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Abstract

Modifiable Virtual Environments (MVEs) such as Minecraft have become a

central pillar of modern digital culture, creating a community of hundreds of

millions of players and billions in revenue. However, despite their massive

popularity, MVEs face inherent scalability limitations and can support only

around 200 concurrent players within a single contiguous world. To overcome

this barrier, recent efforts from both industry and academia have explored dis-

tributed or “sharded” architectures, exemplified by projects such as MultiPaper

and Mammoth. Yet, the absence of standardized benchmarking tools makes it

difficult to rigorously evaluate and compare these systems or to understand the

tradeoffs between different sharding approaches.

Existing benchmarking frameworks for MVEs are insufficient, as they primar-

ily target single-server architectures and lack the capability to measure per-

formance in distributed settings. In this work, we introduce VoxelBench, a

benchmark designed to evaluate the scalability and performance of distributed

MVEs. VoxelBench captures system-, application-, and thread-level metrics,

and introduces derived metrics such as chunk sharing ratio and average syn-

chronization time to characterize the behavior of sharded MVEs.

We implement VoxelBench and use it to conduct experiments on Google Cloud

Platform (GCP), evaluating the performance of a popular distributed MVE,

MultiPaper. Our findings reveal that the choice of load balancing strategy plays

a pivotal role in simulation performance. In particular, a proximity-based load

balancer demonstrates superior performance compared to MultiPaper’s default

least-connected load balancer, underscoring the importance of spatial locality

in distributed virtual environments.



iv



Contents

1 Introduction 1

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Plagiarism Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 MVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 MVE Operational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 MVE Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 MVE Game Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Simulated Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Distributed MVEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Statically Sharded MVEs . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Dynamically Sharded MVEs . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2.1 Multipaper . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2.2 Mammoth Minecraft . . . . . . . . . . . . . . . . . . . . . . 16

3 Design of VoxelBench 17

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Design of Player Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Exploration & Traversal (Walk) . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Player-versus-Player (PvP) . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Player-versus-Environment (PvE) . . . . . . . . . . . . . . . . . . . . 21

i



CONTENTS

3.3.4 Building & Editing (Build) . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.5 Joint Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Design of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Design of Player Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Design of Map Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Unified Benchmark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Implementation of VoxelBench 29

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Player Emulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Player Emulation Rationale . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Walking and Exploration . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.3 Player versus Player . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.4 Player versus Environment . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.5 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.6 Simulated Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.7 Player Spawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Extensible Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Node Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Coordination Node Setup . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.3 Game Server Node Setup . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.4 Bot Node Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.5 Exposing Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Benchmark Configuration . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.2 Seed Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Performance Evaluation of Multipaper 39

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 AtLarge Cluster Host . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Google Cloud Compute Host . . . . . . . . . . . . . . . . . . . . . . 40

5.1.3 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Experimental Design, Motivation & Main Findings . . . . . . . . . . . . . . 41

5.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 2 CPU config works best for 100 players. . . . . . . . . . . . . . . . . 43

ii



CONTENTS

5.3.2 Multipaper achieves similar performance to paperMC. . . . . . . . . 45

5.3.3 Larger worlds perform better under exploration workloads. . . . . . . 45

5.3.4 Walk, PvP perform better under more nodes. PvE, Build perform

better under more cores. . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.5 Multipaper cannot efficiently scale beyond 200 players. . . . . . . . . 49

5.3.6 Proximity load balancing of players improves performance. . . . . . . 53

5.3.7 Chunk sharing reaches 80% under the least connected load balancer. 53

5.3.8 Multipaper has negligible data syncing overhead between nodes. . . . 55

6 Related Work 57

6.1 Yardstick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Meterstick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion 59

7.1 Answering Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References 63

A Reproducibility 67

A.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Artifact check-list (meta-information) . . . . . . . . . . . . . . . . . . . . . 67

A.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3.1 How to access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.4 Experiment workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.5 Experiment customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



CONTENTS

iv



1

Introduction

1.1 Research Context

Modifiable Virtual Environments (MVEs) are hugely popular due to the fact that they

allow players to modify the virtual environment itself—such as terrain, structures, and

game logic unlike other games which are mostly limited to player aesthetics. One of

the most successful MVEs is Minecraft, which is also the best-selling video game of all

time, and had sold over 350 million copies by 2024 (1). It maintains a vast player base

of approximately 200 million monthly active users (MAUs) and generates at least $400

million in annual revenue (1).

MVE’s influence extends well beyond entertainment: in 2020, Mojang—the creators of

Minecraft—launched Minecraft Education Edition, a gamified learning platform now used

in more than 40,000 schools across at least 140 countries, where it helps teach subjects

such as mathematics, history, and computer science (2).

The enormous popularity of MVEs has attracted growing interest from both academic

(3, 4, 5) and industry circles (6, 7), with a shared goal of massivizing MVEs—scaling them

to support large-scale, concurrent multiplayer experiences within a single contiguous world.

Currently, however, monolithic architectures limit even the most optimized MVE servers

to around 200 concurrent players (8).

The motivation to scale MVEs arises from both economic and creative incentives. From

an operational perspective, horizontally scaling MVEs could reduce the costs associated

with vertically scaled architectures used in most large-scale online environments. From

a creative standpoint, enabling thousands of players to coexist within the same persis-

tent world could unlock new forms of gameplay, social interaction, and educational use

cases—such as teaching economic principles through real-time, interactive simulations (9).
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1. INTRODUCTION

Recent years have seen a surge of efforts to overcome these scalability barriers. Industry

projects like Folia (PaperMC) (7), Multipaper (6), and Mammoth (10), as well as academic

systems such as Dyconits (5), Kiwano (3), and Servo (11), have begun to decompose tradi-

tional monolithic MVEs into distributed, multi-server systems. These systems use different

strategies to distribute computation and state: Folia introduces a multi-threaded model

that performs simulations in parallel; Mammoth Minecraft (10) connects servers through

WorldQL (12), a spatial database managing player state and world synchronization; and

Multipaper (6) employs a peer-to-peer architecture, assigning exclusive ownership of small

simulation regions (chunks) to individual nodes that coordinate when necessary.

1.2 Problem Statement

Scalability solutions for networked virtual environments have existed since the early 2000s(13),

emerging alongside large-scale online games such as Second Life and World of Warcraft.

Colyseus(14) introduced a distributed architecture for video games by distributing game

state and computation across multiple nodes through a single-copy consistency model.

Steed et al.(15) demonstrated that effective partitioning of a virtual environment’s spatial

domain can reduce inter-server synchronization costs and improve overall system scalabil-

ity.

Building on these foundational ideas, more recent distributed MVE solutions such as

Multipaper (6) and Mammoth (10) have begun to adapt these techniques to the unique

challenges of modifiable virtual environments. However, unlike traditional MMOs where

distributed solutions were developed, MVEs involve substantial user-driven modifications

to terrain and game logic, resulting in workloads that differ from previous online virtual

environments.

Also, existing MVE benchmarks, such as Yardstick(8) and Meterstick(16), were de-

signed for single-server MVEs and cannot effectively stress test distributed or sharded

MVEs. Moreover, they lack the necessary metrics to characterize key aspects of sharded

MVEs—such as synchronization latency and inter-node data sharing. As a result, re-

searchers and developers lack a systematic means to analyze performance trade-offs or

validate the scalability claims of new sharded MVE architectures.

1.3 Research Questions

To address the challenges outlined above, we formulate the following research questions:
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1.3 Research Questions

RQ1. How can we design a benchmark to effectively evaluate distributed

Modifiable Virtual Environments (MVEs)?

Designing such a benchmark raises several key questions that must be addressed

to ensure meaningful benchmarking.

First, we need to design a unified benchmark model that can represent

different architectural components across different MVEs(See Section 3.7).

Second, we must determine what workloads should our benchmark in-

clude. We must include only those workloads that stress the distributed com-

ponents of any MVE (See Section 3.3).

Third, we need to consider how should players spawn and be distributed

across the world. Player placement directly affects load balancing, inter-server

communication, and synchronization overhead. Understanding spatial distri-

bution strategies and how players move and interact is essential for evaluating

performance under realistic conditions (15) (See Section 3.5).

Fourth, it is important to ask which worlds or map types should we

include since players behave differently depending on world topology, resource

density, and terrain complexity (14)(See Section 3.6).

Finally, we must identify the metrics required to characterize perfor-

mance. Traditional single-server benchmarks do not capture key aspects of

sharded MVEs, such as game-state replication, synchronization latency, and

inter-node communication costs (See Section 3.4).

Together, these questions guide the design of a benchmark that can systemat-

ically evaluate distributed MVEs which we answer in Chapter 3.

RQ2. How can we implement a scalable and extensible benchmark frame-

work for distributed MVEs?

Designing a benchmark is only the first step; implementing it requires trans-

lating the design questions into a working system that can measure real-world

performance.

First, we must determine how do we implement an extensible framework

that can support multiple MVE platforms.

3



1. INTRODUCTION

Second, we need to ask how do we simulate realistic player workloads?

Our workloads should be able to perform a combination of actions such as walk,

build, mine, etc based on real world distribution.

Finally, we need to ensure reproducibility and scalability of our benchmark.

Our benchmark should be able to support the use of multiple nodes and support

automated deployment and data collection for repeatable experiments.

These questions guide our implementation of our VoxelBench benchmark and

we answer these questions in Chapter 4.

RQ3. What performance trade-offs and coordination challenges arise in

dynamic, sharded MVEs, and how do they impact scalability?

Using VoxelBench, our objective is to analyze the scalability of the most pop-

ular distributed MVE implementation which is called Multipaper. Our evalu-

ation is provided in Chapter 5.

1.4 Research Contributions

The thesis has the following contributions:

RC1. We design a novel benchmark tailored to evaluate the performance and scal-

ability of distributed MVE servers. The framework introduces new workload

categories, player distribution strategies, and performance metrics suited to

sharded architectures.

RC2. We implement an extensible and scalable benchmarking system based on our

design that supports multiple MVE architectures, providing automated provi-

sioning, workload generation, and data collection.

RC3. We analyze the performance of Multipaper, the most popular distributed sharded

MVE implementation and gather usable insights. We uncover tradeoffs and co-

ordination challenges across different workloads and overall its scalability.

RC4. We contribute to the research community by openly releasing both our dataset

and the benchmarking framework as open-source resources. This ensures that

our results are transparent and reproducible, while also enabling future re-

searchers and practitioners to build upon our work, compare alternative ap-

proaches, and extend the benchmark to new use cases.
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1.5 Plagiarism Declaration

1.5 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

1.6 Thesis Structure

The remainder of this study is structured as follows. Chapter 2 introduces the background

on MVEs. Chapter 3 presents the design and the rationale behind it. Chapter 4 discusses

how we implemented our benchmark. Chapter 5 evaluates the performance of the most

popular sharded MVE, Multipaper. Chapter 6 reviews related work. Chapter 7 discusses

threats to the validity of the study and concludes the thesis.
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2

Background

In this section, we discuss the necessary background on MVEs and distributed Minecraft.

First, we discuss what an MVE is and give examples of workloads they run, the inner game

loop and simulate constructs (SCs). We then end with a few distributed solutions that are

currently available for the popular MVE Minecraft.

2.1 MVE

A Modifiable Virtual Environment allows players to actively shape the virtual world in

real time. Users can modify individual objects (such as player apparel) and the virtual

world’s parts (like terrain), create new content by connecting components (Simulated con-

structs), and also interact with the virtual environment through programs. The latter

three capabilities—component-based creation, programmatic interaction, persistent modi-

fications to virtual environment—are unique to MVEs, making them highly dynamic and

user-driven virtual worlds.

Using Minecraft as an example, we have further explained the operational model, work-

load, inner game loop and simulated constructs of MVEs below.

2.2 MVE Operational Model

An operational model of the MVE Minecraft was first proposed by Eickhoff et al.(2023)

(16), as shown in figure 2.1.

1. Client 1 : The client performs two tasks. It takes user input and translates them into

in-game actions. It sends them to the server for validation and then applies them to

its local state.
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Figure 2.1: Monolithic Minecraft Architechture. Source:[Eickhoff et al., 2023]

2. Server 2 : The server is responsible for performing all simulations in the game. Its

goal is to receive updates from the client, compute and apply game state changes

based on input received, and then return the computed game state updates to each

player.

3. Game Loop 3 : The game loop is the core component responsible for the simulations

and world updates. It makes changes to the game state in discrete time steps called

ticks. Minecraft provides the best QoS when an iteration of the game loop finishes

within 50ms or 20Hz, in other words; when the tick is 50ms. When the tick is greater

than 50ms, the server is considered overloaded. Minecraft servers that are a fork of

Purpur (17) (most online servers) automatically shutdown if the tick goes beyond

2000ms.

4. Protocol 4 : Unlike other on-line multiplayer games that use UDP mainly for client-

server communication, Minecraft uses TCP.

5. Persistent State 5 : Minecraft stores terrain, entity, and player information using

storage and continuously updates them as updates come in. Minecraft stores terrain

information in an NBT file format. The terrain data is stored in small sizes, called

chunks. Each chunk stores its information in a single NBT file and consists 16x16x384

blocks. The file is compressed for efficient storage.
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Figure 2.2: Minecraft Workload Components. Source:[Eickhoff et al., 2023]

2.3 MVE Workloads

A workload model, as shown in 2.2, was also proposed by Eickhoff et al.(2023) (16) that

describes different workloads that are handled by the Minecraft game loop.

1. Player Workloads: Players create workloads for the server through their actions.

In Minecraft, players are allowed a wide range of actions that the server needs to

compute. Collision detection is one of the workloads that is run most frequently by

the game loop. The game needs to prevent players from walking through walls and

broadcast player movement information to other players. Players can also interact

with other players; one such example is PVP battles, where complexity of interac-

tion can increase based on the weapons and armor that players have on. Players

can also interact with in-game entities—entities are in-game non-playable characters

(NPCS)—such as villagers and wandering traders to exchange items. One standout

feature of Minecraft compared to other online games is the player’s freedom to edit

the terrain. This action is not only compute intensive, but also data intensive. When

players move to new chunks fairly quickly, the server is required to uncompress the

NBT chunk files and load them into memory. The changes a player makes to the

terrain through creation and destruction also need to be synced and broadcast to

other players. Players can also construct programmable elements in the game known

as SCs in MVEs (Redstone in Minecraft). These dynamic elements significantly adds

to the workload.

2. Terrain Workload: A significant portion of the workload can be generated by terrain

simulation. MVEs and Minecraft present the players with massive world. Minecraft

9



2. BACKGROUND

allows a player to traverse 30 million blocks in any direction from the center. The

world is split into chunks (16x16x384 blocks) and stored persistently using com-

pressed NBT files. As players move around the world, the required chunk is loaded

lazily from the storage. The four main components of terrain simulation are physics,

lighting, plant growth, and SCs (16). The reason why terrain workload is so expensive

is due to the reason that the game needs to compute simulations on multiple blocks.

A simple act of maybe removing two or three blocks could bring an entire structure

like a building to the ground and each falling block would have its physics simulated.

Dynamic elements such as plant growth also add to the workload, by growing and

changing in size reshaping the terrain. Simulating SCs require substantially more re-

sources. Using SCs, players can build a fully functioning CPU, functioning train, etc.

Simulating such complex instruments is done step by step and ends up substantially

slowing the game tick rate.

3. Entity Workload: An entity is a non playable character. There are two ways that

make entity simulation challenging for MVEs—spawning and pathfinding (16). MVEs

compute spawn points dynamically. They need to check for cases where terrain might

be obstructing their spawn location which further adds to the compute time. Second,

entities use path-finding algorithms to move around the world. Since the terrain can

be edited by a player at any moment, a path-finding algorithm needs to be used

unlike static worlds where a simple overlay can direct entities. Dynamic path-finding

further adds to the workload.

2.4 MVE Game Loop

The game loop 1 as shown in figure 2.3 comprises of 3 main workload classes. The

workload computed by each class is defined in section 2.3.

1. Player Handler 2 : The player handler is driven by the actions received from players.

The workloads it handles is defined section 2.3. It performs a blocking get, if the

received player actions are valid, it makes the changes permanent by writing it to

State 5 using a blocking write.

2. Terrain Simulation 3 : Terrain simulation is mostly independent from Player Han-

dler. It comprises of workloads defined in 2.3. It performs a blocking read from the

persistent state, in the event there is a change in terrain, it computes simulation rules

for the new received state. Sometimes a simple update could affect multiple other

10
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Figure 2.3: Minecraft Game Loop. Write blocking is done at chunk level.

blocks, e.g., removing a block could bring an entire structure down. In such cases, it

performs a blocking write to the state for update the new terrain.

3. Entity Handler 4 : Entities are completely driven by the game state 5 . It performs

a blocking read; based on its surrounding terrain, player data, it undertakes the next

decision. One such example is reading its surrounding terrain to compute the next

block using its pathfinding algorithm. Based on its decision, it performs a blocking

write and updates the state.

2.5 Simulated Constructs

Minecraft and MVEs can contain stateful blocks/voxels. The authors of Servo (11) refer

to a collection of such blocks as SCs or Simulated Constructs. Throughout this article

we will be using the same name for such a collection. In Minecraft, you create SCs using

special blocks such as redstone dust, redstone lamp, redstone repeater, redstone lever, etc.

Each of the redstone block types has their own unique logic as to how they function. Using

different kinds of stateful redstone blocks (which are Turing complete), players can create

fairly complex SCs such as fully functioning computers as shown in Figure 2.4.

The developers at Mojang have given different redstone blocks certain properties in order

to make them less computationally expensive, though it hasn’t really been successful as

showcased by Servo (11), which shows a huge boost in performance if SCs are computed

11
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Figure 2.4: A fully functioning computer using Minecraft Redstone.
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Figure 2.5: Minecraft Redstone signal propagation across ticks.

using serverless principles, but it still helps in spreading SC computation across multiple

different game ticks. Figure 2.5 shows how Minecraft distributes the redstone computation

in multiple ticks.

Minecraft redstone blocks work like cells in Conway’s Game of Life, but unlike Conway’s

Game of Life, where a cell is influenced by both its live and inactive neighbors, only a

live Minecraft redstone block influences its neighbors. Minecraft has special blocks such

as redstone lever which a player can interact with in the game to make that block "live",

or has "always live" blocks such as a redstone block.

In our Figure 2.5, a player first interacts with the redstone lever at tick 0 ; this interaction

gets registered in the next tick. In the next tick 1 , the redstone lever influences the

redstone dust next to it, which then influences its own redstone dust neighbour. This
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2.6 Distributed MVEs

Figure 2.6: MVE Static Sharding Architecture. Source:[Steed et al., 2003]

chain of one block influencing another block is allowed to be chained up to 15 times in

Minecraft, when the redstone "signal" becomes weak and subsides if not propagated by

a redstone repeater. In our Figure, the signal reaches the redstone repeater in tick 1 ,

keeping it within Minecraft’s chain limits.

Once the signal reaches a redstone repeater, here the signal is paused by Minecraft for one

"redstone tick" which is equivalent to two ticks in the game loop. In tick 4 , the redstone

repeater influences the redstone dust next to it which then influences the redstone lamp. In

order to prevent cascading signals across the Minecraft game world, Minecraft only allows

redstone interactions to occur in chunks that are loaded in memory.

2.6 Distributed MVEs

Today, many online MVE communities operate their own servers and seek affordable ways

to accommodate more players. They leverage horizontal scaling, partitioning workloads

across multiple servers to accommodate hundreds or thousands of simultaneous users.

Today, distributed MVEs come in two designs, statically sharded and a more recent devel-

opment which is dynamically sharded.

2.6.1 Statically Sharded MVEs

To create a workaround for vertical scaling limits, community-driven tools, such as BungeeCord

(18), attempt to split a single game world statically between multiple servers. Each iso-

lated server can then hold up to 150-200 players. Trying to scale vertically to accommodate

more than 200 players on each server becomes prohibitively expensive. If there is only one

player in each of these zones, the entire cluster is required to run and leads to substantial

13
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Figure 2.7: MVE Dynamic Sharding Architecture.

inefficiencies. Figure 2.6 gives an example. Using a static distributed approach, these

online communities have been able to accommodate concurrent player counts of 5000 (19).

However, this approach divides the world into isolated segments, preventing the experience

of a seamless shared game space.

2.6.2 Dynamically Sharded MVEs

In Dynamic sharding, load is distributed across different nodes at the smallest indivisible

level, which is called chunks. Chunks are small atomic areas in the world map. Through

chunks, a single node can now hold areas from different locations in the map as opposed

to a large zonal area. This leads to a more efficient design since if there are only a few

players but in different areas of the map, one single node can handle it since it can load

chunks from the needed areas. Figure 2.7 showcases dynamic sharding.

In recent years, there have been many developments within the open source Minecraft

community, especially in relation to distributed Minecraft. We have two implementations

of distributed Minecraft—Multipaper (6) and Mammoth Minecraft (10)—that scale hori-

14



2.6 Distributed MVEs

Aspect Multipaper Mammoth
Synchronization P2P Publish/Subscribe
Chunk ownership Exclusive Shared
Write authority Server Hybrid
Scaling approach Decentralized Coordinated

Table 2.1: Architectural differences between Multipaper and Mammoth

Velocity Proxy

Minecraft Server

P2P Coordination

Minecraft ServerMinecraft Server Minecraft
Servers

Multipaper Master
Database

Read/Write Read/Write
Read/Write

Figure 2.8: Multipaper architecture which uses P2P coordination.

zontally and where players can share one contiguous world. Both architectures differ from

each other in 4 different aspects even though they have fairly similar looking components.

Their differences are shown in Table 2.6.2.

2.6.2.1 Multipaper

Multi-paper, as shown in Figure 2.8 is a decentralized scaling approach. Multipaper runs

a modified version of the open-source Paper (20) Minecraft game server behind a Velocity

proxy (21). All clients connect to the Velocity proxy which routes them to one of the

modified Paper servers. The server the player is connected to through the proxy is now

responsible for the chunks that belong in the players view distance. The server requests

for the necessary chunks from the Multipaper Master Database and is given full exclusive

authority over it. If a chunk needs to be unloaded, the Minecraft server then writes it back

to the Multipaper Master Database. If in case the required chunk has already been loaded

by another database, Multipaper tries to migrate the player, but if that is not possible,

it communicates the actions of the player to the server that holds the chunk. Servers
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Figure 2.9: Mammoth Minecraft that uses publish/subscribe for coordination.

communicate directly with each other and do not need a messaging server since only one

server can hold one chunk at a time.

2.6.2.2 Mammoth Minecraft

Mammoth, as shown in Figure 2.9, is a centrally coordinated scaling approach. Mammoth,

like Multipaper also runs a modified version of the open-source Paper (20) Minecraft game

server behind a BungeeCord proxy (18). All clients connect to the proxy, which routes them

to one of the Paper servers. Unlike Multipaper, the server to which the player is connected

is not exclusively responsible for all fragments within the view distance of the player.

Instead, Mammoth allows multiple servers to access overlapping regions of the world. The

chunk data are shared through a centralized spatial database called WorldQL (12). If a

server requires a chunk, it loads it, but it also subscribes to changes using WorldQL for

updates made by other servers. In the event of player movement or interaction across chunk

boundaries, the player remains on the same server if possible, and other servers receive

necessary chunk updates through the WorldQL database. Servers do not communicate

directly with each other and only use WorldQL to maintain consistency.
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3

Design of VoxelBench

In this chapter, we address RQ1 by providing a design for a distributed MVE benchmark

which we call VoxelBench .

3.1 Overview

We design VoxelBench, a distributed benchmark to evaluate performance and design de-

cisions in sharded Modifiable Virtual Environments (MVEs). Our contribution in this

chapter is six-fold:

1. We analyze the design requirements for VoxelBench (Section 3.2).

2. We present the design of player workloads that target resource balancing and infor-

mation management (Section 3.3).

3. We describe the metrics collected and derived to analyse distributed MVE perfor-

mance (Section 3.4).

4. We discuss player clustering behavior (Section 3.5).

5. We discuss map workloads (Section 3.6).

6. We present a unified benchmark model (Section 3.7).

3.2 Design Requirements

We begin by outlining design requirements for our benchmark. Our requirements are

motivated by RQ1.
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3. DESIGN OF VOXELBENCH

R1. Workloads Targeting Distributed Design Decisions: The benchmark should

only include workloads that stress distributed design decisions in MVEs. Each

workload should be easily configurable and support realistic player behavior.

R2. Performance Metrics for Distributed MVEs: The benchmark should cap-

ture metrics beyond single-server performance. It should be able to analyze

distributed overhead, replication costs, synchronization costs, etc.

R3. Representative Player Clustering: Player spawn and movement patterns

must be configurable since spatial distribution directly impacts load balancing.

The benchmark should support both uniform and clustered spawning.

R4. Multiple World Maps: Different world maps must be supported, as topology

affects player behavior. Maps should vary in terrain complexity and size. For

performance analysis to be more effective, the benchmark should mainly include

popular maps.

R5. Unified Benchmark Model: The benchmark must model architectural com-

ponents common across distributed MVEs under one unified abstraction. The

unified abstraction simplifies metrics collection mapping to corresponding com-

ponents, and creates a unified infrastructure provisioning system.

3.3 Design of Player Workloads

In this section, we design workloads that stress distributed design decisions in MVEs and

satisfy R1. We also cover the rationale for including them for each workload.

Extensive research has been conducted on the distributed simulation of virtual envi-

ronments (3, 14, 15, 22, 23). A taxonomy of these architectural designs is presented in

Figure 3.1 which is given by Gonzalez et al.(2023) (13). Although much of this work

does not directly address Modifiable Virtual Environments (MVEs), the underlying archi-

tectural principles remain highly relevant and are commonly applied in distributed MVE

systems today.

For example, under resource balancing, Multipaper uses world partitioning (6) and Mam-

moth uses distributed hashes (10). Under information management, Multipaper uses a

shared distributed world and Mammoth uses a shared centralized world.
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3.3 Design of Player Workloads

Table 3.1: Overview of supported Benchmark Workload. Acronyms:
W-Workload, C-Configuration, X-Map Location (x-axis), Z-Map Location
(z-axis), α-Walk probability, β-Build probability, γ-PVP probability, δ-PVE

probability, PVE-Player vs Environment, PVP-Player vs Player, SC-Simulated
Constructs.

ID Type Parameter Description Values
1 W Input world complexity High, Medium, Low
2 W Connected players (count) 25, 50, 75, · · ·
3 W Player emulation model Walk, Build, PVP, PVE, SC
4 W Clustering density 1, 2, 3, · · · , 25
5 W Area of Interest −30000000 < X,Z < +30000000

6 W Workload distribution α+ β + γ + δ = 1.0

7 W Radius −30000000 · · · , 0, · · · ,+30000000

8 W PVE mob type polar_bear, zombie, ender_dragon,· · ·
9 W Walk Destinations −30000000 < X,Z < +30000000

10 C View distance 10, 14, 18, 22, 26, 30, 32
11 C Entity spawning true, false
12 C Video recording true, false
13 C Seed random integer

In essence, distributed MVEs make key design decisions around two fundamental dimen-

sions — resource balancing and information management. These two paradigms form the

basis for the workloads that our benchmark aims to evaluate.

The workloads we have selected are based on three criteria:

1. The observation that players either perform a complex activity in a narrow area,

for example, building a house, fighting another player, or move towards an area, for

example, exploring the world (8).

2. The workloads target "MVE Workloads" as proposed by Eickhoff et al.(2023)(16)

(See Section 2.3).

3. The workloads stress resource balancing and information management design deci-

sions.

Based on our observations, Exploration, PvP, PvE, Building, and Simulated Con-

structs (SCs) workloads meet the above-described criteria. These workloads correspond

to player emulation models in Table 3.1. In the subsections below, we describe how our
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3. DESIGN OF VOXELBENCH

Figure 3.1: NVE Taxonomy. Components of an NVE and techniques included in them.
Source:[Gonzalez et al., 2021]

workloads target resource balancing and information management (See Section 3.6 for

SCs).

3.3.1 Exploration & Traversal (Walk)

In distributed virtual environment literature, there is substantial work that is concerned

with how players are mapped to nodes (15, 24, 25). Exploration-based workloads are impor-

tant for benchmarking MVE performance, as player movement influences how simulation

regions are assigned to servers. Unlike single-server MVEs, a sharded MVEs must continu-

ously determine region ownership between nodes and synchronize state across boundaries.

As players explore, the system must allocate ownership of newly visited regions, stream

updates to peers, and also rebalance ownership when players leave or when regions be-

come "hot" due to crowding. This creates a resource balancing challenge, where uneven

player distribution can lead to overloaded nodes. Exploration therefore stresses the classic

partitioning and mapping problem.
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3.3.2 Player-versus-Player (PvP)

In sharded MVEs, combat scenarios highlight critical performance challenges. When play-

ers on different shards engage in PvP, slow damage resolution can lead to visible desyn-

chronization and degrade the gameplay experience (13). Prior research on large-scale,

low-latency game systems emphasizes the importance of localizing player interest sets and

maintaining short dissemination paths for updates (23, 26). A PvP-focused player emu-

lation model would therefore be valuable for benchmarking how a sharded MVE manages

interest sets.

3.3.3 Player-versus-Environment (PvE)

Entities (Non-player characters) expose significant performance challenges. In distributed

virtual environments, there is substantial literature comprising mainly of partitioning en-

tities across nodes (27, 28, 29, 30). PvE generates entity-simulation workloads and raises

cross-boundary consistency issues when entities traverse shard borders. As discussed in

Section 2.3, entities introduce their own class of workloads, and high entity-simulation

density can substantially degrade performance (16).

3.3.4 Building & Editing (Build)

Building and terrain-based workloads are a key compute-intensive dimension (16). In

sharded architectures, we hypothesize that terrain edits could also create substantial up-

date traffic and state propagation to peer servers that are dependent on its state.

Similar to the walk model, the building player emulation model is designed to benchmark

how effectively partitioning algorithms distribute highly-edited terrain regions across the

cluster while simultaneously minimizing communication overhead.

3.3.5 Joint Workload

The joint workload combines the four core workloads—Walk, Build, PvP, PvE—by dis-

tributing player behavior according to configurable probabilities (α+β+ γ+ δ). Each bot

is assigned a behavior type per tick based on the distribution set, allowing simultaneous

execution of exploration, building, combat, and entity interaction.
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Table 3.2: Overview of performance metrics collected by VoxelBench. Acronyms:
S-System, T-Thread, A-Application, D-Derived, V-VoxelBench, C-Collector.

Name Type Source Description
RAM usage S S RAM Usage
CPU load S S CPU usage
Disk usage S S R/W in bytes

Network usage S S Sent/Received bytes
Lock contention T C Thread lock contention (ms)
Conditional Wait T C Conditional Wait (ms)

Thread Park T C Thread blocked by scheduler (ms)
Thread Sleep T C Thread sleeping (ms)
Player count A V Current connected players per server

Player location A V Player location in the world
Chunks loaded A V Chunks loaded by each server
Disconnects A V Server-wide disconnects, count
Tick length A C Time spent processing each tick

Tick Frequency D C Frequency of game loop updates
Relative Utilization D C See Section 3.4
Average Sync Time D C See Section 3.4
Shared Chunks % D V See Section 3.4

3.4 Design of Metrics

In this section, we give an overview of how we satisfy the requirement R2 which is metrics

required to track performance in distributed MVEs.

For observability, we track a couple of performance metrics—both system and application

level—which are shown in Table 3.2.

Collection of System-level Metrics: When the benchmark is running, each Node in

our cluster executes an instance of the system monitoring sensor (Telegraf) and automat-

ically collects and stores system-level metrics such as CPU load, RAM usage, disk usage,

and networking usage. Each node monitors its own system usage and stores data locally

on disk. Once the benchmark is done running, the data is copied from all nodes and stored

on disk on the orchestrator node from where the benchmark was initiated.

Collection of Thread-level Metrics: VoxelBench captures several thread-level met-

rics: lock contention, conditional wait, thread park, thread sleep for the main game loop

thread. In sharded MVEs, contention over remote resources may withhold the main thread
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from performing computation; hence, our benchmark needs to access thread-level informa-

tion to get better insights. Tracking thread-level information along with the function call

stack (Java Flight Recorder for Minecraft Java Edition) allows us to derive metrics related

to syncing overheads between two sharded MVE game servers.

Collection of Application-level Metrics: VoxelBench captures several application-

level metrics: number of connected players, player location, chunks loaded by an MVE

game server, player disconnects, and tick length. The number of connected players and

tick length are collected by the VoxelBench collector component that runs as a separate

process. The chunks loaded by an MVE game server is tracked by a plugin that hooks

into the game loop of the MVE server and logs all the world chunks loaded every tick.

The chunk information is then written to disk by the plugin. The player disconnects and

player location are tracked on the bot node by integrating the logging functionality into

the player emulation model. All information is written to disk.

Derivation of Service-level Metrics: VoxelBench derives several service-level metrics

from the system-level, runtime-level, and application-level metrics it collects.

From the game-loop data, VoxelBench derives tick frequency. From the tick frequency,

it computes relative utilization. Relative utilization is discussed next as described by the

Yardstick Benchmark (8).

Definition 3.1. The relative utilization of a server is defined as:

Ur =
td − ts
te − ts

where Ur is relative utilization, and the variables td, ts and te are interpreted as in Figure

(create figure).

From the chunk loaded every game loop, we can derive the shared chunks % metric for

the entire MVE cluster. The shared chunks metric is very important because it can help

determine whether a cluster is sharing extensive world data between different game servers.

Sharing huge % of chunk data could lead to sync issues and decrease tick rate. The shared

chunks % metric, which we introduce, is discussed next.

Definition 3.2. The Shared Chunks % metric of an MVE cluster can be defined as:

SCP = 100× S

L
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where SCP is shared chunk %, S is the number of shared chunks in the cluster and L is

the total number of loaded chunks in the cluster. The derivation for S,L is given below.

Let s ∈ S denote the set of servers and Cs denote the set of loaded chunks on a server s.

Let U =
⋃
s∈S

cs be the set of all chunks loaded on a MVE cluster.

The number of chunks loaded is L = |U |

Let nc = |{s ∈ S : c ∈ Cs}| be the number of servers where a chunk c is loaded

The set of shared chunks is Ushared = {c ∈ U : nc ≥ 2}.

The number of shared chunks is S = |Ushared|

Using the collected thread-level metrics, we can now derive average sync time for each

MVE game server. It is only calculated for the Main Game Loop thread. This metric

is important because it helps us gain insights into the amount of time spent syncing and

coordinating with other servers in the cluster instead of performing work. The average

sync time metric, which we introduce, is discussed next.

Definition 3.3. The average sync time of a server is defined as:

Sr = Tp − (te − td)

where Sr is average sync time, Tp is average duration of thread park events per tick and

te − td can be interpreted as average tick wait duration as shown in Figure (create figure).

3.5 Design of Player Clustering

In this section, we describe player clustering behavior and satisfy R3.

Player clustering is strongly influenced by map design and points of interest (POIs) such

as settlements, resources, or landmarks (14). We capture this behavior through two spawn

modes in VoxelBench.

The first mode targets scenarios where there is a lack of data, where no positional traces

or heatmaps are available. In such cases, bots are spawned at random positions within a

user-defined radius R around the origin, with a density parameter D controlling how many

bots appear at the same location.
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The second mode addresses scenarios where the player clustering data is available. Here,

instead of dispersing from the origin, bots are spawned at random radii around user-defined

hotspot coordinates that correspond to these POIs, again with density D specifying local

clustering.

Together, these two spawn settings allow us to reproduce POI-driven clustering behavior.

The spawning and clustering are illustrated in Figure 4.3 and described in Section 4.3.7.

3.6 Design of Map Workloads

Table 3.3: Community maps with size, downloads, and complexity. Acronyms:
SC-Simulated Constructs.

Name Size [MB] Downloads (in 1,000s) Complexity (relative)
GreaterKCMetro 78.8 29 High
World of Worlds 81 423 Medium

Castle Lividus of Aeritus 36 330 Low
Redstone Mountain Village 13.5 19 SC

In this section, we explain map workloads and satisfy R4.

As described in Section 2.5, Simulated constructs (SCs) are non-player elements in an

MVE that generate workloads for the MVE game server. SCs significantly impact the

performance of a game server (11). For any distributed MVE game server to be usable,

it should be able to handle the workloads generated by SCs. Hence, a benchmark that

targets distributed MVEs needs to include SC workloads. To target non-player workloads,

our benchmark includes popular MVE maps. For Minecraft, we have included a popular

map that has 100s of SC elements called Redstone Mountain Village as shown in Table

3.3.

In our benchmark, we can target non-player workloads for Minecraft by running our

Walk workload on the Redstone Mountain Village. With this and the above described

player workloads, we satisfy the requirements of FR.1 which is extensive player models.

3.7 Unified Benchmark Model

In this section, we design a benchmark model and satisfy R5.

Our benchmark provisions infrastructure along three node types that are Coordination,

Game, and Bot Nodes to enable simplified provisioning and mapping metrics collection to
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Figure 3.2: VoxelBench Benchmark Design

node types. The main motivation behind this is how community sharded MVE clusters

such as Multipaper and Mammoth are architected as shown in Figure 2.8 and Figure 2.9

respectively. Coordination nodes not only comprise the proxy node, but also central co-

ordination components like the Spatial Database in Mammoth and the Master Database

in Multipaper. This is because for Multipaper, both the proxy component and Master

Database run on one server.

As shown in Figure 3.2, the Coordination Node is responsible for enabling communication

between Game Server Nodes and the Bot Nodes. The Coordination Node also stores IP

information regarding how different Game Server Nodes should reach each other, and

important databases that are needed for keeping the game state in sync. The Game Server

Node is responsible for running the MVE game application, and the Bot Node emulates

players.

Each of these Node types has its own Deploy, Run, Stop, Fetch, and Clean phase in

the benchmark. In the Deploy phase, the MVE Server Application, Coordination Server

Applications, and Player Emulation Application are installed along with their dependencies

in the Game Server, Coordination, and Bot Nodes respectively. We also install a common

metrics collector that tracks system information across all nodes.
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3.7 Unified Benchmark Model

Next in the Run phase, using the configurations provided by the user, the MVE Server

Application, Gateway Server Application, and Player Emulation Application are run. After

the benchmark has completed running, the applications are stopped and the data fetched

in the Stop and Fetch phases respectively. Then all nodes are cleaned up for the next test

in the Clean phase.
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4

Implementation of VoxelBench

This chapter discusses the implementation of VoxelBench .

4.1 Overview

We implement VoxelBench, a distributed MVE benchmark designed in Chapter 3, thereby

addressing RQ2. In this chapter, our contribution is four-fold:

1. We describe the implementation requirements for VoxelBench and outline the moti-

vations behind them (Section 4.2)

2. We present the implementation of player emulation models for generating workloads

(Section 4.3).

3. We discuss the extensibility of the benchmark to other MVEs and implementation

of scalable workloads and the node provisioning process (Section 4.4).

4. We describe the mechanisms for reproducibility and repeatability across experiments

(Section 4.5).

4.2 Requirements

We begin by outlining requirements for our benchmark implementation. Our requirements

are motivated by RQ2.

R1. Realistic player emulation models: The benchmark implementation must

provide a broad set of player models representing common in-game behaviors
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and non-player models to generate extensive workloads. This includes convert-

ing activities such as Exploration, Building, PvE, and PvP into repeatable and

configurable player models. The benchmark should also support behaviors such

as players congregating around hotspots.

R2. Extensible benchmark: VoxelBench must support a wide range of MVE server

implementations, versions and forks. It should also be straightforward to both

configure workloads and deploy any target MVE server without worrying about

infrastructure setup for benchmarking. Infrastructure provisioning process for

virtual machines should be automated and configurable to enable quick bench-

marking for any MVE.

R3. Scalable workloads: VoxelBench must implement scalable workloads that can

be adjusted to simulate varying player counts. The implementation should easily

scale across nodes.

R4. Reproducible: All randomized processes (spawn placement, waypoint selection)

should be seeded. Seeds should be recorded with the experiment manifest. Each

benchmark run should record seeds, workload parameters, world/map identifiers,

bot setups, etc such that experiments can be repeated under identical conditions.

4.3 Player Emulation Models

This section describes the implementation of player simulation models and satisfies R1.

4.3.1 Player Emulation Rationale

Implementing a benchmark that reproduces realistic workloads involving thousands of

concurrent players is currently unfeasible. Even for popular MVEs such as Minecraft, no

established behavior models exist that would allow the construction of realistic workloads

(16). Moreover, obtaining actual game traces is extremely challenging, since commercial

game providers are protective of both player-trace data and system-architecture details

(31). MineRL (32) is the most prominent public dataset; however, the dataset lacks multi-

player interaction and mostly contains task-centric gameplay such as navigation, diamond

mining, etc. and short gameplay scenarios. All these factors limit its usefulness.

In contrast, a performance benchmark is feasible. Such a benchmark does not need to

capture all contingencies of real-world play. Instead, it must be capable of stressing the
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Figure 4.1: Left: Bot swimming, Right: Bot attacking another bot

system in ways that expose bottlenecks and scalability limits. This approach has already

been demonstrated effectively in several single-server MVE experiments (5, 8, 16). Due to

its successes in the literature, we decide to implement player emulation models to create

workloads designed in Section 3.3.

4.3.2 Walking and Exploration

Walking and exploration model generates both player and terrain workloads. As the player

walks around the environment, workloads such as collision detection, player information

broadcast, etc. are generated. As the player enters different chunks, the game server starts

uncompressing NBT chunk files and loads them into memory. In this model, after the

bot is spawned at some random location within the given radius, the bot first sets up a

constant variable that is a cardinal direction (east, west, north, south). It then generates

a random destination in the chosen cardinal direction which does not change for the whole

test. The destination blocks can be around 10 blocks away from the bot’s location. Using

a pathfinder module, the player walks, swims, or digs (breaks voxel blocks in its path) to

its destination. On reaching its destination, it sets a new random destination to walk to

again which is in the direction of the chosen cardinal direction. A first-person view of a

walking bot is shown in Figure 4.1
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Figure 4.2: Left: Bot building a house, Right: Bot attacking a polar_bear entity

4.3.3 Player versus Player

The PvP model (player versus player) generates player workloads. For this player model

to work correctly, the density variable for the benchmark should be at least set to 2.

In this model, after a few bots have spawned at a random location them equip themselves

with armor. The armor comprises a helmet, shield, chest armor, boots, and leggings. It

also equips a sword. After equipping itself with weapons, it sends p2p chats to all other

bots in its vicinity. The chat sent is "Fight me!". Whenever a bot receives a "Fight me!"

message, it includes the sender bots’ username into a foe list. From the list of foes, each

bot identifies the closest bot to it and proceeds to engage them in combat. If a bot dies,

it respawns in the same location to which it teleported at the beginning. It re-equips itself

with armor and then proceeds to fight the nearest bot on its foe list. An image of a bot

attacking another bot in first person is shown in Figure 4.1.

4.3.4 Player versus Environment

The PvE model generates entity workloads. By spawning entities or attacking entities,

we force the server to compute entity simulation functions such as pathfinding, spawning,

decision making (fleeing, attacking), etc.

The user decides which entity should be spawned. For this model to work, the underlying

game server and the game world should support the spawning of that entity. After spawning

at a random location, the bot equips itself with all 4 pieces of armor, a shield, and sword.

Then it spawns an entity, tagged with a unique name. It proceeds to then engage and
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attack the entity. It respawns a new entity if it successfully terminates the spawned entity.

An image of a bot attacking an entity polar_bear is shown in Figure 4.2

4.3.5 Building

The Building model generates terrain workloads. The world’s terrain is changed by adding

new blocks. These changes have to be made persistent on the disk. Also, the chunks

need to be compressed before storage, which further adds to the compute required. In our

model, after spawning at a random location, it equips itself with oak_planks using operator

commands. It then proceeds to build a box home using the planks. On completion, it walks

to a new destination and repeats the process. On average, it takes a bot around 4 minutes

to build a home. Figure 4.2 shows a bot building a house using plank blocks.

4.3.6 Simulated Constructs

In our SC workload reference example for Minecraft, the benchmark executes workloads

on the redstone-mountain-village map. Upon spawning, bots are programmed to randomly

traverse the area, actively seeking out various redstone contraptions, which could include

automated farms, complex piston doors, and other such mechanisms. All of these redstone

contraptions are pre-activated before the bots begin their exploration, setting the stage for

their interactions within the environment.

4.3.7 Player Spawn

In Virtual Environments, when a new player joins the map, the player spawns at the

origin point. The player then gradually explores the world outward from the spawn point

to other areas of interest (14). Player clustering in the game can range from densely

populated around areas of interest to very sparsely populated.

Figure 4.3 portrays how we simulate this behavior. In our figure, 1 represents the game

world. Currently, popular MVEs like Minecraft have an origin 3 . For our benchmark, the

user is expected to define a radius, as shown by R . The circle 2 in the Figure portrays the

area where a bot can be teleported. When a bot joins the game world, the bot is instantly

teleported to a random location within the circle 2 .

Another configurable variable for player spawn is density D . Using this configurable

variable, the user can set the number of bots that would teleport to one random location.

This number is guaranteed by the benchmark. Using these two configurable variables, the

user can test for different conditions. Setting a large radius with low density would set up a
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Figure 4.3: How voxelBench spawns bots in a Minecraft Map

sparsely populated world. Setting a small radius with high density would set up a densely

populated world around the origin. We also allow setting up the same spawning behavior

from multiple origin points, instead of a singular origin point which the game provides.

To create this functionality, we used two plugins that are compatible with different

versions of Minecraft.

• Skript (33): Using Skript, a Minecraft script is installed such that when a bot joins

it is converted into an operator so that it can teleport to any given location.

• EssentialsX (34): This plugin ensures our bots get safely teleported to valid locations.

It’s main use is preventing bots from getting teleported inside walls and getting

terminated.

Through this, we satisfy the design requirements mentioned in Section 3.5.

4.4 Extensible Benchmark

This section describes how our benchmark can be easily extended to benchmark other

MVEs (R2) and the implementation of scalable workloads (R3).
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1. Section 4.4.1 implements a node provisioning system under the Unified Benchmark

Model (See Section 3.7) to easily extend the benchmark to other sharded MVEs.

2. Sections- 4.4.4, 4.4.3, 4.4.4 give an example implementation of Multipaper Node setup

with our benchmark, which are set up using Ansible. In our benchmark, the user

needs to write ansible scripts corresponding to the node tags, and the benchmark

runs the script on those exact nodes. Refer to Figure 4.4. Through Ansible scripts

targeting specific node types, the user setup any distributed MVE.

3. Section 4.4.4 discusses the implementation of scalable workloads by scaling bot nodes.

4.4.1 Node Provisioning

Node provisioning is done through a configuration file, which also defines parameters such

as memory and CPU allocation for each node type. The configuration file also tags the

different nodes based on the node types and the bot node in the configuration file. An

example configuration file for benchmarking Multipaper is given below. For quick local

VM provisioning, libvirt-vagrant is used.

1 [coordinator]

2 memory=32768

3 cpu=2

4

5 [game-server]

6 memory=32768

7 cpu=2

8 total=8

9

10 [bot]

11 memory=16384

12 cpu=1

13 total=7

The benchmark user can easily add more node types through our node provisioning

system and configure new components.
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workload.js

config.toml

Node A Node CNode B Node D

Orchestrator

Multipaper Master Multipaper worker Multipaper worker Node Bot

Multipaper Master Multipaper worker Multipaper worker Node Bot

Multipaper Master Multipaper worker Multipaper worker Node Bot

chunk loader chunk loader

player
logger

player
logger

Multipaper Master
... listening ...

Multipaper Worker
... listening ...

Multipaper Worker
... listening ...

Node Bot
... run workloads ...

pos 
logger

Figure 4.4: voxelBench configuring nodes under the benchmark model.

4.4.2 Coordination Node Setup

We first set up the required Java environment on the node. Following this, a dedicated

Velocity working directory is created, where the essential Velocity configuration files are

copied. A security step that involves setting up forwarding secrets to backend worker nodes

is done next.

With secret setup, the next phase focuses on network and plugin configuration. This

includes setting up the Velocity proxy server, configuring the load balancer to manage

traffic effectively, and then integrating the RCON plugin for remote console access.

Finally, for configuration management, Dasel is installed. This tool allows easy editing

of the Velocity server’s TOML configuration files. The setup process ends when the world

data (defined by the user) is copied into the master node.

4.4.3 Game Server Node Setup

Our Game Server Node setup begins with establishing a Java environment. Subsequently,

we set up the dedicated worker directory.

Next, we download the MultiPaper worker JAR and execute it to generate initial tem-

plates. Plugin installation follows, including both the Skript, EssentialX, and our Chun-

kLogger plugins. We then configure multipaper.yml to ensure correct secret-based com-

munication with the master node.

After accepting the EULA, additional templates are generated. Further configuration

involves setting up server restart scripts, along with Bukkit, Pufferfish, and Spigot con-
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figurations. To automate operator setup, we install Skript scripts. Finally, the worker is

initiated and run with Jolokia.

4.4.4 Bot Node Setup

Our bot node configuration begins with the installation of Node.js. We then copy over

the necessary Node.js workload files. Next, an RCON client is set up to configure spawn

locations. Finally, we install the required libraries for running a Minecraft client. The

benchmark allows the user to create as many Bot Nodes as they want.

By running each bot on its own thread with no dependencies, we can easily deploy

across multiple nodes, enabling simple scalability of workloads with the addition of more

computing resources.

4.4.5 Exposing Metrics

In this section, we describe how we have implemented metric collection for our benchmark

for Multipaper. The collected metrics are defined in Section 3.4.

System Metrics: System-level metrics, including CPU load, network activity, RAM

usage, and disk I/O, are collected using Telegraf. The same program is run across all

Gateway, Bot, and Game Server Nodes.

Thread Metrics: Thread metrics are collected using Java Flight Recorder for the bench-

marking Multipaper. The monitored events are jdk.JavaMonitorEnter, jdk.JavaMonitorWait,

jdk.ThreadPark, jdk.ThreadSleep.

Application Metrics: Player count is collected using the command slist which allows

server operators to get all players on a game server node. The command is executed every

second on one Multipaper’s worker console to get a list of all players on the node using a

named pipe.

Player location is readily accessible via the mineflayer-client on the bot node. We log

each bot’s coordinates every two seconds.

Chunks loaded is collected using our ChunkLogger plugin. It is installed on every Multi-

Paper worker server and queries the system every second for all currently loaded chunks.

This chunk data is then logged to a file, which we retrieve once the benchmarking concludes.

The tick length is collected using Jolokia. Running each Multipaper server instance

with Jolokia exposes the tick rate. Through jolokia, we log each and every game server

instance’s tick. Disconnects is collected through reading the logs of the gateway server

node.
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4.5 Reproducibility

This section explains benchmark configuration and the use of seed to satisfy the require-

ment R4.

4.5.1 Benchmark Configuration

This section describes how benchmarking is run for an MVE. As illustrated in Figure 4.4,

VoxelBench follows a structured sequence to initiate a benchmark run.

Once the nodes are provisioned and dependencies installed, the orchestrator executes the

specified workload on the bot nodes. The details of the workload to be run are provided

by the user through a configuration file. An example of a test run in a configuration file is

given below.

1 [benchmark]

2 world='WorldOfWorlds'

3 playerModel='pve'

4 density=5

5 radius=1000

6 players=25 # this is per bot node

7 pve_mob='polar_bear'

8 joinDelaySecs=5

On completion of a benchmark run, the orchestrator collects all performance, configura-

tion, and monitoring data from each node and stores it locally for analysis.

4.5.2 Seed Implementation

All random processes in VoxelBench are initialized with a fixed seed to ensure deterministic

behavior across runs. However, due to the nature of virtual environments, being non-

deterministic, only player spawn locations and movement directions are guaranteed to be

deterministic.
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5

Performance Evaluation of
Multipaper

In this section we use the Atlarge cluster and Google Cloud Compute to evaluate the

performance of a sharded MVE, namely, Multipaper. This chapter answers RQ2. We begin

with our experimental setup, followed by the main findings, motivation and experiment

design for each of the experiments we ran, and then end with observations for each of the

experiments.

5.1 Experimental Setup

Table 5.1: System Configurations

Name Nodes CPU Memory (MB)
1x8 8 1 8192
2x4 4 2 16384
4x2 2 4 32768

For the experiments given below, two different node types were used. For small scale

tests, one node at the AtLarge Cluster was used. The description of each host system and

VMs is described in the following sections.

5.1.1 AtLarge Cluster Host

This host system is running Ubuntu 22.04.5 LTS, powered by an Intel Xeon Silver 4210R

processor, with 20 cores running at 3.2 GHz and 256 GB of DDR4 memory. The RAM
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Table 5.2: Main findings for experiments. Exp IDs (Experiment IDs) are linked to Sec-
tion 5.2.

Section Exp IDs Main Finding

§5.3.1 1 2 CPU each across 4 nodes can best handle 100 players.
§5.3.2 1, 2 Multipaper achieves similar performance to paperMC.
§5.3.3 4 Larger worlds perform significantly better under exploration

workloads.
§5.3.4 3 Walk, PvP perform better under more nodes. PvE, Build

perform better under more cores.
§5.3.5 5 Multipaper cannot efficiently scale beyond 200 players.
§5.3.6 5 Multipaper can scale beyond 500 players using a proximity

load balancer for players.
§5.3.7 1, 3, 5 Multipaper has high chunk sharing and can reach upto 80%

for build workload.
§5.3.8 5 Multipaper’s syncing overhead by the main loop thread is

negligible and does not impact performance.

manufacturer is Samsung and is configured at 2400 MT/s. The SSD of the host system is

Intel D3-S4510 SSD with 480 GB of storage.

5.1.2 Google Cloud Compute Host

This host system is called n4-highmem-80 is running a Linux-based operating system,

powered by an Intel Emerald Rapids processor, with 80 vCPUs (virtual CPUs) running

with a base frequency of 2.1 GHz and a maximum turbo frequency of 3.3 GHz, with 640

GB of DDR5 memory.

5.1.3 Virtual Machines

The virtual machines were created using Vagrant. To set up the VMs, the vagrant-libvirt

plugin communicates with libvirt to create the VMs and is configured to use the Linux

KVM hypervisor such that we get very little overhead. The CPU mode for libvirt was

configured to use "host-passthrough". Each VM is running a Vagrant box that can be

downloaded from Hashicorp Cloud Platform under the name generic/ubuntu2204.
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5.2 Experimental Design, Motivation & Main Findings

Using VoxelBench, we conduct 5 experiments on Multipaper. The main findings for differ-

ent experiments are listed in Table 5.2. The motivation and design of the experiments are

as follows:

1. Core & Node Scaling:

Goal: Identify which vertical CPU configurations (core setup) are best suited for

handling a fixed number of concurrent players.

Method:

• Keep the total core count constant across tests.

• Vary the number of nodes and concurrent players to assess how distributing the

same compute across multiple machines impacts performance.

Insight Expected: Shows whether single, high-core servers or smaller multi-node se-

tups yield better performance for the same total compute budget.

2. Sharded Impact

Goal: Quantify the overhead of sharded clusters compared to standalone servers

while scaling player count.

Method:

• Baseline: single standalone server (PaperMC, Multipaper) handling N players.

• Sharded setup: cluster of servers, each handling N players (so total concurrent

players = 2× baseline).

• Compare performance metrics (latency, tick time) across both setups.

Insight Expected: Reveals the coordination overhead introduced by sharding.

3. Workload Impact

Goal: Determine how different player behaviors (workloads) affect performance, using

two stable vertical CPU setups and keeping concurrent players fixed.

Method:

• Vary cluster configuration but keep concurrent player count fixed.

• Vary workloads such as Walk, Build, PvE, PvP.
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Insight Expected: Highlights how performance differs across workloads.

4. World Impact

Goal: Examine how the underlying world complexity influences server performance

under fixed concurrent players, walk workload and fixed cluster setup.

Method:

• Use a fixed number of concurrent players, walk workload and fixed cluster setup.

• Change only the underlying world map.

Insight Expected: Isolates the cost of world size on tick performance.

5. Weak Horizontal Scaling

Goal: Study how horizontal scaling affects performance when concurrent player and

node counts grow proportionally.

Method:

• Gradually increase both the number of nodes and the number of concurrent

players at a fixed ratio (e.g., +1 node per +N players).

• Compare performance and synchronization cost as the system scales outward.

• Also compare performance using our custom proximity load balancer.

Insight Expected: Demonstrates how efficiently multipaper scales under “weak scaling”

conditions — where each node handles roughly the same load, but the player base

expands.

5.3 Findings

Given below are our findings for each of the experiments mentioned in Table 5.2. In each

plot, the red dashed line signifies the 50ms tick, representing the threshold for acceptable

performance, as Minecraft’s server logic is designed for a minimum update rate of 20Hz.

The different node configurations are given in the Table 5.1. The gateway Node which

contains Velocity Proxy that runs Multipaper Master as a plugin, runs 2 CPU with 32768

MB of RAM across all configurations.
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Figure 5.1: P95 Tick from 100 to 250 players
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Figure 5.2: Tick distribution for 100 players: left: 1x8, middle: 2x4, right: 4x2.

5.3.1 2 CPU config works best for 100 players.

In Figure 5.1, we compare three configurations: 1x8 (1 CPU across 8 nodes), 2x4 (2 CPUs

across 4 nodes), and 4x2 (4 CPUs across 2 nodes). Among these, the 1x8 configuration

performs the worst, while 2x4 delivers the most stable results. None of the setups, however,

sustain the required tick rate once player counts exceed 100. Tick latency increases sharply

with every 75 additional players, and in the 1x8 case, the rise is the steepest, quickly making

the game unplayable.

Figure 5.2 highlights that 2x4 maintains a playable state for roughly 90% of ticks, whereas

1x8 and 4x2 both experience prolonged unplayable periods. The time-based performance

shown in Figure 5.3 further confirms that 1x8 never reaches a tick rate below 50 ms during

the entire test. Most tick spikes occur during the start of the run—when players join and

the world loads. Both 2x4 and 4x2 stabilize within about 2 minutes, while 1x8 continues

to fluctuate for nearly 2.5 minutes. Although 4x2 stabilizes the quickest, 2x4 remains the
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Figure 5.3: Tick timeline for 100 players: left: 1x8, middle: 2x4, right: 4x2.
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Figure 5.4: Data sent [MB] for 100 players: left: 1x8, middle: 2x4, right: 4x2.

most consistent overall once the game world settles.

Also, as shown in Figure 5.4, configurations with fewer VMs also reduce network over-

head. The 4x2 setup sends out around 80 MB per VM over 5 minutes, compared to

125 MB for 2x4—about 45% less data. Meanwhile, 1x8 generates higher data transfer

rates, particularly from the proxy node (VM 1).

Figure 5.5 explains why tick performance is worst in the 1x8 setup. In this configuration,

nearly twice as many chunks are loaded compared to 2x4 and 4x2. Specifically, the average

chunks per node are approximately 8500 chunks for 1x8, 5800 chunks for 2x4, and 6100

chunks for 4x2. Since we have kept the CPU core count the same across the cluster, 1x8

has to compute more chunks in comparison with 2x4 and 4x2.

In summary, tick performance is best in the 2x4 configuration, worst in 1x8, and unstable

in 4x2. Beyond 100 players, all setups struggle to maintain the required tick rate.

Based on our results, we can conclude that 2 CPU configs can handle around 25 players

whereas 4 CPU configs can handle 35-40 players. We can now use this ratio as the baseline

for our weak scaling experiments, where the number of nodes is increased proportionally

to these per-CPU player capacities (i.e., by +25-35 players for every +1 node increase).
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Figure 5.5: Chunks loaded (Queried at least every 2 seconds)

5.3.2 Multipaper achieves similar performance to paperMC.

MultiPaper demonstrates performance comparable to standard PaperMC under low player

loads. Specifically, PaperMC, a single-worker MultiPaper cluster, and a sharded MultiPa-

per setup (with 25 players per node) all exhibit tick latencies in the range of 47–55 ms.

This indicates that MultiPaper can achieve on-par performance with single-server setups

upto 100 concurrent players. When the player count is increased to 50 players per node,

MultiPaper incurs only an overhead of approximately 30%. However, at this load, both the

single-worker MultiPaper cluster and PaperMC exceed the 50 ms tick latency threshold.

5.3.3 Larger worlds perform better under exploration workloads.

As shown in Figure 5.7, the GreaterKCMetro map, which is substantially larger than the

other two maps, is the only configuration that achieves a p95 tick latency below 50 ms

with 100 concurrent players. In comparison, the Castle Lividus map exhibits the poorest

performance, with p95 latencies approaching 1 s—significantly higher than WorldOfWorlds,

which records a p95 latency of approximately 72 ms. Overall, the Castle Lividus p95 tick

latency is about 2100% higher than that of GreaterKCMetro, rendering smaller worlds

such as Castle Lividus unplayable under high player concurrency.

The degraded performance observed in Castle Lividus can be attributed to terrain gen-

eration overhead. In this experiment, the spawn radius was configured to 1500, exceeding

the total map size of Castle Lividus. Consequently, as players explore the world, the
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Figure 5.6: P95 tick for different single servers vs sharded. Mult refers to a cluster with a
single Multipaper worker instance and 2x2 refers to a cluster with 2 nodes with 2 CPU each.
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Figure 5.7: P95 tick for different maps for 100 concurrent players. Redline represents 50ms.

46



5.3 Findings

0 2 4
Time [mins]

0

20

40

60

80

100

CP
U

 U
ti

l [
%

]

vm
5
3
4
2

0 2 4
Time [mins]

0

20

40

60

80

100

CP
U

 U
ti

l [
%

]

vm
5
3
4
2

0 2 4
Time [mins]

0

20

40

60

80

CP
U

 U
ti

l [
%

]

vm
5
3
4
2

Figure 5.8: CPU utilization for different maps for 100 players. Left:CastleLividus, Middle:
WorldOfWorlds, Right: GreaterKCMetro

server must continuously generate new chunks beyond the preexisting terrain. This ef-

fect becomes particularly pronounced with 100 simultaneous players, as the rate of chunk

generation increases sharply, leading to sustained tick latency spikes.

In contrast, the GreaterKCMetro map avoids this issue, since the spawn radius lies

entirely within its pre-generated terrain. When players traverse new areas, the game server

retrieves stored chunk data (NBT files) from the central database instead of generating

new chunks, resulting in lower latency and more consistent tick performance.

As shown in Figure 5.8, CPU utilization patterns further validate this finding. Both Cas-

tle Lividus and WorldOfWorlds show periodic utilization spikes; however, Castle Lividus

consistently has usage spikes above 80%, reflecting the additional computational cost of

real-time terrain generation.

5.3.4 Walk, PvP perform better under more nodes. PvE, Build perform
better under more cores.

As shown in Figure 5.9, several performance patterns emerge across the different workloads

and cluster configurations. The dataset compares two configurations—2x4 (2 CPUs per

node across 4 nodes) and 4x2 (4 CPUs per node across 2 nodes)—under workloads of Walk,

PvP, PvE, and Build, each tested with 100 and 175 concurrent players.

From the observed tick latencies, we note the following trends:

• Walk and PvP workloads achieve lower tick times in the 2x4 configuration, indi-

cating that these workloads benefit from a higher number of nodes. This suggests

that actions involving world traversal and player interactions scale more efficiently

with increased distribution of main loop threads—the threads responsible for chunk

computation and synchronization across nodes. Refer to Figure ?? In other words,
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Figure 5.9: P95 tick for different workloads for 100, 175 concurrent players across 2 CPU
each on 4 nodes and 4 CPU each on 2 nodes. Redline represents 50ms.

when players and combat simulations tick latency is lower. Refer to Figure 5.11 for

more details.

• Build and PvE workloads, on the other hand, show improved performance in the 4x2

configuration, which provides more CPUs per node. These tasks are computationally

more intensive at the node level. In PvE scenarios, the primary overhead comes from

entity simulation, which is handled by separate threads distinct from the main loop.

A higher per-node CPU count provides more available worker threads for concurrent

entity updates. Similarly, in Build workloads, frequent block placements and updates

generate significant inter-node data synchronization. More CPUs per node allow the

server to better handle this increased data exchange through parallel worker threads.

Refer to Figure 5.10 for more details.

In summary, Walk and PvP benefit from broader horizontal scaling (more nodes cor-

respond to more main loop threads), while Build and PvE benefit from stronger verti-

cal scaling (more CPUs per node correspond to worker threads having better access to

compute resources. This distinction highlights that different gameplay mechanics stress

different parts of the MVE’s thread model—movement and combat depend primarily on

chunk computation, whereas building and entity-heavy activities rely on local compute.
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Figure 5.10: Overall CPU utilization for 175 concurrent players under Build workload,
utilization is higher for nodes with 2 CPUs (2x4). Left: 2x4, Right: 4x2.
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Figure 5.11: Main Loop CPU utilization for 100 concurrent players under Walk workload,
utilization is higher in the cluster with only two nodes (4x2). Left: 2x4, Right: 4x2.

5.3.5 Multipaper cannot efficiently scale beyond 200 players.

As shown in Figure 5.12, Multipaper cannot scale horizontally. The p95 tick keeps on

further increasing as the number of nodes increases. For 25 players per 2 CPU node, from

100 to 300 concurrent players, the tick rate rise is very steep. It increases by 56% from

71 ms to 110 ms. However, the tick rate is much better for 33 players per 4 CPU node

setup. In this setting, it increases by 26% from 55 ms to 71 ms for 100 to 300 concurrent

players. Our 4 node CPU uses 2x both memory and CPUs; by increasing resources by

100%, it achieves around a 40% boost in performance. For the 2 CPU case, Multipaper

servers become mostly unplayable by the time we have 400 concurrent players. For the 4

CPU case, this is highly likely to occur by the 600 concurrent player case based on the

trajectory shown in Figure 5.12.
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Figure 5.12: Concurrent player count under weak horizontal scaling. For 2 CPU, 25 players
per node. For 4 CPU, 33-34 players per node. Proximity config uses a player proximity load
balancer.
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Figure 5.13: RCDF for 2 CPU and 4 CPU Node Setups. Left: 2 CPU each for 12 nodes
(25 players per node), Middle: 2 CPU each for 20 nodes (25 players per node), Right: 4 CPU
each for 12 nodes (33-34 players per node)

Also, CPU configuration also impacts tick performance across nodes. As shown in Fig-

ure 5.13, for 2 CPU each per node, the variance of tick rates among different VMs is fairly

wide compared to the 4 CPU each per node setup. This variance also keeps on increasing

as we increase the number of nodes.

In the case of 4 CPU nodes across 12 nodes, as shown in Figure 5.13, at p90, the maximum

difference in tick rate between the VMs is 57 ms for VM-10 and 82 ms for VM-2, which

results in a difference of about 25%. However, in the case of 2 CPU across 12 nodes, the

maximum difference in tick rate between the VMs is 55 for VM-13 and 103 ms for VM-8

which is around a 47% difference. This difference further expands to around 60% at p90

when we increase the number of VMs to 20. The p99 tick also has significant variance

among the vms for 2 CPU setups. Hence, it is important to also select the correct CPU

50



5.3 Findings

100 200 300 400 500
Concurrent Players

1000

2000

3000

4000

5000
D

at
a 

Se
nt

 [
M

eg
ab

yt
es

]
Config

2
4

Figure 5.14: Data send [MB] for 100-500 concurrent players. For 2 CPU config, 25 players
per node and 33-34 players for 4 CPU config.
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Figure 5.15: Average Chunks loaded (Queried at least every 2 seconds). 2 CPU setup
manages 25 players per node. 4 CPU setup manages 33-34 players per node.
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Figure 5.16: Average Chunks loaded (Queried at least every 2 seconds) for 2 CPU setup.
Each node had 25 concurrent players.

configuration within the cluster.

As shown in Figure 5.14, total data sent grows approximately linearly with both the

number of players and the number of nodes. However, once the cluster is large enough

that a node’s potential peer set is saturated—i.e., the maximum number of nodes a given

node can exchange state with is capped by the configured players-per-node limit—the

curve begins to flatten. Beyond this point, adding players yields little additional fan-out,

so aggregate data sent saturates and thereafter increases only slowly.

The maximum number of nodes a given node can communicate with also impacts chunks

loaded. As shown in Figure 5.16, from 100 concurrent to 200 players, the chunks loaded

increase by at least 180% whereas when we double from 200 to 400, we only get an 80%

increase.

As shown in Figure 5.15, our results demonstrate a clear distinction in the average num-

ber of chunks loaded across different scaling configurations. In the 2× setup, the average

chunks loaded range from approximately 4,707 to 23,838, showing a broad increase as

concurrency rises. Similarly, the 4× configuration exhibits a comparable growth pattern,

ranging from 5,920 to 22,953 chunks on average. However, the 4-proximity configuration

shows a markedly lower range, with averages spanning only from 1,431 to 12,359 chunks.

This reduction—nearly 40–60% fewer chunks loaded compared to non-proximity configu-

rations—illustrates the effectiveness of proximity-based player distribution in minimizing

redundant chunk loading. Hence, the 4-proximity setup achieves significant efficiency by

reducing shared chunk overlap between nodes, resulting in lower total chunk loads.
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Figure 5.17: Chunk shared % across different workloads.

5.3.6 Proximity load balancing of players improves performance.

As shown in Figure 5.12, if we do proximity load balancing amongst our players in Mul-

tipaper, we can consistently hit below 50 ms ticks. In proximity load balancing, we try

to assign players that are close to each other in the game world to the same node. By

assigning them to the same node, we reduce communication and chunk sharing. While in

our experiments, the proximity-based load balancing was done through a controlled ap-

proach by manually directing players to the correct nodes, this shows the promise of gains

just by changing our load balancer to use a player proximity technique. From 100 to 500

concurrent players, Multipaper achieved a very good playable p95 tick rate and was always

below 50 ms. This also helps us conclude with certainty that chunk data coordination

contributes the most to high tick latencies.

5.3.7 Chunk sharing reaches 80% under the least connected load bal-
ancer.

Across different workloads, MultiPaper exhibits distinct patterns in chunk sharing between

nodes. During the Build workload, chunk sharing reaches around 85%, as players typically

remain close together while constructing structures, clustering around a few zones. The

least connected load balancer further exacerbates this issue since it randomly distributed

players without taking player proximity into account.
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Figure 5.18: Chunk shared % across different node and load balancer setups.

In PvP scenarios, sharing is similarly high at 80%, since players often engage in combat

within localized areas, forming dense interaction clusters. The PvE workload shows a

moderate 60% chunk sharing, as players spread out while chasing entities, moving farther

from the spawn area.

In contrast, the Walk workload demonstrates the lowest chunk sharing at 45%, reflecting

highly dispersed player movement as participants freely explore and move randomly across

the world. Refer to Figure 5.17 for more details.

In addition, as shown in Figure 5.18,when testing under weak horizontal scaling—with

approximately 33–34 players per node—the chunk sharing behavior changes as concurrency

increases. At 200 concurrent players, chunk sharing ranges between 70–80%. When scaling

to 400 players, chunk sharing rises to 80–85%, indicating a slight increase in chunk sharing

since we have more players which increases the overlap. In contrast, the proxy-based prox-

imity distribution test exhibits 0% chunk sharing, as players are spatially partitioned to

ensure minimal inter-node overlap. This configuration helps keep latency consistently be-

low 50 ms, maintaining smooth gameplay while demonstrating the performance advantage

of geographically aware player distribution.
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Table 5.3: Average synchronization time across 2 CPU and 4 CPU configurations (500
players)

Configuration Total Sync Time (ms) Average Sync Time(µs)
2x20 192 59
4x15 112 22.97

5.3.8 Multipaper has negligible data syncing overhead between nodes.

Sync time is negligible across both experimental configurations. As shown in Table 5.3, for

the 2×20 configuration, the total sync time of 192 ms over a 6.5-minute run (≈ 4875 ticks

at 80 ms per tick) results in an average sync time of approximately 0.039 ms (≈ 39 µs) per

tick. Similarly, for the 4×15 configuration, the total sync time of 112 ms over the same

duration corresponds to an average of about 0.023 ms (≈ 23 µs) per tick. In both cases, the

synchronization overhead is well below 0.05% of the tick duration, indicating that inter-

node coordination is effectively hidden within normal tick execution. This confirms that the

system’s distributed data synchronization mechanism introduces a negligible performance

cost.
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Related Work

In research, there has been significant work done in testing distributed architectures and

creating benchmarks to evaluate the performance of Modifiable Virtual Environments

(MVEs). However, most existing benchmarks specifically target non-sharded, single-server

MVEs. While prior work has explored scaling techniques for multiplayer online games,

little attention has been given to distributed MVE architectures, where the world state is

actively shared and modified across multiple coordinated servers.

6.1 Yardstick

Yardstick (Donkervliet, van der Sar, and Iosup, 2019) (8) introduced one of the first system-

atic benchmarking frameworks for Minecraft-like services. It established a methodology to

evaluate the performance of game servers under controlled workloads that emulate realistic

player behavior. Yardstick provided insights into CPU utilization, latency, and throughput,

helping identify bottlenecks in monolithic server setups. However, its design was primarily

focused on single-instance deployments, limiting its applicability to distributed or sharded

environments.

6.2 Servo

To address scalability limitations inherent to single-server systems, Servo (Donkervliet et

al.,) (11) proposed leveraging serverless computing to increase the scalability of MVEs. The

framework decomposed the simulation into fine-grained, stateless components executed

within a serverless infrastructure. This approach showcased the potential of elastic scaling

and reduced resource contention, demonstrating an architectural shift toward decentralized
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MVE execution. Nevertheless, the model focused on modular task parallelization rather

than consistent world-state distribution, leaving open questions about world partitioning

across multiple servers.

6.3 Meterstick

Complementing these studies, Meterstick (Eickhoff, Donkervliet, and Iosup) (16) examined

performance variability across cloud-hosted and self-hosted Minecraft-like environments.

By benchmarking latency and performance fluctuations across heterogeneous infrastruc-

tures, Meterstick provided valuable data on deployment stability and resource variability.

Although it improved understanding of hosting environments, it did not explore perfor-

mance for distributed MVE systems.
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Conclusion

This chapter concludes the research presented in this thesis by reflecting on the three re-

search questions posed in Section 1.3. Each question is revisited in light of the design,

implementation, and benchmarking of VoxelBench, our performance benchmark for Mod-

ifiable Virtual Environments (MVEs).

7.1 Answering Research Questions

Through a performance evaluation of the sharded MVE server MultiPaper, this thesis ad-

dresses the lack of a benchmarking framework for sharded Modifiable Virtual Environments

(MVEs).

We contribute a methodology for the design of a distributed benchmarking framework,

realized through the implementation of VoxelBench , for the evaluation of scalability and

performance of distributed MVEs.

RQ1. How can we design a benchmark to evaluate distributed MVEs? To design

a benchmark capable of evaluating distributed Modifiable Virtual Environments (MVEs),

this thesis developed VoxelBench, a benchmarking framework tailored for sharded MVEs.

The design process involved identifying suitable workloads, determining player spawning

strategies, and defining new performance metrics that capture the performance of dis-

tributed MVEs.

1. We selected workloads such as Exploration, PvP, PvE, Build and SCs that specifically

target design decisions under the paradigms of resource balancing and information

management.
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2. We designed a metrics collection system that collects metrics in three different

levels—system, thread and application. We also introduced two derived metrics—

average sync time, shared chunk %— specifically for characterizing performance of

distributed MVEs.

3. We then added player clustering to further enrich our workloads.

4. We underscored the importance of map workloads and selected popular maps for our

benchmark.

5. We created a unified benchmark model to map metrics to node types and enable easier

provisioning of compute resources across different MVE distributed architectures.

RQ2. How can we implement a scalable and extensible benchmark framework

for distributed MVEs? Once we had the design of our benchmark following from

answering RQ1. We implemented a benchmark that created workloads through player

emulation models and was easily extensible to other distributed MVEs.

1. To create configurable workloads, we developed several player emulation models —

including walking and exploration, building, PvE, PvP, and simulated constructs

— to represent typical in-game activities. We also implemented a flexible spawn-

ing system that allows users to control player density and distribution, which helps

reproduce both sparse and dense gameplay scenarios.

2. We implemented a node provisioning system that allows users to easily benchmark

different MVEs by configuring nodes and resources through a simple configuration

file. Using Ansible, we automated the deployment of game servers, bot nodes, and

coordination nodes. This makes it easy to add or modify components for both single-

server and sharded MVE architectures.

3. We then implemented seeded randomization for all stochastic processes within our

benchmark and automated both provisioning and workload execution using a simple

configuration file.

RQ3.What performance trade-offs and coordination challenges arise in dy-

namic, sharded MVEs, and how do they impact scalability? We evaluate our

benchmark by generating usable insights through benchmarking a sharded MVE, namely

Multipaper. From our benchmarking results, we found that certain workloads such as Walk

and PvP benefited from more nodes, while workloads such as Build and PvE benefited from
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more cores. We were also able to conclude that Multipaper does not scale through the de-

fault load balancer, which is called the Least-Connected load balancer. Additionally, we

were able to show that, through a proximity load balancer, Multipaper could scale.

7.2 Limitations and Future Work

Our evaluation did not account for skewed player distributions. Most bots in our exper-

iments were arranged into clusters containing an equal number of players, resulting in a

relatively uniform load across the virtual environment. Consequently, the effects of un-

even player concentrations—such as those typically observed in real-world scenarios near

popular landmarks or shared structures—were not reflected in our results.

Similarly, the performance gains of the proximity-based scheduler may be overstated,

as our benchmarking sessions were of short duration and did not simulate long-term or

highly skewed proximity patterns. Extended workloads or evolving distributions might

reveal different scheduling dynamics and contention patterns over time.

For our build workload, each bot was assigned to construct an independent structure.

This design naturally limited the number of terrain modifications within the same region.

However, in real-world modifiable virtual environments (MVEs) such as Minecraft, players

frequently collaborate while building structures, which could substantially increase the

frequency of terrain edits and the resulting CPU and network load.
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Appendix A

Reproducibility

A.1 Abstract

This artifact appendix describes the experiment set up as well as the implementation of

the benchmark.

A.2 Artifact check-list (meta-information)

• Compilation: Gradle (java-21), maven

• Run-time environment: Ubuntu 22.04.5 LTS, Vagrant 2.49, Ansible 2.16

• Hardware: Intel Xeon Silver 4210R 3.2 GHz, 256 GB DDR4, google-cloud n4-
highmem-80 node

• Execution: python 3.10

• Metrics: tick latency, tick rate, chunk shared %,

• Output: Execution logs, application metrics csv, bot video data, player posi-
tioning csv, system metrics csv, thread metrics csv

• How much disk space required (approximately)?: 50 GB

• How much time is needed to complete experiments (approximately)?: 20 mins
to run a single workload

• Publicly available?: Yes

A.3 Description

A.3.1 How to access

Github Project Link: voxelBench
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A. REPRODUCIBILITY

A.4 Experiment workflow

As described in Section 5.2

A.5 Experiment customization

As described in Section 4.5

A.6 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

. . .
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