 135

Additive increase
Multiplicative decrease

100%
4
\\\ "I
N, ,'I
[a
’/ Additive increase
/' \\ Multiplicative decrease
I' \\\
I’ N
AIMD converges to / oscillates around optimum

L AN

0% 100%

Regulating sending rate
Efficiency and fairness

Q: What happens if bob uses another protocol such as UDP?

Use TCP-friendly protocols to
prevent unfair competition

Alice's
bandwidth

0% 100%
Decr T =2 Bob's
ECTEASE: Ty =3y . bandwidth
Increase: 141 =% +a L}

Roadmap: Transport Layer

Transport layer responsibilities and challenges
Connection establishment and release
Reuvisiting reliable delivery and flow control
Congestion control and bandwidth allocation
TCP and UDP

aprwbdpRE

08/10/2024

Internet protocols

The protocols that make the internet work.

Most popular on the transport layer:
1. UDP >< All May not meet your
or application’s requirements!
2. TCP Nothing [l £
Insufficient separation between
mechanism and policy

But others exist!

Comparing complexity by
number of RFCs pmermre
UDP: Engineering Task Force (IETF).

Overview of RFCs in RFC 4614.

A
r
TCP: RFC 793 || RFC 1122 [§ RFC 1323 [RFC 2018
RFC 2873 [l| RFC 2083 [ll RFC 3168

User Datagram Protocol (UDP)

Very thin layer on top of IP. Header provides
ports needed to connect to remote applications.

32 bits.

Destination port
UDP length UDP checksum

The UDP
header

User Datagram Protocol (UDP)

Very thin layer on top of IP. Header provides
ports needed to connect to remote applications.

32 bits.
Destination port
UDP length UDP checksum
4

UDP does not do: T::aggp

1. Flow control Includes fields
from the IP header!

2. Congestion control

3. Retransmissions [ORCEUNEITER IR
that works well with UDP?

08/10/2024

Transmission Control Protocol (TCP) Transmission Control Protocol (TCP)

One of the most important protocols on the internet.
Provides a reliable end-to-end byte stream over an unreliable network. reliable, in-order delivery and enable sliding window protocols
32 bits. 32 bits.

Destination po Destination port
Acknowledgement number Acknowledgement number

Sequence numbers and acknowledgements allow

TCP checksum Urgent pointer TCP checksum Urgent pointer
Options (0 or more 32-bi words) [Opons(0ormoes2bitwoss) |
Data (optional) Data (optional)

The TCP header The TCP header

Transmission Control Protocol (TCP) Transmission Control Protocol (TCP)

CPEEE SIS [Pl How do we know how long the TCP segment is?
as the UDP checksum g g [

32 bits 32 bits

Destination port Destination port
Acknowledgement number Acknowledgement number

ader h
l

TCP checksum TCP checksum
Options (0 or more 32-bit words) Options (0 or more 32-bit words)
Data (optional)

P
The TCP header The TCP header

Transmission Control Protocol (TCP)

Q: Used for flow control or congestion control?

32 bits.
. .
Connections in TCP
g

ader -
length I

TCP checksum
Options (0 or more 32-bit words)
Data (optional)

The TCP header

08/10/2024

Transmission Control Protocol (TCP) TCP connection establishment
Three-way handshake [0 i

high-bandwidth networks
. : Every data byte has its own sequence number.*
Used to establish/release connections . .
SYN and FIN also have their own sequence numbers.
32 bits Sequence number X+

bytes 0 to x have been received.
Expecting byte x+1 next
Connection request Initial sequence numbers
Acknowledgement number SYN (seq=x) are randomly generated
o = 1
' Window size !
H 1 SYN, ACK (seq=y, ack=x+1)

£ !
fme 1
Options (0 or more 32-bit words) I ACK (seq=x+1, ack=y+1)

Data (optional) \
The TCP header

TCP Timestamp Option TCP Timestamp Option

Use seq. number + timestamp to detect duplicates
32 bits 32 bits

:
TCP checksum
kind=

header
g
TCP checksum Urgent pointer
Options (0 or more 32-bit words)

Data (optional) Data (optional)
The TCP header The TCP header

TCP PAWS G i smass TCP sequence numbers

PR — m
The folloving table shows the value for Twiap = 143170 in - Initial sequence numbers
Seccnds, for sume imporeant values of the hasdeldth Br Every data byte has its own sequence number are randomly generated
PR (7age 31
we un AP Eatansioms for digh Sosfamases way 102
sowere e . merap
i brasewc awcs
- Sirbpa Traps 3e18es (-3.4 daym) ACK (seq=x, ack=y)
81 Lomps loomps 100ea (3 hearsy
Hbemst lMGes LiMps 1700 (30 alas) time 1 ACK (seq=y, ack=x+len(al))
053 A3Mbps 3. 6Mmps w B1
| —
o RS- ACK (seg=x+len(al), ack=y+len(b1))
atgani [T —
i

Copyright J

Donkery

https://www.ietf.org/rfc/rfc1323.txt

TCP connection release
Two simplex channels

Every data byte has its own sequence number.*
*SYN and FIN also have their own sequence numbers.

e

e -
u Connection release: “
FIN, ACK (seq=x, ack=y)

ACK (seq=y, ack=x+1)

time

FIN, ACK (seq=y+1, ack=x+1)
ACK (seq=x+1, ack=y+2)

Copyrignt Jesse

Donkerviet 2024

08/10/2024

TCP connection release s
Two simplex channels | iiciis

Every data byte has its own sequence number.*
*SYN and FIN also have their own sequence numbers.

— —
u Connection release: u
FIN, ACK (seq=x, ack=y)

FIN, ACK (seq=y, ack=x+1)

time

ACK (seq=x+1, ack=y+1)

Copyright Jesse
Donkerviet 2024,

Error Control in TCP

Reliable Delivery through
Retransmissions

Setting Retransmission Timers

How long should we wait before retransmitting a frame?

Q: What are the bounds?

« Timer must be longer than round-trip time.

Congestion makes round-trip time variable!

« If we set timer too high, bandwidth efficiency goes down

Dynamic Timeouts in TCP

Use a weighted moving average to smooth round trip time (R):
SRTT=axSRTT+ (1 -a) xR

Do the same for the round trip time variance (RTTVAR):
RTTVAR = 8 x RTTVAR + (1 — B) x [SRTT - R|

Calculate new retransmission timeout (RTO) based on these
values:

RTO = SRTT + 4 x RTTVAR

Performance improvement
Fast retransmission .

Packet loss detected when timers expire.

Q: Can we know about packet
loss before the timer runs out?

Segment i

time

ACK i
Segment i+ 1
Segmenti + 2 '
ACK i
—
Duplicate acknowledgments can indicate packet loss

Flow control and
buffer management

Received packets have to be buffered at the receiver.
Why do we need this

Used

We have to wait for the applica read the data

Perform buffer management separately.
Use available buffer space as the receiver window size.

Piggybacked! X buffers [[buter |

available

ﬁ_ H X — Len(M) bufters ﬁ
y available

Do not send more than one small

TCP WIndOW Size packet at a time: wait for ack

Nagle’s algorithm

A sender that produces data in small amounts.

Small segments cause large overhead
=N Q: Can you think of an application =
that does this?

1 byte data, seq 1

Ack 2, win 2047
time 1 byte data, seq 2
Ack 3, win 2046

Copyrignt Jesse
Donkerviet 2024

08/10/2024

Flow Control in TCP

TCP window size

Flow control
The window size tells sender how
much data the receiver can handle.

2K data, seq 1

Ack 2K+1, win 2K

time —

2K data, seq 2K+1

Ack 4K+1, win 0

Do not send window updates if

TC P WI ndOW Slze available space is too small
Silly-window syndrome

A receiver that consumes data in small amounts.

Tiny window sizes cause large overhead

Ack 1, win 1
time Ack 2, win 0
o Ack 2, win 1

1 byte data, seq 2

11

TCP Delayed Acknowledgements
Try to improve bandwidth efficiency (e.g., through piggy-backing)

+ Wait up to 500 ms to send acknowledgement
» Send acknowledgement for every second full-size segment

100 bytes data, seq 1 !

time 500 bytes data, seq 1, ack 101

500 ms timer

08/10/2024

TCP Delayed Acknowledgements

Try to improve bandwidth efficiency (e.g., through piggy-backing)

« Wait up to 500 ms to send acknowledgement
« Send acknowledgement for every second full-size segment

536 bytes data, seq 1 !

536 bytes data, seq 537

ime \ 500 ms timer

ack 1073

Congestion Control
in TCP

Additive increase
multiplicative decrease in TCP

AIMD used to prevent network congestion. Converges to fair and
efficient bandwidth allocation.

TCP implements this using its congestion window.

Congestion window is tracked on the sender.
Specifies how many segments can be transmitted.

Not the same as the ‘window size’ field in the TCP segment
header!

Q: How does TCP combine the two windows?

Transmission Control Protocol (TCP)

Used for Explicit Congestion Notification

32 bits
Destinaton port
Acknowledgement number
header S| . .
I

TCP checksum

The TCP header

AIMD in TCP
What value to start with?

We want fast convergence, but sending a large burst can occupy low-
bandwidth links for a long time.

Increase congestion window whenever
acknowledgements arrive.
[[v] [[v] I
I a— A A
n B
—

Low
bandwidth

Alice

Acknowledgement rate tells
us data rate of slowest link.

12

AIMD in TCP
‘slow’ start

Previous algorithm used congestion
window = flow control window.
Slow start is slower in comparison

Congestion window size grows [
based on acknowledgment rate

data

ack

time M

Q: What kind of growth
does this cause?

Copyrignt Jesse

Donkerviet 2024

08/10/2024

TCP ‘slow’ start

Arbitrary threshold switches from ‘slow’ start to additive increase.

Congestion window growing over time

oo ® ® ———————— Current

Threshold—g——— window
§

Congestion window e

(KB or packets) l .:
]
°

®00q

Transmission round (RTTs)

TCP Tahoe

Q: Can you think of another

way to detect packet loss?
Arbitrary threshold switches from ‘slow’ start to additive increase.
Packet loss detected
‘ Reset congestion window

0o ®
Threshold—:.—

Congestion window

o
o
(KB or packets) ...

1 RTT for segments to
leave the network

Calculates the number of segments in the network by

T C P R e n O counting the number of duplicate acknowledgements
(= TCP Tahoe + fast recovery)

Threshold reduced using multiplicative decrease.
Congestion window set to new threshold value.

Packet loss detected

o @4 Current

e
multiplicative decrease
Threshold K \4— (threshold= £ xwindow)

o
Congestion window .' °
(KB or packets) & Threshoi—e—-2
H
.® Fast recovery
o°

Transmission round (RTTs)

Copyrignt Jesse

Donkerviet 2024

Performance improvement
Fast retransmission 4

Packet loss detected when timers expire.
Q: Can we know about packet
loss before the timer runs out?

#packets
in transit Segment i
1
ACK i
ti 0
e N Segmenti+1 My
>
2 Segment i+ 2
s ACK i

o
We can count the number of packets in the network!

What about
Explicit Congestion Notification?

= regular IP packet with TCP segment
= Explicit Congestion Notification (ECN) set in IP header

Congested Router

13

What about
Explicit Congestion Notification?

m =regular IP packet with TCP segment
JI70 = Explicit Congestion Notification (ECN) set in IP header
= ECN-Echo (ECE) set in TCP header

Different Flavors of TCP

08/10/2024

What about
Explicit Congestion Notification?

=regular IP packet with TCP segment

m = Explicit Congestion Notification (ECN) set in IP header
= ECN-Echo (ECE) set in TCP header

m = Congestion Window Reduced (CWR) set in TCP header

T
im\lm&“ i

Copyright Jesse

Donkerviet 2024,

TCP versions and
congestion signals

1. TCP determines rate based on
packet loss.

2. CUBIC TCP determines rate based on

TRl Used by dfaul n Linus Windous, acOS]
3. FAST TCP determines rate based
on end-to-end delay.

4. Compound TCP determines rate based
on end-to-end delay and packet loss.

5. TCP with Explicit Congestion Notification.
6. XCP explicitly tells sender what rate to use.

TCP versions and
conqestlon signals

. TCP determines rate based on
packet loss.
2. CUBIC TCP determines rate based on
TRl Used by faut in Linus Windows, WacOS]
3. FAST TCP determines rate based
on end-to-end delay.
4. Compound TCP determines rate based
on end-to-end delay and packet loss.

5. TCP with Explicit Congestion Notification.
6. XCP explicitly tells sender what rate to use.

Roadmap: Transport Layer

Transport layer responsibilities and challenges
Connection establishment and release
Reuvisiting reliable delivery and flow control
Congestion control and bandwidth allocation
TCP and UDP

aprwbdpRE

14

Transport Layer Summary

« Sockets interface « Error control
+ Connection establishment and release + Timer management
« Duplicate detection « Detection using time-outs or duplicate
acknowledgements
« Two army problem

+ Seq. num wrap around + duplicate + Flow control

" PN « Sending rate limited to smallest
detection - performance limit window size

« End-to-end argument + Nagle’s algorithm
« Silly window syndrome
« Congestion control
« Sharing available resources
« AIMD
« Multiple signals: packet loss, latency, etc.

E3

08/10/2024

15

	Reliable Delivery / Error Control
	Slide 1: Computer Networks X_400487
	Slide 2: Roadmap: Transport Layer
	Slide 3: The End-To-End Argument
	Slide 4: Error control in the transport layer
	Slide 5: Reliable Delivery through Retransmissions
	Slide 6: Improving Performance by using Error control on lower layers
	Slide 7: Error control and crash recovery
	Slide 8: Error control and crash recovery
	Slide 9: Crash recovery
	Slide 10: Error control and crash recovery
	Slide 11: Crash recovery on layer k

	Flow Control
	Slide 12: Roadmap: Transport Layer
	Slide 13: Regulating sending rate Flow control
	Slide 14: Regulating sending rate Congestion control
	Slide 15: Stop-and-Wait: A 1-Bit Sliding Window Protocol
	Slide 16: Stop-and-Wait: A 1-Bit Sliding Window Protocol
	Slide 17: Sliding window protocols
	Slide 18: Recap: Link Utilization
	Slide 19: Flow control and buffer management

	congestion control
	Slide 20: Roadmap: Transport Layer
	Slide 21: Today
	Slide 22: Congestion control
	Slide 23: Congestion control requires resource management
	Slide 24: Fair bandwidth allocation
	Slide 25: Fair bandwidth allocation Max-min fairness
	Slide 26: Fair bandwidth allocation Convergence
	Slide 27: Available bandwidth is unknown
	Slide 28: Dynamically adjust bandwidth using trial and error
	Slide 29: Sharing bandwidth example
	Slide 30: Sharing bandwidth example
	Slide 31: Sharing bandwidth Efficiency and fairness
	Slide 32: Regulating sending rate Approaches
	Slide 33: Additive increase Additive decrease
	Slide 34: Multiplicative increase Multiplicative decrease
	Slide 35: Regulating sending rate Efficiency and fairness
	Slide 36: Additive increase Multiplicative decrease
	Slide 37: Regulating sending rate Efficiency and fairness

	internet protocols
	Slide 38: Roadmap: Transport Layer
	Slide 39: Internet protocols
	Slide 40: Comparing complexity by number of RFCs

	UDP
	Slide 41: User Datagram Protocol (UDP)
	Slide 42: User Datagram Protocol (UDP)

	TCP
	Slide 43: Transmission Control Protocol (TCP)
	Slide 44: Transmission Control Protocol (TCP)
	Slide 45: Transmission Control Protocol (TCP)
	Slide 46: Transmission Control Protocol (TCP)
	Slide 47: Transmission Control Protocol (TCP)

	TCP connection establishment/release
	Slide 48: Connections in TCP
	Slide 49: Transmission Control Protocol (TCP)
	Slide 50: TCP connection establishment Three-way handshake
	Slide 51: TCP Timestamp Option
	Slide 52: TCP Timestamp Option
	Slide 53: TCP PAWS
	Slide 54: TCP sequence numbers
	Slide 55: TCP connection release Two simplex channels
	Slide 56: TCP connection release Two simplex channels

	TCP error control
	Slide 57: Error Control in TCP
	Slide 58: Reliable Delivery through Retransmissions
	Slide 59: Setting Retransmission Timers
	Slide 60: Dynamic Timeouts in TCP
	Slide 61: Performance improvement Fast retransmission

	TCP flow control
	Slide 62: Flow Control in TCP
	Slide 63: Flow control and buffer management
	Slide 64: TCP window size Flow control
	Slide 65: TCP window size Nagle’s algorithm
	Slide 66: TCP window size Silly-window syndrome
	Slide 67: TCP Delayed Acknowledgements
	Slide 68: TCP Delayed Acknowledgements

	TCP congestion control
	Slide 69: Congestion Control in TCP
	Slide 70: Transmission Control Protocol (TCP)
	Slide 71: Additive increase multiplicative decrease in TCP
	Slide 72: AIMD in TCP What value to start with?
	Slide 73: AIMD in TCP ‘slow’ start
	Slide 74: TCP ‘slow’ start
	Slide 75: TCP Tahoe
	Slide 76: Performance improvement Fast retransmission
	Slide 77: TCP Reno (= TCP Tahoe + fast recovery)
	Slide 78: What about Explicit Congestion Notification?
	Slide 79: What about Explicit Congestion Notification?
	Slide 80: What about Explicit Congestion Notification?

	tcp versions
	Slide 81: Different Flavors of TCP
	Slide 82: TCP versions and congestion signals
	Slide 83: TCP versions and congestion signals

	end
	Slide 84: Roadmap: Transport Layer
	Slide 85: Transport Layer Summary

