
Vrije Universiteit Amsterdam

Bachelor Thesis

Design and Evaluation of a Novel
Virtual-World Architecture: Separating

Simulator and State

Author: Shane C. Prent (2755970)

1st supervisor: ir. Jesse Donkervliet
daily supervisor: ir. Jesse Donkervliet
2nd reader: Prof. Dr. ir. Alexandru Iosup

A thesis submitted in fulfilment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 24, 2025

ii

Abstract

Modifiable Virtual Environments (MVEs) such as Minecraft and Roblox are

known for their immersive and continuous worlds, but they tend to hit limita-

tions when attempting to scale beyond a few hundred players concurrently with

traditional server-centric designs. This thesis explores the potential of using an

in-memory key-value store database, specifically Redis, to completely replace

conventional game servers.

We design and implement KeyVerse, a Unity-based prototype that maps player

data, terrain blocks, and event streams onto Redis hashes, sets, and pub/sub

channels. Each client operation is constrained by a dynamically moving 3 x 3

proximity window to manage message distribution effectively. Additional ser-

vices like simulation, anti-cheat mechanisms, and analytics can be integrated

through micro-services without altering the core system. The prototype sup-

ports gameplay for hundreds of concurrent users on a single Redis node, while

maintaining update latencies under 100 milliseconds.

Our findings indicate that a key-value store can serve as the authoritative

backbone for virtual environments, streamlining deployment and paving the

way for serverless, horizontally scalable worlds. In testing, KeyVerse supports

1 200 concurrent players using a dynamic pub/sub system and 300 concurrent

players on a single channel pub/sub system. We explore consistency trade-offs

within the CALM framework and propose future research on sharded pub/sub

mechanisms to expand the approach beyond a solitary broker.

iv

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Questions . 2

1.3 Research Methodology . 3

1.4 Thesis Contributions . 4

1.5 Plagiarism Declaration . 4

2 Background 5

2.1 Traditional Game Server Architectures . 5

2.2 Key-Value Store (KVS) Databases . 7

2.3 Modifiable Virtual Environments (MVEs) 8

3 Architecture of a KVS-Based Backend for MVEs 9

3.1 System Requirements . 9

3.2 Architecture Overview . 11

3.3 Game Simulators . 13

3.4 Conflict Resolution and Consistency . 15

3.5 Scalability and Performance . 19

3.6 Player Presence and Session Management 19

3.7 Real-Time Communication via Pub/Sub . 19

4 Implementation 21

4.1 Implementation Overview . 21

4.2 Implementation of the Communication Sub-system 22

4.3 Dynamic Pub/Sub System . 24

4.4 Data Model and Consistency . 25

4.5 Client Lifecycle . 27

4.6 Future Work . 28

i

CONTENTS

5 Evaluation 31

5.1 Main Findings . 31

5.2 Experimental Setup . 32

5.3 Dynamic Pub/Sub: How many players can we handle? (MF1) 33

5.4 Single-channel Redis: How many players can we handle? (MF2) 37

5.5 Dynamic Pub/Sub: How does View Distance impact Player Count? (MF3) 40

5.6 Effect of I/O Threads on Single-channel Redis: (MF4) 42

6 Related Work 45

7 Conclusion 49

7.1 Answering Research Questions . 49

7.2 Limitations and Future Work . 50

7.3 Closing Remark . 50

References 53

ii

1

Introduction

The gaming industry has undergone a dramatic transformation over the past decade or

two, moving from single-player offline experiences to large, interconnected, online multi-

player worlds. Games like Minecraft, Roblox, and even Fortnite have pioneered the modern

concept of Modifiable Virtual Environments (MVEs). MVEs are dynamic worlds where

players can interact, build, and explore together. They are platforms for creativity, edu-

cation, and social interaction, reflecting a broader societal shift toward digital and online

spaces.

As MVEs continue to grow in popularity, they face a critical challenge: scaling to support

a large number of concurrent players while maintaining low latency, consistency, and a

seamless user experience. Traditional game server architectures, which rely on centralised

servers to manage game state and player interactions, often struggle to meet these demands.

These servers are responsible for critical tasks such as maintaining the game loop, enforcing

security, and ensuring data consistency. However, the centralisation of these systems can

lead to bottlenecks, especially as the player count increases.

This thesis explores an alternative approach: replacing traditional game servers with

key-value store (KVS) databases. KVS databases, such as Redis or Amazon Dy-

namoDB, are known for their simplicity, high scalability, and high performance, as well

as their ability to handle large amounts of data efficiently. By leveraging these strengths

of KVS databases, this project aims to create an architecture for MVEs that can handle

large-scale player interactions without the limitations of traditional server-based systems.

However, this approach is not without its challenges, as KVS databases lack native sup-

port for many game-specific functionalities like the game loop and security mechanisms

mentioned previously. This thesis investigates the feasibility of this approach and proposes

solutions to address these challenges.

1

1. INTRODUCTION

1.1 Problem Statement

The traditional server-client game architecture for Modifiable Virtual Environments (MVEs)

relies on centralised game servers to handle both simulation logic and state management.

This approach simplifies the design but introduces scalability issues. As player numbers

increase and world complexity increases, these servers are tasked with processing all simu-

lation steps and state updates sequentially within a fixed time limit (tick). This architec-

ture (P1) struggles to efficiently handle high workloads driven by the environment, such as

terrain updates, activity of non-playable characters, and global effects. In these cases, the

simulation load grows faster than the number of players. This leads to increased latency,

slower tick rates, and ultimately to a diminished user experience at large scales.

On the other hand, Key-value store (KVS) databases exhibit a different performance

dynamic. These databases excel in providing high-throughput, low-latency access to large

volumes of data through parallel input/output and distributed data partitioning. Unlike

traditional game servers, which perform all operations in a single-threaded loop, KVS

databases can accommodate multiple independent read and write operations concurrently.

This capability allows various clients and services to interact with shared world data with-

out a centralised scheduling bottleneck. However, KVS databases (P2) lack inherent

support for game-server specific functions such as a authoritative conflict resolution, or-

dered event processing, and cheat prevention, making them challenging to integrate as the

foundation of an MVE backend.

1.2 Research Questions

RQ1 How to design a system that uses a key-value store database to replace traditional

game servers in MVEs?

A successful design could remove central processing bottlenecks and allow parallel,

distributed state management.

The challenge is that as no such systems exist, at least not at the scale of large

MVEs, and the design will need to address challenges such as real-time state man-

agement, data consistency and scalability. The design must also find a way to use a

database, that was not designed for the application of a real-time game, to address

the game-specific functionalities needed for the MVE to run smoothly. This question

is important as it lays the foundation for a new architecture that could overcome

2

1.3 Research Methodology

the limitations, centralised bottlenecks, single-threaded update loops, and limited

parallelism, that restrict traditional server-based systems today.

RQ2 How to implement such a system?

An implementation can demonstrate the feasibility of the architecture and serve as a

foundation for performance testing, iteration, and refinement. A functional prototype

makes it possible to assess the performance under pressure and validate whether a

KVS-based system can maintain the responsiveness and consistency expected in large

MVEs.

The challenge lies in adapting the chosen KVS database to handle game-specific

functionalities, such as the game loop and communication mechanisms, which are

not natively supported. This question is critical as it bridges the gap between the

theoretical design and practical application. This implementation will also be used

as a base to evaluate the system on.

RQ3 How to evaluate the performance and other non-functional properties of such a sys-

tem?

A comprehensive evaluation can highlight advantages and disadvantages if the pro-

posed architecture, demonstrating whether a system supported by a KVS can achieve

or surpass the scalability and responsiveness standards associated with traditional

game server setups. Such findings offer substantive data to inform decision-making

and future work.

The key challenge lies in crafting experiments that accurately represent the workloads

and interactions of genuine MVEs, thus ensuring the relevance and reliability of the

results.

1.3 Research Methodology

To address RQ1 and RQ2, we follow the AtLarge Design Process [1], which consists of

an iterative cycle of: (i) formulating requirements, (ii) design, (iii) implementation and

(iv) testing and validation. We keep doing this until our design and implementation gives

a satisfactory answer for our research questions.

For the design phase, we will analyse the requirements for MVEs and create a KVS

architecture by designing data models, communication protocols, and conflict resolution

methods.

3

1. INTRODUCTION

For the implementation phase, we will build a simple working prototype based on the

design. This involves selecting a specific KVS database, developing the core components,

and creating game client adapters.

For the evaluation phase (RQ3), we will design test scenarios, set up testing infrastruc-

ture, perform controlled experiments with different loads, and analyse the results. These

tests will be measured against the defined design requirements.

1.4 Thesis Contributions

This thesis presents three concrete contributions:

1. Design (Section 3): The introduction of a serverless MVE architecture designed

to store the entire game state, comprising world data and player activity, within a

standard key-value store, thereby removing the need for a dedicated game server.

The source code of

2. Prototype (Section 4): The development of KeyVerse, an open-source prototype

that servers as a tangible demonstration of this architecture. It involves a Unity client

that communicates directly with a Redis backend, which concretely validates the

proposed design. KeyVerse’s source code is hosted in a private Github repository 1.

Due to organisational restrictions, the repository cannot yet be made public, but

collaborators (including the first supervisor) have access. A public release is planned

for after the thesis submission.

3. Empirical Evaluation (Section 5): The study offers the first publicly available

dataset of analysis, highlighting the limitations of Redis’s single-threaded event loop

on the scalability of MVEs. It also addresses why simply adding more I/O threads

fails to resolve this issue, a conclusion that, although disappointing, provides ac-

tionable insights for future research. The testing framework can also be found on

Github 2.

1.5 Plagiarism Declaration

I hereby declare that the contents of this thesis is my own work, is not copied from any

other source (person, Internet, or machine), and has not been submitted elsewhere for

assessment.
1https://github.com/Goose-9/opencraft-unity-kvs
2https://github.com/atlarge-research/yardstick/tree/feature/redis-keyverse

4

https://github.com/Goose-9/opencraft-unity-kvs
https://github.com/atlarge-research/yardstick/tree/feature/redis-keyverse

2

Background

This section introduces the core concepts that underpin this thesis: traditional game server

architectures, key-value stores, and modifiable virtual environments (MVEs). Understand-

ing these foundations is important to understanding the challenges and opportunities of

using KVS databases as replacements for game servers.

2.1 Traditional Game Server Architectures

Traditional game servers are the backbone of multiplayer games and Modifiable Virtual

Environments (MVEs). The main responsibilities of a game server are: managing game

state, enforcing rules (security) and ensuring a consistent experience for all players. Game

server architectures can differ in their implementation, but most typically consist of: a game

loop, state management, networking, and cheat prevention/detection. In the remainder

of this section, we discuss each of these elements in turn, followed by a description of the

main limitations that game servers face.

The game loop is the core mechanism that updates the game state at regular inter-

vals (ticks), the server processes player inputs, simulates the new game world and sends

updates to all connected clients (players). An example of a game loop can be seen in Fig-

ure 2.1 on the right hand side. The server receives the input from the client, updates the

game model (State Management) and sends updates back to the client. This will happen

over and over, until a certain condition is met and/or the connection is terminated.

Additionally, the server maintains a centralised game state, which includes the positions

of players, objects, and other dynamic elements in the virtual world. The server does this

in order to have a reference to enforce rules and to help compensate for players with high

latency (e.g., prediction algorithms).

5

2. BACKGROUND

Initialization

End

ServerClient

Input

Send player
input

Video

Receive updates

Update the game
model

Render the model

Input

Receive player
input

Update the game
model

Send updates

End

Initialization

Cloud Platform

Figure 2.1: Simple Game Server in Client-Server Architecture.

The server handles communication between players by having all the clients connect to it

and forwarding updates between the clients. This is essential to all clients receiving timely

updates about the game state. This often involves using networking protocols like TCP

and/or UDP to balance reliability and performance.

Finally, the game server enforces rules and prevents cheating by validating player actions

and maintaining authority over the game state. This is especially important in competitive

online games, as cheating can ruin the experience for other players.

Although game server implementations are simple and widely used, they face two main

limitations: scalability and single point of failure. In terms of scalability, centralised servers

become performance bottlenecks as the number of concurrent players increases, leading

to increased latency and performance issues. This can occur for various reasons, such

as insufficient network bandwidth preventing the server from receiving all the necessary

data to complete a cycle of the game loop, or even that the server’s CPU cannot keep

up with the increase in player simulation updates within its time budget, causing the

6

2.2 Key-Value Store (KVS) Databases

User1:Name

Key Value

"Steve"

User1:Age 23

User1:Hobbies
{"Travelling",

"Woodworking",
"Sailing"}

Figure 2.2: Simple Example of a Key-Value Store Database.

game to pause/freeze and stutter [2]. Additionally, the centralised nature of these servers

creates a single point of failure, meaning that if the server crashes or experiences downtime,

clients lose access to the game world entirely as all game logic, state updates, and player

interactions depend on the server’s availability.

2.2 Key-Value Store (KVS) Databases

Key-value store (KVS) databases are a type of lightweight, NoSQL database designed for

high-speed data access and scalability. They store data as a collection of key-value pairs,

where each key is unique and maps to a specific value. Examples of popular KVS databases

include Amazon DynamoDB 1, Apache Cassandra 2 and Redis 3 (which will be used in

this project). These systems excel in scenarios requiring fast read/write operations, making

them a compelling alternative to traditional relational databases for certain use cases.

One of the primary strengths of KVS databases lies in their scalability. Unlike mono-

lithic databases, KVS systems are inherently distributed, allowing them to handle large

volumes of data and high request rates by partitioning data across multiple nodes. Ad-

ditionally, KVS databases are optimised for performance, offering low-latency read and

write operations. This efficiency makes them well-suited for real-time applications, where

delays of even a few milliseconds can degrade user experience. Another key advantage is

their flexibility in data modelling. KVS systems, such as the one seen in Figure 2.2, can

1https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
2https://cassandra.apache.org/_/index.html
3https://redis.io/docs/latest/

7

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://cassandra.apache.org/_/index.html
https://redis.io/docs/latest/

2. BACKGROUND

store a wide range of data types, from simple strings to serialised objects or nested hashes,

allowing developers to adapt the database to diverse requirements without rigid schema

constraints.

However, KVS databases also present notable limitations, especially when applied to

multiplayer virtual environments (MVEs). First, they lack build-in functionality for game-

specific tasks, such as: managing the game loop, enforcing real-time state updates, or

processing complex game logic. These responsibilities must be implemented separately,

often requiring custom solutions. Second, consistency challenges can arise in distributed

KVS architectures. This can lead to temporary discrepancies between nodes, which can

be a critical issue for MVEs, where players expect instant and coherent updates. Finally,

KVS databases do not natively support cheat prevention mechanisms, such as authoritative

server validation. This absence necessitates additional security layers to detect and mitigate

exploits, adding complexity to the system.

Despite these challenges, KVS databases offer a promising foundation for building scal-

able and efficient MVE backends. This thesis explores how their strengths can be leveraged

to replace traditional game servers, while proposing solutions to address their limitations

in consistency, game logic processing and security.

2.3 Modifiable Virtual Environments (MVEs)

Modifiable Virtual Environments (MVEs) are dynamic, interactive virtual worlds where

players can create, modify, and explore content in real-time. Examples include games like

Minecraft, Roblox, and Fortnite. MVEs typically use a client-server architecture, where the

server simulates the changes to the world and sends the new state to the players/clients [3].

The player can interact with the world by performing various MVE-specific actions (e.g.,

mining blocks, crafting items, moving the avatar). The actions are simulated locally on

the client and then sent to the server to be broadcast to all other clients. Unlike static

game worlds, MVEs require technical support for simultaneous edits, low-latency syn-

chronisation, and persistent state storage, all while scaling to accommodate large player

bases. These demands strain traditional game servers, which centralise state management

and struggle with scalability. This tension motivates exploring alternative architectures,

such as decentralised key-value stores, which offer scalability but lack native support for

game-specific logic as mentioned in Section 2.2.

8

3

Architecture of a KVS-Based
Backend for MVEs

This chapter presents the architecture of the proposed key-value-store-powered architecture

for Modifiable Virtual Environments (MVEs). The aim is to define the system’s goals,

outline the key requirements it must satisfy, and describe the design choices made to

meet these requirements. Initially, we identify and motivate the requirements for the

system, then we explain the overall architecture and its components. In addition, we

explore specific architectural components, such as game simulators, conflict management,

and scalability. These sections together provide a comprehensive perspective on how the

architecture addresses the research requirements, particularly in relation to scalability,

responsiveness, and consistency.

3.1 System Requirements

The system must meet the following requirements to function as a practical replacement

for a traditional game server. Each of which introduces specific design challenges that are

addressed in later sections of this chapter.

Requirements:

R1 Player Presence Management: Players must dynamically join/leave the shared

environment, with their state recorded in the shared state store and changes broad-

cast to all clients. Challenge: Consistency in player state across clients must be

maintained during joins and leaves, and presence notifications should be sent to all

active clients.

9

3. ARCHITECTURE OF A KVS-BASED BACKEND FOR MVES

R2 Real-Time State Synchronisation: Clients must exchange state changes (e.g.,

movements, object interactions) at high frequencies. These exchanges should happen

more than 8.6 times per second (Hz), as this would coincide with the maximum

playable latency of 116ms as described in [4, 5]. Challenge: Synchronising frequent

updates across clients without a central authority risks inconsistencies (e.g., two

players seeing different positions for the same object).

R3 Conflict Resolution: The architecture must resolve conflicts when clients con-

currently modify the same game state (e.g., two players editing the same block or

environment). Challenge: Without an authoritative server to arbitrate, conflicts

must be detected and resolved deterministically, often requiring time-stamped writes

and/or atomic operations.

R4 Low Latency: Mark Claypool [6] measures the accepted tolerable latency of: com-

petitive first-person shooter games to be about 120-150ms, and Minecraft-like games

to be up to 1s. If we compare the observation of 116ms in [7], the system must prop-

agate quickly enough to avoid latencies up to about 120ms. Challenge: Key-value

stores introduce latency trade-offs between consistency (strong guarantees) and re-

sponsiveness (weak guarantees). The system will need to find a balance between the

two.

R5 Eventual Consistency: All clients must eventually converge to the same world

state, even if temporary inconsistencies occur due to network delays or concurrent

updates. Challenge: Divergence in views is limited to stale state (due to message

delay) and conflicts (due to simultaneous edits). Staleness is mitigated by frequent

state updates and client-side prediction, while conflicts are resolved deterministically

using methods such as last-write-wins.

R6 Scalability to more than 100 Concurrent Users: The architecture must main-

tain acceptable performance with at least 100 concurrent players and scale to higher

numbers without degrading responsiveness below the defined latency target. Chal-

lenge: As the player count increases, the architecture must continue to provide timely

updates and maintain consistency in the shared world state across all players.

10

3.2 Architecture Overview

Clients
Client 1

A

...

Client n

Client 2

User

Key-Value Store
Player States

player_1

C

... player_n Active
Players Set

World State

Terrain Data Global
objects

D

Support Services

Analytics & Monitoring

Track
Behaviour Log Metrics

...

Real-World API Integrator

Fetch Data Inject Events

Heartbeat Service

Monitors
Connections

Updates
Stale States

Procedural Content Generator

Generate
Terrain

Generate
Events

Anti-Cheat Service

Detect
Cheats

Enforce
Rules

Simulator

Move NPCs Trigger
Events

Conflict Resolution

Timestamps Atomic
Operations

E F

HG

I J

K

Pub/Sub
Updates

Pub/Sub System

Movement
Updates

B

Session
Updates World Edits

Pub/Sub

User

User

Updates

Read/Write...

Read/Write

Figure 3.1: A High-level Architecture of a Key-Value Store-Powered Multiplayer System

3.2 Architecture Overview

The proposed architecture replaces the traditional game server with a distributed system

that leverages an in-memory key-value store. By decentralising control and modularising

responsibilities, this architecture enables the system to scale with workload rather than

player count. Players and game simulator services interact directly with the shared world

state in the key-value store, allowing for parallel updates, reduced contention, and flexible

distribution of simulation tasks and responsibilities. The different components and how

the system requirements are addressed will be shown below.

At its core, the architecture separates the system into two primary roles: the shared

state and the simulators. The shared state, maintained in the key-value store, acts as the

reference for the game environment, ensuring consistent data interactions and eliminating

the need for a centralised processing loop. Both player clients (A) and game simulator

services (E–K), discussed further in Section 3.3, interact with and modify this state, while

concurrently exchanging events via a publish/subscribe system (B). This division allows

scalability for each component: the shared state can be partitioned or duplicated to ac-

commodate increased data and transaction volumes, while simulators can be distributed or

adapted to address increased computational demands, such as updates for non-player char-

acters or procedural content generation. By dividing state and simulation functions, the

architecture flexibly adjusts to loads generated by either player activity or environmental

11

3. ARCHITECTURE OF A KVS-BASED BACKEND FOR MVES

changes without the need to overhaul its fundamental structure.

Each game client (A) maintains its own state and listens for updates from other clients

via pub/sub (B). These updates include real-time information such as player movements,

logins, logoffs, and edits to the virtual world, addressing the need for real-time state syn-

chronisation (R2) and player presence (R1).

The shared game state is modelled as two primary components: one for per-player

data C (e.g., position, orientation, and status under player_{id}), and one for world

state D (e.g., terrain and global objects stored as world:column_x_y). This division allows

access to spatially localised data, improving scalability and reducing contention (R5,R6).

Communication between clients is event-driven through pub/sub channels (B), such

as world:session for login/logoff events and world:movement for movement updates.

While the system uses timestamps and logical clocks to detect and resolve concurrent

updates (R3) (as seen in component H of Figure 3.1), this approach is not without its

limitations. In distributed environments, client clocks may drift, or system latencies may

cause messages to arrive out of order. These issues can lead to incorrect conflict resolutions

if timestamps are treated as globally accurate. As such, this architecture assumes loosely

synchronised clocks and applies conflict resolution ideas with this limitation in mind. This

trade-off and its implications are further discussed in Section 3.4.

To keep track of active users and session health, the system includes a pseudo-client called

the heartbeat service (I). This service periodically pings connected clients and removes

stale entries from the active player set. It may also optionally cache the latest state of

disconnected players and help synchronise this state upon reconnect. This contributes to

fault tolerance (R1).

To demonstrate the extensibility of the architecture, we consider several support or

simulator services that can be integrated without altering the client codebase, such as

simulators, procedural content generators, or analytics engines. These services can extend

or enhance gameplay experience without requiring client modifications or server downtime.

These capabilities are discussed in more detail in Section 3.3.

This decentralised model aims to preserve responsiveness while ensuring eventual consis-

tency (R5, R4). Key value stores, particularly those in memory, offer low-latency read and

write operations, which are essential for high-frequency state changes such as player move-

ments (R2). However, challenges arise in ensuring that all clients maintain a coherent and

agreed-upon world view despite potential network latencies or concurrent modifications

(R3).

12

3.3 Game Simulators

Key-Value Store

publishes

Key-Value
Store

Pub/Sub
Engine

Example of Services

write
Real-World
API Adapter

Heartbeat
Service

Anti-Cheat
Module

write

Simulator
Service

Procedural
Content

Generator

Analytics
Collector

write

write

send events send events send events

E F K

GI

J

B

C

D

subscribe
world:heartbeats

subscribe
world:movement ...

Figure 3.2: Support/Simulator Service Interaction Diagram. The labels match that of
Figure 3.1

3.3 Game Simulators

One of the most compelling features of this architecture is its support for optional modular

services that enhance the functionality of the game world without requiring changes to

the clients or restarting the system. This section explores this idea and proposes several

interesting use cases for these services. This section will reference Figure 3.1.

These support services or simulators are stand-alone programs or background processes

that interact with the key-value store (C, D) and pub/sub (B) messaging system to

enhance consistency, interactivity, and responsiveness in the virtual world.

One branch of services is the Simulators (E), which can drive in-game events or simulate

non-player characters (NPCs). These services act as independent processes that update

entity states, such as NPC positions, animations, or terrain conditions, directly in the data

store. Clients can then react to these updates in real time, ensuring a consistent world

view across all participants. This removes the burden, simulating global behaviour, from

individual clients and allows complex logic to be managed centrally, improving trust and

coherence in the decentralised system.

Procedural Content Generation (F services form another valuable category. These ser-

vices can create or modify world data, items, quests, or events without interrupting player

13

3. ARCHITECTURE OF A KVS-BASED BACKEND FOR MVES

sessions. For example, new terrain or interactive objects can be generated when a player

moves into unexplored area. Likewise, procedural systems can add narrative content, gen-

erate seasonal events, or populate the world with dynamically crafted challenges. Because

all clients draw their view of the world from the same shared store, this content becomes

immediately available to players without requiring updates or manual restarts.

Another powerful support service is an anti-cheat system (G) or some sort of enforcement

system. Traditionally, cheat detection relies on server-side logic, but in this architecture,

an anti-cheat service can run independently and monitor for suspicious updates or patterns

in the shared state. For example, it can subscribe to movement or action events and flag

impossible behaviour, such as teleporting across the map, acting during cooldowns, or

moving faster than is allowed. Since all client actions are ultimately written to the shared

store and visible via pub/sub, the service can analyse this pub/sub stream, recording

violations or even triggering corrective actions such as rolling back a change, kicking a

user, or broadcasting a warning. Since this logic is separate from the game clients, the

service can continue to evolve independently of the client or game logic, and allows for

deeper analysis without affecting gameplay latency. It also makes it easier to experiment

with advanced techniques as the game matures.

This architecture also opens up possibilities for integrating real world data (J) into the

virtual environment. Support services can fetch and reflect external information, such as

live weather conditions, financial markets, or current events, and add the corresponding

changes into the world state. This creates opportunities for hybrid experiences, where

in-game content is shaped by live data feeds, offering not only immersion, but also creative

and educational applications.

Analytics and monitoring services (K) can be introduced to observe client behaviour

and system health. By subscribing to relevant event channels, a service can log movement

trends, measure activity levels, or track user engagement patterns. These insights can

inform design improvements or drive adaptive systems, such as dynamic difficulty scaling.

Similarly, moderation services can listen for behavioural patterns, such as abusive language,

spamming, or abnormal interaction rates, and respond automatically, helping to ensure a

safe and enjoyable player experience. Research shows that game analytics are vital to

improve player engagement, system performance, and safety [8].

The architecture’s modular nature allows these services to be added, updated, or removed

without affecting core functionality. Since they operate independently and rely only on

standardised interfaces, key-value reads/writes and pub/sub messaging, they can be writ-

ten in different programming languages, deployed separately, and scaled according to their

14

3.4 Conflict Resolution and Consistency

workload. This separation of concern promotes system resilience and enables developers

to experiment with new ideas without risking regressions in core game features.

In summary, support services demonstrate how this architecture enables developers to

build richer, more reactive game worlds. They reduce complexity on the client side, pro-

mote consistent behaviour across users and offer a platform for live content, automation

and real-world integration to be added to complex worlds. Whether used for game logic,

content expansion, data analysis, or system authentication, these services turn the ar-

chitecture into a flexible platform that supports ongoing evolution far beyond its initial

design.

3.4 Conflict Resolution and Consistency

In decentralised architectures such as the one proposed in this thesis, consistency is one

of the central challenges. With no traditional server to act as the single source of truth,

clients and support services must coordinate their actions indirectly through the shared

data store and messaging layer. This model opens up many possibilities for scalable and

modular design but introduces the risk of conflicts between simultaneous updates or out-

of-order events. For example, two players might both believe they have picked up the same

unique sword, or one might “teleport” through a wall by sending an illegal update.

Another example is highlighted in Figure 3.3, where two players are both trying to place

a block (Stone or Dirt) on an empty block/cell (block:5_5). In this example, Player A

places the dirt block first, followed by Player B placing the Stone block. If we use “last-

write-wins” here, it is not fair or correct as Player A still loses their dirt block while the

block is replaced by stone. In these cases, it is difficult to ensure consistent states across

clients (R2).

Ensuring consistency in such a system is not about achieving perfect agreement at all

times, but about making careful decisions about where coordination is needed, how con-

flicts are resolves, and where inconsistency can be tolerated without harming player expe-

rience (R3, R5).

To reason about these situations, we can draw insights from distributed systems theory,

particularly the CALM theorem, short for "Consistency as Logical Monotonicity," as de-

fined in [9]. The CALM principle states that programs that produce outputs using only

monotonic logic (i.e., their outputs never need to be retracted or revised as new inputs

arrive) can be executed without coordination and still be consistent. This idea is particu-

larly relevant to systems like ours, where reducing the need for coordination directly leads

15

3. ARCHITECTURE OF A KVS-BASED BACKEND FOR MVES

block:5_5
<Empty>

Place stone Player B
Stone = 1Place dirtPlayer A

Dirt = 1

1st 2nd

Player A
Dirt = 0

Player B
Stone = 0

See: Stone See: Stonecell:5_5
<Stone>Inconsistency

Invalid State

Figure 3.3: A visual example of two clients issuing conflicting “place” commands to the same
block/cell, resulting in one client placing the block and the other losing theirs.

to better scalability, lower latency, and simpler design (R4, R6). Basically, the CALM

theorem encourages developers to design parts of the system in a way that avoids conflicts

using monotonic logic.

Applying this to our architecture, certain categories of game state can be made monotonic

and therefore do not require coordination. Player logs, chat messages, and event histories

are examples of data that can be appended without risk of conflict. Similarly, some types

of world progression, such as marking a quest as completed or recording that a player has

entered a zone, can be treated as monotonic additions. In contrast, data that is inherently

mutable and exclusive, such as positions of shared objects or ownership of a tile, is non-

monotonic and cannot be made consistent without some form of conflict resolution (R3).

For monotonic data, we simply append entries and rely on eventual consistency. For non-

monotonic keys, we provide several strategies. For most data types, a simple “last-write-

wins” (LWW) policy is enough, especially when updates are relatively frequent and preci-

sion is not critical. In this model, each write is tagged with a timestamp, and the system ac-

cepts the most recent one. However, this approach has well-known limitations, particularly

in systems where client clocks may drift or become unsynchronised. As a result, timestamp-

based ordering is only a best-effort solution and should be used with caution. For critical

interactions, such as claiming ownership of an object or confirming a world change, a more

robust solution involves atomic operations, such as compare-and-swap (CAS), which can

ensure that only one update succeeds even under contention (R3, R5). Figure 3.4 com-

pares LWW and CAS and shows why LWW does not always work well and why CAS is

needed for critical interactions.

16

3.4 Conflict Resolution and Consistency

Redis (Lua CAS)Client BClient A

Redis (Lua CAS)Client BClient A

LWW picks t2 (90)
CAS not used here

READ hea lth:playe r123 → 80
1

READ hea lth:playe r123 → 80
2

WRITE hea lth:playe r123@t1 → 75 %% LWW times tamp t1
3

WRITE hea lth:playe r123@t2 → 90 %% LWW times tamp t2
4

READ gold:ches t42 → 1
5

READ gold:ches t42 → 1
6

CAS (gold:ches t42, 1→0) ✅
7

CAS (gold:ches t42, 1→0) ❌ re try
8

CAS (gold:ches t42, 0→0) ✅
9

KVS Database

KVS Database

Figure 3.4: On the top, two clients race with LWW: the later timestamp wins. On the
bottom, atomic CAS ensures only one client drains the last gold.

An additional method to reduce conflicts is through isolation and scoping. By assigning

ownership or responsibility for certain keys to individual players or systems, we can ensure

that only one process is ever expected to write to a particular subset of data. For example,

each client might exclusively control its own namespace, updating its position, state, and

view without risk of collision. Shared objects or world data can be partitioned spatially,

where only one writer is active in a given region, or logically, with support services tak-

ing ownership of specific domains like procedural generation or simulation. These design

choices make it possible to avoid unnecessary contention, rather than resolving it after the

fact (R3).

Of course there are cases where perfect coordination is neither achievable nor necessary.

In a fast-paced game, momentary inconsistencies, such as two players seeing slightly differ-

ent NPC states, may be acceptable if they resolve quickly and do not disrupt gameplay. In

these cases, the system favours eventual consistency (R5): updates may arrive in different

orders across clients, but the shared state converges over time. To support this model,

clients may employ interpolation and prediction techniques to ensure a smoother experi-

ence for the user. This is especially useful for data like movement, where players care more

17

3. ARCHITECTURE OF A KVS-BASED BACKEND FOR MVES

pub wor�d:movement

subscribe

detect i��ega� move

pub wor�d:rewind

subscribe

app�y rewind

C�ient writes inva�id state

Redis Pub/Sub

Anti-Cheat Service

Emit “rewind” event

A�� C�ients

Restored va�id state

Figure 3.5: Compensation flow: invalid updates are flagged by Anti-Cheat, a “rewind” event
is published, and all clients revert to a valid state.

about responsiveness than strict ordering.

So in practice, we default to LWW when the cost of inconsistency is low. For instance,

if two players drop loot in the same location, the order of the drops does not affect the

gameplay outcome, and thus it does not matter which player “wins” last. Conversely, in

scenarios where the cost is high, such as both clients trying to consume the last “Key of

Destiny”, LWW would lead to incorrect state (both clients think they have the key). In

that case, we wrap the write in a CAS check against the key’s remaining count, ensuring

only one client succeeds.

For illegal or out-of-bounds updated detected by a Anti-Cheat service, discussed in Sec-

tion 3.3 and shown in Figure 3.5, we employ compensation logic: upon flagging an

invalid state change, the service publishes a “rewind” event that each client applies to re-

store a valid state. This approach is commonly used in distributed systems where strict

consistency would be too big of a performance cost, and it is particularly relevant to game

environments where occasional conflicts can be handled through in-world logic (R3, R4).

Overall, the architecture balances the need for consistency with the realities of decen-

tralised, low latency multiplayer systems. It uses coordination sparingly, avoids it where

possible through monotonic design, and applies resolution policies where necessary. By

acknowledging which parts of the system require coordination, the architecture offers a

18

3.5 Scalability and Performance

scalable and flexible platform for interactive multiplayer games. The CALM principle

servers as both a theoretical guide and a practical tool for organising game logic in a

coordination-free way wherever feasible.

3.5 Scalability and Performance

A core requirement is to support a large number of concurrent players while maintaining

interactivity and consistency R6. The use of a key-value store naturally supports hori-

zontal scalability: as the number of keys or clients grows, the store can be partitioned or

sharded accordingly. Since each client mostly writes to a localised portion of the world

state, contention on shared resources is minimised, allowing the system to scale without

introducing bottlenecks.

Furthermore, pub/sub channels may also be segmented by topic or region to reduce

congestion. For instance, the movement channels can be split up into a grid system, where

clients subscribe to and unsubscribe from channels as the player moves around. The player

is only interested in frequent movement updates by nearby players and thus can subscribe

to a 3x3 or 5x5 grid around their current column in the world. This means that the updates

from players far away, will be less frequent and thus lower the total number of messages

on each channel leading to greater performance and higher throughput. This is explored

more in Section 4.3.

3.6 Player Presence and Session Management

Each player joining the world is assigned a unique key prefix (e.g. player_{id} where

id is a unique number) under which session-specific information is stored, such as current

position, orientation, and online status. A global set tracks all currently active players.

When a client connects, it registers itself by adding its identifier to this set and publishing

a login event to the pub/sub channel (R1). Other clients listen to this channel and update

their local state accordingly. This decentralisation of presence tracking allows the system

to remain responsive and maintain player awareness even in the absence of a central server.

3.7 Real-Time Communication via Pub/Sub

To synchronise real-time events such as movement and interactions, the architecture uses

pub/sub channels. Clients publish their own state changes, and simultaneously subscribe to

receive events from others. This mechanism replaces traditional server-side dispatch logic,

19

3. ARCHITECTURE OF A KVS-BASED BACKEND FOR MVES

providing a direct path for client-to-client communication mediated by the database. Given

the system requirement of supporting interactions at over 8.6 Hz, low-latency message

propagation through pub/sub is essential (R2, R4).

However, pub/sub does not guarantee delivery or ordering. To manage inconsistencies

caused by message delays or drops, each movement update includes metadata such as a

timestamp or logical clock. Clients use this metadata to reconcile potentially conflicting

updates and discard stale information (R2, R5).

20

4

Implementation

This chapter translates the design of Section 3 into a working Unity + Redis prototype.

Section 4.1 summarises the overall technology stack.

4.1 Implementation Overview

In this section, we give an overview of all the frameworks and library used to implement

our design presented in Section 3. Additionally, we give context and reasoning for these

choices. A visual representation of the implementation stack can be seen in Figure 4.1.

The prototype, KeyVerse, is developed using Unity for the client engine and Redis for

the backend datastore and communication broker. We chose Unity as it allows for fast pro-

totyping of game clients and gives the benefit of using existing Redis C# client libraries (B).

The backend is built entirely on Redis, an in-memory key-value store known for its low-

latency performance and flexible data structures. In this system, Redis is used not only

to manage state (such as player data and world changes) but also to facilitate real-time

communication between clients using its publish-subscribe (pub/sub) system. This choice

addresses the following core functional and non-functional requirements:

First, the system fulfils the need for low-latency communication (R4) which is critical for

synchronising player movement and world interactions within the sub-120ms range estab-

lished in the design. The in-memory nature of Redis provides low data access (e.g., reads,

writes) delays and pub/sub (C) provides an efficient mechanism for real-time broadcasting.

Redis also allows for the execution of atomic Lua scripts (E) within the server, which can

help with the more complex requirements of replacing a traditional game server.

Secondly, Redis plays a key role in player presence management (R1) and real-time

state synchronisation (R2). The active_players (D) set provides a centralised query-

21

4. IMPLEMENTATION

Unity Client (KeyVerse)

state changes

Game Components
(movement, UI, etc.)

StackExchange.Redis
C# library

Redis 6.0.16 Server
Conceptual

Atomic Lua Scripts
(CAS, transfers,

terrain edits)

Pub/Sub Engine
(world:session,

world:movement, ...)

KVS
(player_{id},

world:column_x_y,
active_players)

C D

E

B

A

reads / writesGET / SET/ HSET ...
pubpub

subsub

Figure 4.1: Implementation Stack Overview for the KeyVerse prototype.

able view of currently connected users, while pub/sub channels like world:auth and

world:movement (C) ensure that join, leave and movement events are propagated to all

clients. Third, these channels support scalability (R6) by enabling client updates without

the need for polling or custom distribution methods.

Fourth, Redis’s support for atomic operations (E) and data versioning primitives lays the

groundwork for conflict resolution (R3), such as timestamp-based overwrites or compare-

and-swap semantics.

In summary, the use of Redis addresses key architectural challenges in building a server-

less multiplayer environment. Many of Redis’s innate functions address and/or solve major

portions of the requirements in the system. It supports scalable, low-latency communica-

tion, state persistence, and real-time coordination between distributed clients.

4.2 Implementation of the Communication Sub-system

From the client’s point of view there is two types of exchanges happening between the

client and Redis. Firstly there is the exchange of state data, mainly as reads and writes

to the keys in the database, which is explained in Section 4.4. Secondly, explained in

this section, is the exchange of game-specific commands aimed at other clients. This is

essentially client-to-client communication facilitated by Redis Pub/Sub.

To satisfy the requirement for player presence (R1) and to handle the login/logoff of

players in the virtual world, the prototype uses a dedicated world:seesion channel. When

a player joins the environment, first their client subscribes to this channel in order to

receive login commands from other new clients and logoff commands from clients leaving.

22

4.2 Implementation of the Communication Sub-system

<<abstract>>
RedisCommand

+ type: CommandType

+ playerID: int

+ timestamp: long

RedisLoginCommand RedisLogoffCommand RedisPositionCommand

+ position: Vector3 {x,y,z}

<<enumeration>>
CommandType

Login

Logoff

Position

type
1 1

inherits

Figure 4.2: Class hierarchy of the custom Redis communication protocol showing inheritance
from base RedisCommand and specialised command types

Following this subscribe, the client also publishes a login message to this channel to prompt

other clients to start displaying a new player. Through this mechanism, all clients are kept

aware of other players entering or leaving the shared world.

Another Pub/Sub channel world:movement is responsible for relaying player positions

updates. Clients publish to this channel whenever movement is detected locally, and they

listen for movement updates from others. This pattern allows for real-time state synchroni-

sation (R2), which is essential to delivering a fluid and responsive multiplayer experience.

Since all updates are timestamped, it also becomes possible to implement conflict resolu-

tion mechanisms (R3) such as a "last-write-wins" policy by comparing update times and

discarding stale data. However, as described heavily in Section 3.4, this is only a best-

effort solution and should be used with caution. Since this is a simple prototype to test the

viability of a very simple Redis-based game, consistency is not the main focus. To improve

this, more robust solutions can be used like designing updates to be monotonic and to use

atomic operations.

A single global channel, world:movement, is easy to reason about but can scale poorly.

So we needed to find a way to broadcast high-frequency movement without flooding clients

with updates (R2. Messages average 60 bytes, so 500 players sending messages at 10 Hz

would deliver 300 KB/s to every subscriber. This can take some time for the client to work

23

4. IMPLEMENTATION

through for every frame, so we implemented a Dynamic Proximity-based Pub/sub system

in Section 4.3 that preserves low latency will cutting fan out overhead.

Messages sent over Redis Pub/Sub follow a unified format based on a custom command

protocol (see Figure 4.2). All command messages inherit from a base RedisCommand class,

which includes fields such as a type, playerID, and timestamp. Specific subclasses like

RedisLoginCommand, RedisLogoffCommand and RedisPositionCommand encapsulate the

semantics of each message type. This abstraction allows for easy additions to the protocol

and enforces a consistent structure for deserialisation and interpretation by clients. Seri-

alisation currently uses JSON via a custom converter, allowing messages to be easily read

and debugged. While this incurs some overhead, the format is flexible and may be replaced

with a more compact binary format in the future.

4.3 Dynamic Pub/Sub System

A single channel for all client movement updates wastes bandwidth and processing time

on clients receiving the updates. Players only really need to receive updates from other

players that they may have contact with or see in the game, such as players that are nearby.

The dynamic publish/subscribe system replaces the single movement channel with a

proximity-aware scheme that scales better as the player count increases (R6). Instead of

sending every movement update to every client, the world, as described in Section 4.4, is

partitioned into columns, and each column has its own movement channel (e.g., world:movement:3_5).

Figure 4.3 visualises this system. A client publishes movement updates only to the channel

that matches its current column in the world grid (solid filled blocks with player number

inside in Figure 4.3) and subscribes to the channels inside a set radius, typically a 3x3 or

5x5 grid centred on its position, so it receives only the updates that happen close to it.

This subscribe radius is shown by the faded squares around the filled square in Figure 4.3.

An important note is that even though Player 1 (red) and Player 2 (blue) have overlapping

subscription areas (cell 2_3), they do not receive messages from each another. This is due

to the fact that their respective publishing squares fall outside the subscription areas of

the other player. However, Player 3 (yellow) and Player 1 (red) are visible to each another

and will send movement updates to each other by publishing to their own channels (yellow

filled square and red filled square) and this update will be picked up by the other player’s

subscription area.

Blindly resubscribing on every frame would generate a large overhead and stall the

client. Instead, the system computes the new channel set only when a client crosses a

24

4.4 Data Model and Consistency

0 1 2 3 4

0 0

1 Player 3 1

2 Player 1 2

3 3

4 Player 2 4

0 1 2 3 4

Figure 4.3: A Dynamic, 3x3 Proximity-based Publish/Subscribe Layout.

column boundary. The system then calculates the 2 ∗ RADIUS + 1 new channels and

subscribes to them. Then it unsubscribes from the same number of channels to keep the

total of subscribed channels at RADIUS2. This keeps the subscription overhead low even

at high tick rates.

The DynamicPubSub component orchestrates the entire workflow: it first computes the

set of channels that fall within the player’s subscription radius, the issues subscribe and un-

subscribe commands whenever the player crosses column boundaries. It also immediately

forwards any movement updates it receives to the client’s handler, and finally republishes

the client’s own movement to the channel that matches its current column.

By lowering the subscribers for each message sent, this implementation reduces the traffic

on a single channel and help to alleviate the handlers on clients from processing too many

messages. The modest overhead of managing subscriptions is outweighed by the drop in

deliveries on a single client, especially when hundreds of clients share the same world.

4.4 Data Model and Consistency

The data model supports a minimal but functional multiplayer environment, focusing on

fast positional updates. Each Unity client renders the game world and remote players

based on shared data stored in Redis. No single server holds authority.

Each player is assigned a unique identifier, generated by an atomic Redis counter, avoid-

ing conflicts during simultaneous logins. Once assigned, a player’s state is stored under a

25

4. IMPLEMENTATION

namespaced key (player_{id}), which holds relevant information. For now it contains the

player’s current position (x,y,z), but the structure can grow to include additional game-

specific metadata like orientation or status effects. This structure makes it easy for clients

to retrieve or update a single player’s data (R1), without much contention, and allows for

the easy addition of new attributes.

The world itself is represented as a collection of “columns”, where each column corre-

sponds to a specific grid coordinate. These are stored under the world: namespace using

the pattern column_x_y where x and y are integer coordinates. The value associated with

each key is a base64-encoded string representing the chunks serialised data. In this im-

plementation, the chunk data is only required when first rendering the world, as terrain

editing is outside the prototype’s scope.

To support login logic and global player tracking, the system uses a Redis set named

active_players. When a player logs in, their ID is added to this set and removed upon

logout. Clients can query this set when joining to determine which other players are

already online and render each player according to their position stored in their namespaced

key (R1).

State changes, such as movement or logout, are reflected both through Pub/Sub messages

as described in Section 4.2, and through updates to the Redis state store (to allow late

joiners to recover state).

Because multiple clients can write overlapping keys, the prototype falls back on a simple

last-write-wins (LWW) rule based on client-side timestamps. Every message carries the

local clock value at send-time and when a recipient processes an update, it overwrites its

cached value only if the incoming timestamp is later than the one it already holds. This

keeps the implementation lightweight, with no sequence numbers or coordination rounds,

yet still lets all the sessions converge over time (satisfying R3 and R5 in a basic form).

This approach is trivial to implement, though it is susceptible to clock skew and described

in Section 3.4.

As this prototype only focuses on movement updates, operations that truly need exclusive

ownership, such as chest looting or terrain edits, are not fully protected in the prototype.

Adding atomic operations via commands like SETNX or Lua compare-and-swap scripts is

therefore identified as future work (see Section 4.6) and would be required for production-

grade integrity.

Although Redis is an in-memory store, it can be configured to persist data to disk

periodically. However, in the current implementation, this is not critical, as the system

does not yet persist long-term state between sessions.

26

4.5 Client Lifecycle

START Connect to Redis INCR next_player_id SET player_{id}
SADD active_players PUBLISH Login

SUBSCRIBE
world:session &
world:movement

Playing?

PUBLISH Logoff

Loop:
PUBLISH Position
Render incoming

SREM active_playersQUIT No

Yes

Figure 4.4: Client Lifecycle in KeyVerse.

4.5 Client Lifecycle

The client lifecycle explains how a player connects to, interacts with, and eventually dis-

connects from the shared game environment. This flow is a critical part of the system’s

architecture, as it governs how state is initialised, synchronised, and maintained across

clients without a central game server. Figure 4.4 shows a visual representation of the client

lifecycle.

The first challenge is to guarantee unique identifiers for the players and to keep consis-

tent presence tracking (R1). Two players logging in at the same time can cause a race

condition on ID assignment, which would give two players the same identifier. To com-

bat this, we store an increment in the database that can be increased atomically using

INCR next_player_id. This will give each player a unique ID without coordination (R5).

This identifier is used to initialize the player’s state and to namespace their corresponding

Redis keys (e.g., player_29). The client can also use this identifier to rejoin the virtual

world after disconnecting.

The client then inserts itself into the active_players set and publishes a LoginCommand

as shown in 4.2 to the world:session Pub/Sub channel. This message informs all other

subscribed clients that a new player has joined the session. At the same time, the joining

client also subscribes to this channel to listen for future login or logoff event from other

players.

To render the current multiplayer state, the new client queries the active_players set

in Redis. This provides a complete list of player IDs currently online. For each entry,

the client reads the corresponding player_{id} key to retrieve and render that player’s

position.

When a player moves, the client publishes a PositionCommand to the world:movement

Pub/Sub channel. This command contains the new position data (x,y,z). Other players

27

4. IMPLEMENTATION

(subscribers) can use this message to render the player at the new position R2.

The final challenge in the life cycle is avoiding orphan records when players disconnect.

Unexpected terminations could leave stale keys in the database. On graceful quit, the

client publishes a Logoff to the world:session channel. This is picked up by all the

other subscribed clients who remove the player from their rendering list. Following this,

the client removes its ID from active_players in one atomic step. Additional support or

maintenance services, such as a Heartbeat Service explained in Section 3.1 can come in to

clean up stale keys.

4.6 Future Work

The current prototype is deliberately lightweight, focusing on core networking and state-

sharing to verify whether a system like this would be plausible at the basic level first.

Several additions or extensions would strengthen correctness, enrich gameplay, and move

the system toward a more production-ready version.

Redis, the key-value store used in this prototype, embeds a lightweight Lua interpreter.

A client can send a Lua script which the server executes atomically: it may read multiple

keys, perform conditional logic, and write results, all in one uninterrupted operation. Every

other client sees the scripts changes as if they happened at the same time, so race conditions

disappear without the cost of multi-round coordination.

Specifically, these Lua scripts can be used for stronger consistency. With Lua available,

atomic terrain edits, inventory transfers, or chest claims can be guarded by short scripts.

For example., a compare-and-swap script would read a block’s owner field, verify it is

empty, and set the new owner in a single round trip. Building a small library of Lua

scripts would close the gap between this prototype’s last-write-wins and production-grade

consistency, directly strengthening R3 and R5.

The design already mentions optional micro-services that plug into the same pub/sub

and key-value layer. Three high-impact candidates are:

• Heartbeat service - pings clients every few seconds and removes stale IDs from

active_players

• NPC simulator - drives non-player characters by writing position keys, providing

authoritative AI movement.

• Anti-cheat analyser - subscribes to movement channels, detects velocity spikes and

flags suspicious behaviour.

28

4.6 Future Work

As each runs independently, they can be deployed, scaled, or updated without touching

client code.

To take the prototype past movement updates, more interesting mechanics can be im-

plemented to test more parts of the Redis backend. Current column keys only store static

terrain. Future versions could include crafting stations, interactive blocks, or dynamic

weather, each protected by Lua scripts for safe concurrent edits.

Collectively, these extensions could elevate the prototype into a fully featured platform

for large-scale, modifiable virtual worlds.

29

4. IMPLEMENTATION

30

5

Evaluation

This section evaluates the performance characteristics of the Redis-based multiplayer ar-

chitecture prototype described in Chapter 4. The goal is to empirically verify whether the

system can handle large-scale client communication under varying loads, and to identify

potential bottlenecks or trade-offs inherent in the design.

5.1 Main Findings

We summarise the following set of Main Findings (MF):

MF1 With the dynamic proximity-based pub/sub system from Section 4.3, the system

can support ≈1 200 concurrent players under R4 (≥8.33 Hz), with the recommended

10 Hz operating point being 1 000 players. Above this the system becomes limited by

the single-threaded Redis PUBLISH loop, which caps throughput at ≈12 000 ops/s (see

Section 5.3).

MF2 A single-channel, Redis 6.0.16 broker can support ≈300 concurrent players at 10

updates per second (10 Hz) on one pub/sub channel. Beyond that, the performance

is limited by the single channelled pub/sub system which limits the throughput (see

Section 5.4).

MF3 Expanding the view distance from 3×3 to 5×5 significantly diminishes player ca-

pacity, dropping from ≈1 200 players to ≈400 players (≈66.67% less). This drop is

expected, but the experiment shows how much the scalability is reduced, highlighting

the trade-off between immersion and player count (see Section 5.5).

31

5. EVALUATION

MF4 Increasing the Redis io-threads configuration setting from 1 to 8 has no measurable

effect on publish throughput or memory stability under high pub/sub load. While

this result is expected, the experiment is necessary to rule out the socket I/O as

the bottleneck and confirm that the true limit lies in the single-threaded PUBLISH

loop. (see Section 5.6).

5.2 Experimental Setup

All experiments presented are performed on the VU cluster of the DAS-5 distributed su-

percomputer [10]. The DAS-5 is a project of the Advanced School for Computing and

Imaging (ASCI), and is funded by NWO/NCF. Each of the 68 nodes (58 were available at

the time of testing) of the VU cluster has two 8-core Intel E5-2630v3 CPU @2.4 GHz with

64 GB RAM.

The experiments are launched with Yardstick [11], a lightweight framework that reserves

exclusive CPU cores on the DAS-5 cluster and deploys the workload as ordinary user-

land processes. Yardstick takes a small declarative inventory file that lets us label each

slice/node as server or worker. A Yardstick-supplied Ansible play-book then

• compiles and starts Redis 6.0.16 on the designated server node;

• installs Python 3.9.23 + redis-py on every worker node;

• copies the bot workload and Telegraf collectors.

Because the executables run directly on the host Linux installation on DAS-5, no custom

VM images are required.

Telegraf 1 is used to collect all the metrics on the different nodes for analysis and

plotting. Telegraf collects the metrics of the Redis server (equivalent to INFO command),

hardware utilisation metrics on the nodes (CPU and Memory usage), as well as custom

metrics measured by the workers like bot throughput.

All experiments were carried out using the implemented Redis-based backend system

described in the implementation chapter, Chapter 4. The backend is powered by a lo-

cally hosted Redis server (v6.0.16), running on a single DAS-5 node through Yardstick.

The purpose of the experiments was to evaluate the system’s messaging throughput and

scalability under increasing load.

1https://github.com/influxdata/telegraf

32

https://github.com/influxdata/telegraf

5.3 Dynamic Pub/Sub: How many players can we handle? (MF1)

To generate load, we have developed a custom Python-based system, using the redis-py,

library that simulates headless clients (bots) by directly publishing to Redis channels

(world:movement) and measuring the number of messages sent and received, as well as

the latency of different operations in the system. These bots replicate core client be-

haviour: they send login events and continuously publish position updates at a determined

fixed rate (Hz). These simulated clients also listen for updates and record how many mes-

sages they receive. This allows us to measure the amount of messages that are lost and/or

missed.

Unless otherwise noted, all experiments follow this environment and setup. Deviations

or alternative setups are explicitly detailed in the relevant subsections.

5.3 Dynamic Pub/Sub: How many players can we handle? (MF1)

The goal of this experiment is to determine the maximum number of concurrent players

that the dynamic proximity-based pub/sub system (see Section 4.3) can support at a 10 Hz

update rate without exceeding the 120 ms (8.33 Hz) latency requirement (R4). In MF2,

the single-channel pub/sub was limited to ≈300 players before hitting CPU and memory

bottlenecks. The hypothesis is that lowering fan-out, by partitioning updates into channels

based on in-game region data, will delay the CPU and buffer saturation limits observed

in MF2, thus increasing the total number of concurrent players supported by the system.

We reuse the experimental setup from Section 5.4, replacing only the single global

world_movement channel with proximity-based channels corresponding to a 3 × 3 grid

around each player’s current column. Each simulated player publishes position updates

at a sending rate of 10 Hz or 10 msg/s to its own column’s channel and subscribes to

channels in its view radius (see Figure 4.3 in Section 4.3 for a visual representation of the

system). We increase the number of players from 250 to 1 500 across multiple runs of 600

seconds each. We, again, gather Redis-specific metrics, player listener/sending metrics,

and hardware utilisation metrics using Telegraf.

Looking at Figure 5.1, we can see that the performance of the system scales with an in-

crease in player count, maintaining throughputs of ≈10 messages per second (Hz) per player

for up to 1 000 players. Beyond this threshold, the total operations per second (ops/s)—

seen in Figure 5.2—continued to increase (e.g., ≈10 120 at 1 100; 10 560 at 1 200; 10 920

at 1 300; 12 300 at 1 500), but the effective update rate per player began to decline below

10 Hz (≈9.2, 8.8, 8.4, and 8.2 Hz respectively). Table 5.1 summarises the same runs, re-

33

5. EVALUATION

250 500 750 1000 1100 1200 1300 1500
Total Players

0

5

10

15

20

Up
da

te
 ra

te
 p

er
 p

la
ye

r (
Hz

)

Good performance (10)
Minimum (8.33)

Figure 5.1: Dynamic Pub/Sub: Update
Rates as the Player Count Increases.

250 500 750 1000 1100 1200 1300 1500
Total Players

0

3000

6000

9000

12000

15000

Re
di

s O
ps

/s

Expected Ops/s

Figure 5.2: Redis Ops/s as Player Count
Increases, excluding Sub/Unsub operations.

Table 5.1: Results of the dynamic multi-channelled test at a 10 Hz publish target.

Players Target publishes/s Redis ops/s Measured vs target Sending Rate (Hz)

250 2 500 2 500 ±0% 10
500 5 000 5 000 ±0% 10
750 7 500 7 500 ±0% 10

1 000 10 000 10 000 ±0% 10
1 100 11 000 10 120 −8% 9.2
1 200 12 000 10 560 −12% 8.8
1 300 13 000 10 920 −16% 8.4
1 500 15 000 12 300 −18% 8.2

porting target publishes/s, measured Redis ops/s, deviation from target, and the resulting

sending rate (Hz).

To highlight the degradation that occurs toward the end of the run rather than masking

it with an average, Figure 5.1 includes 5th–95th percentile error bars (the range within

which 90% of the per-second values fall). These error bars are calculated over the entire

test window, including the degradation tail for ≥1 100 players. Reading from Figure 5.1:

• From 250 to 1 000 players: There are tight error bars (p5–p95 approximately [9.9,

10.05]), indicating a consistent publish rate around the mean of 10 Hz.

• At 1 100 players (9.2 Hz mean, error bars at [8.6, 9.6]): The lower bar reflects a brief

late run dip; however, the p5 value of ≈8.6 is above the 8.33 threshold, so it is still

within the requirement of 120 ms in R4 (degraded but acceptable).

• At 1 200 players (8.8 Hz, [8.4, 9.2]): The lower p5–p95 error bar extends further, with

34

5.3 Dynamic Pub/Sub: How many players can we handle? (MF1)

0 200 400 600 800 1000 1200
Time (s)

0
10
20
30
40
50
60
70
80
90

100

Re
di

s C
PU

 u
sa

ge
 (%

)

250 players
500 players
750 players
1000 players
1100 players
1200 players
1300 players
1500 players

Figure 5.3: Redis Single-Core CPU Usage
over Time.

0 200 400 600 800 1000 1200
Time (s)

0

10

20

30

40

50

60

Cl
ie

nt
 M

ax
 O

ut
pu

t B
uf

fe
r (

M
B)

250 players
500 players
750 players
1000 players
1100 players
1200 players
1300 players
1500 players

Figure 5.4: Max Client Output Buffer
recorded by Redis over Time.

p5 ≈8.4≥8.33, so this is the maximum limit under R4.

• At 1 300 players (8.4 Hz, [7.9, 8.8]): The p5 error bar exceeds the threshold limit,

placing this outside of the supported range.

• At 1 500 players (8.2 Hz, [7.6, 8.6]): The p5–p95 error bars show a large lower tail far

below the supported range. In addition, the mean is also below the supported range.

CPU utilisation: In Figure 5.3, the utilisation climbs toward saturation as the player

count increases, maintaining a nearly constant 100% utilisation at 1 000 players. Above

this, the average CPU declines despite the increase in player numbers.

This behaviour could be attributed to the time spent in network I/O blocking (such

as socket read/write), which could reduce the observed user-space CPU activity under

overload conditions. However, more data is needed to confirm this hypothesis, so this

remains a hypothesis for future work.

Max Output-buffer growth: When Redis cannot flush/distribute messages as quickly

as it generates them, the messages accumulate in per-client output buffers. Figure 5.4

tracks the maximum buffer supported by Redis for each run. For player counts 250–750,

the buffer stays at 0 MB for the whole run. The buffer briefly increases at 1 000 players,

but is soon resolved. The 1 100 and 1 200 player runs increase quite drastically at the start

and then flatten out about half way through the test. From ≥1 300 players, the curves

have a large initial slope and no plateau, signalling that the buffer is out of control and will

likely fill up and exceed memory limits if the test continues for a longer time. This timing

aligns with the extended lower p5–p95 error bars in Figure 5.1 and Figure 5.2, indicating

that the late-run dips occur in the same region where the buffers begin to saturate.

35

5. EVALUATION

0 200 400 600 800 1000 1200
Time (s)

0

10

20

30

40

50

60
Re

di
s M

em
 U

sa
ge

 (G
B)

250 players
500 players
750 players
1000 players
1100 players
1200 players
1300 players
1500 players

Figure 5.5: Redis Memory usage over the Test Time.

The rising buffers are consistent with back-pressure (Redis enqueuing messages faster

than it can be drained). An example of how this back-pressure is created and relieved is

that, during the 1 000 player run in Figure 5.3 and Figure 5.4, the output buffer starts

to increase at the start but is soon resolved when the CPU utilisation increases to 100%.

This means that the CPU is initially stalled, causing a build-up in the buffer, and when

the CPU is free to work again, the buffer is emptied. This means that rising buffers could

be consistent with CPU utilisation decreasing, which in turn could be caused by the CPU

stalling or waiting for processes to finish (I/O sockets, for example). This hypothesis will

need more research to be proven, so it will be set as future work.

Memory Usage: From 250 to 1 000 players, memory usage remains stable and mini-

mal (less than 1 or 2 GB). With 1 100 players, there is a short increase to ≈3 GB at the

beginning and then consistently decreases throughout the rest of the test. At 1 200 play-

ers, memory usage rises quickly to about 8 GB but then levels off and decreases slightly

later in the test, indicating no prolonged increase. For 1 300 players, memory usage in-

creases to ≈14 GB but does not stabilise or flatten, indicating that memory may exceed

the limitations given enough run-time. Similarly, with a group of 1 500 players, there is a

continuous increase in memory usage with no indication of levelling out, indicating that

it is not sustainable for longer testing/playing periods and will eventually exceed memory

limits.

The decline observed at 1 100 and 1 200 players implies that the client buffers are being

drained and freed by the end of the run. As mentioned above, the memory usage at

1 300 players indicates slight stabilisation, but the residual positive slope could lead to a

36

5.4 Single-channel Redis: How many players can we handle? (MF2)

slow increase on longer runs. The persistent increase in memory usage observed at 1 500

players indicates that given additional time, memory consumption would likely continue

to increase, potentially exceeding memory limitations. These interpretations are deduced

from the behaviour of the observed data, as longer runs were not conducted to verify these

hypotheses.

Combining Figures 5.1–5.5 and Table 5.1, it is evident that a population of 1 000 players

comfortably achieves the 10 Hz target within the test window. This conclusion is sup-

ported by the tightly clustered p5–p95 error bars around 10 Hz, alongside stable output

buffers and consistent memory usage. When the population increases to 1 200 players, the

mean rate decreases to ≈8.8 Hz, with the p5 value ≈8.4 Hz, which is above the 8.33 Hz

requirement (R4). We therefore treat 1 200 as the maximum supported number of players

under these requirements, with the output-buffer growth monitored. At ≥1 300 players, the

p5 metric falls below 8.33 Hz and both output-buffer ad memory usage indicate sustained

expansion, thus categorising these scenarios as beyond the acceptable limits.

In conclusion, MF1 enhances single-broker capacity to accommodate approximately

1 200 players under R4, maintaining 1 000 players as the conservative operating point

when a 10 Hz sending rate must be preserved.

5.4 Single-channel Redis: How many players can we handle?
(MF2)

The goal of this experiment is to measure how many concurrent players a single channel

Redis Pub/Sub setup can support without exceeding the 120 ms (8.33 Hz) latency

requirement (R4). To give the system a safety buffer and reflect gameplay needs, each

client aimed to publish 10 updates/s. Additionally, it gives us two metrics for the sending

rate or throughput performance: Good at 10 Hz and Minimum at 8.33 Hz.

To test this, we incrementally increase the number of publisher bots (players) from 100

to 500 in steps of 100. The total offered load of each test is equal to players count ×
10 messages per second. Every run lasts 600s after a short warm-up (varies as nodes

increase), during which we record Redis-specific metrics, bot listener/sending metrics, and

hardware utilisation metrics using Telegraf.

Firstly, when looking at Figure 5.6, we can see that the system supports up to around

400 players before going below the latency threshold of 8.33 Hz. The Redis broker delivered

the full load up to 300 players. At 400 players the tick-rate dipped by 5% to 9 Hz, which

is still compliant with R4. With 500 players the deficit widened to 20%, bringing the tick

37

5. EVALUATION

100 200 300 400 500
Total Players

0

5

10

15

20
Up

da
te

 ra
te

 p
er

 p
la

ye
r (

Hz
)

Incomplete runs
Good performance (10)
Minimum (8.33)

Figure 5.6: Update Rates as the Player Count Increases.

rate down to 8 Hz and exceeding the requirement. The gray cross on the runs with 400

and 500 players means that those runs did not complete and ran out of memory (OOM).

This is discussed later in this section under Figure 5.10 and is the reason for 300 players

being the max supported, even though we can handle 400 player throughput.

To make variability over the run visible rather than hidden by a single average, Figure 5.6

includes 5th–95th percentile error bars (p5–p95) calculated across the test duration for each

player count. The bars represent the average update rate in Hz, while the error bars depict

where 90% of the per-second values occurred. Since the percentiles are calculated for the

entire duration of the test, the error bars also capture any decline encountered towards the

end of the test.

For 100–300 players, the error bars remain close to 10 Hz, indicating stable delivery.

However, at player counts of 400 and 500, the error bars display a lower skew due to the

drop-off observed toward the end of the run. Initially, the runs adhere closely to the target,

but as they progress, the performance decreases, dragging down the lower percentile, even

though the upper percentile remains near the initial steady state.

Figure 5.7 and Table 5.2 summarises Redis-side publish throughput versus the target or

expected load. Figure 5.7 uses the same p5–p95 error bars as Figure 5.6 on total ops/s. The

data points lie exactly on the ideal line up to 300 players. At 400 players, the ops/s bends

slightly before the run crashes with (Out_Of_Memory) and at 500 players, the ops/s is even

further below the expected. The reduction in performance at the 400/500 mark cause the

drop of the lower percentile, mirroring the lower percentile decrease seen in Figure 5.6. To

explain this bend we examined the process-level CPU metrics that Redis makes available

38

5.4 Single-channel Redis: How many players can we handle? (MF2)

100 200 300 400 500
Total Players

0

1000

2000

3000

4000

5000

Re
di

s O
ps

/s

Incomplete runs
Expected Ops/s

Figure 5.7: Redis Operations/s as Player
Count Increases.

0 200 400 600 800
Time (s)

10

20

30

40

50

60

70

80

90

Re
di

s C
PU

 u
sa

ge
 (%

)

100 players
200 players
300 players
400 players
500 players

Figure 5.8: Redis Single-Core CPU Usage
over Time.

Table 5.2: Results of single-channelled test at a 10 Hz publish target.

Players Target publishes/s Redis ops/s Measured vs target Outcome

100 1000 1000 ±0% Stable (600s)
200 2000 2000 ±0% Stable (600s)
300 3000 3000 ±0% Stable (600s)
400 4000 3900 −5% OOM at ≈400s
500 5000 4000 −20% OOM at ≈300s

through its INFO command. To understand the bend we inspected two additional metrics:

Redis CPU utilisation and the size of the client output buffers. And to understand the

Out_Of_Memory failure, we will look at Redis’s memory usage.

CPU utilisation: Figure 5.8 shows the aggregate user + system CPU usage for the Redis

process during each run. Since Redis has a single thread event loop, we plot the data of a

single core of the CPU on the node. The lines for 100, 200, 300 players hover well below

saturation, peaking near 30%, 40%, and 55% respectively. At 400 players, the curve climbs

steadily until it plateaus at 65%, and then peaks at above 80%. The 500 player climbs

faster and plateaus at about the 70% mark, and similarly peaks at above the 80% point.

This behaviour indicates that the CPU of the single event-loop thread inside Redis becomes

the bottleneck right around the 400-player mark, but more data is needed to confirm this.

To this end we also consider the Max Output-buffer growth and Memory Usage below.

Max Output-buffer growth: When Redis cannot flush/distribute messages as quickly

as it generates them, the messages accumulate in per-client output buffers. Figure 5.9

tracks the maximum buffer size reported by Redis for each run. For 100–200 players the

buffer stays at 0 MB for the whole run. During the 300 player run, the buffer increases

39

5. EVALUATION

200 300 400 500 600 700 800
Time (s)

30

60

90

120

Re
di

s C
lie

nt
 M

ax
 O

ut
pu

t B
uf

fe
r (

M
B) 100 players

200 players
300 players
400 players
500 players

Figure 5.9: Max Client Output Buffer
recorded by Redis over Time.

200 300 400 500 600 700 800 900
Time (s)

10

20

30

40

50

Re
di

s M
em

 U
sa

ge
 (G

B)

100 players
200 players
300 players
400 players
500 players

Figure 5.10: Redis Memory usage over the
Test Time. 400 and 500 players did not com-
plete the test due to OOM.

.

gradually as a few slow clients struggle to empty their buffer quickly. However, the buffer

does not get full, thus the messages are delivered in time and the throughput stays at the

maximum. At 400 and 500 players the buffers grow linearly to about 140 MB before the

process ultimately exits.

Memory Usage: Figure 5.10 shows the consequence of the output buffer being too full.

All of the buffered messages are written to memory as it waits for the client or Redis’s

event loop to process it. When all the clients messages start getting buffered, the memory

usage explodes to past 50 GB for the 400 and 500 player runs, at which point the kernel’s

OOM-killer or Redis itself terminates the process (there is no output log from Redis so

likely the former). The CPU and Output Buffer plots stop writing at the same timestamp.

Increasing the player count raises the fan-out cost quadratically. The main thread can

handle around 3 000–4 000 PUBLISH operations per second (≈300 players). Beyond that,

CPU saturation slows socket flushes, messages queue in client buffers, leading to big mem-

ory increases, and the process is killed. The last population that avoids this chain for the

full test duration is 300 players, which we conclude as the safe single-channel limit.

5.5 Dynamic Pub/Sub: How does View Distance impact Player
Count? (MF3)

The goal of this experiment is to assess the effect of varying view distances within the

dynamic proximity-based pub/sub system on scalability. While MF1 sets the subscrip-

tion radius to a 3×3 grid (radius 1), in practice, game developers may want to expand

view distance to enhance player immersion and player awareness. However, increasing the

40

5.5 Dynamic Pub/Sub: How does View Distance impact Player Count?
(MF3)

3x3 5x5
Subscription Grid

0

250

500

750

1000

1250
M

ax
 P

la
ye

rs

Figure 5.11: Max Players supported at varying Subscription Grids (View Distances).

subscription radius leads to an increase in the number of channels each player subscribes

to, consequently increasing the fan-out costs of every published message. This experi-

ment measures the trade-off between immersion (larger view distance) and throughput

(maximum supported players).

The setup is identical to that of MF1, as detailed in Section 5.3. However, the subscrip-

tion radius is increased, extending from 1 (3×3 = 9 channels) to 2 (5×5 = 25 channels).

Each simulated player publishes messages at a frequency of 10 Hz to their current column

channel and subscribes to all channels within their 5×5 view area. The number of players

is scaled up to a maximum of 500. Metrics collected includes publishing throughput, CPU

utilisation, growth of the client output-buffer, and memory usage.

Moving from a 3×3 view distance (radius 1) to a 5×5 view distance (radius 2) increases

subscriptions from 9 to 25 channels per player. Consequently, system capacity diminishes,

shown in Figure 5.11, from ≈1 200 supported players (MF1) to ≈400 players, marking a

66.67% decrease. This demonstrates a clear trade-off between enhanced immersion and

the maximum number of supported players (scalability).

As shown in Table 5.3, the system’s throughput becomes saturated at ≈4 000 operations

per second when utilising a 5×5 view distance, which limits scalability to around 400

players.

At 250 players, the system is stable at 10 Hz. At 350 and 400 players, there is a slight

decrease in the average update rate to approximately 9.9 and 9.8 Hz, though the range

between the 5th and 95th percentiles remains compliant with the 8.33 Hz requirement (R4).

41

5. EVALUATION

Table 5.3: Results of the dynamic 5×5 multi-channelled test at a 10 Hz publish target.

Players Target publishes/s Redis ops/s Measured vs target Sending Rate (Hz)

250 2 500 2 500 ±0% 10
350 3 500 3 480 −1% 9.94
400 4 000 3 920 −2% 9.8
500 5 000 4 000 −20% 8

250 350 400 500
Total Players

0

5

10

15

20

Up
da

te
 ra

te
 p

er
 p

la
ye

r (
Hz

)

Good performance (10)
Minimum (8.33)

Figure 5.12: Dynamic Pub/Sub (5×5):
Update Rates as the Player Count Increases.

250 350 400 500
Total Players

0

3000

6000

9000

12000

15000

Re
di

s O
ps

/s
Expected Ops/s

Figure 5.13: Redis Ops/s as Player Count
Increases, excluding Sub/Unsub operations
(5×5).

Upon reaching 500 players, throughput remains at the upper limit of 4 000 operations

per second, and the average rate decreases by 20 % to 8 Hz, with the lower percentile

dropping to roughly 7.1 Hz, which exceeds the latency requirement.

Figures 5.12 and 5.13 visualise this decline, showing narrow error margins for players

numbering 350 or fewer, a broader variation at 400 players, and sustained declines at the

500 player mark.

In conclusion, increasing the view distance radius from 1 to 2 (3×3 to 5×5) decreases the

maximum supported player count from approximately 1 200 players to around 400 players,

resulting in a 66.67% reduction. This shows that the view distance is a crucial factor in

scalability, as larger radii improve immersion as the cost of fewer concurrent players, while

smaller radii maintain scalability at the cost of visibility in the game.

5.6 Effect of I/O Threads on Single-channel Redis: (MF4)

The goal of this experiment is to assess whether enabling additional Redis I/O threads can

relieve the bottleneck identified in Section 5.4.

42

5.6 Effect of I/O Threads on Single-channel Redis: (MF4)

100 200 300 400 500
Concurrent players

0

500

1000

1500

2000

2500

3000

3500

4000
M

ea
n

pu
bl

ish
 o

ps
/s

1 I/O thread
2 I/O threads
4 I/O threads
8 I/O threads
>300 players (OOM)

Figure 5.14: Effect of Redis I/O threads on the single pub/sub channel throughput.

For each player count (100–500) we repeated the 600s run with io-threads set to 1,2,4

and 8. All other parameters, including the single pub/sub channel and 10 Hz publish

rate, were left unchanged. The only metric presented is publish throughput (ops/s) as

seen in Figure 5.14. There was absolutely no change to the ops/s as the number of I/O

threads were increased. Additionally the output buffer and memory behaviour match those

already documented in Section 5.4. Runs at 400 and 500 players still terminate early due

to Out-Of-Memory, at nearly the same timestamps as in Section 5.4.

Why did the extra threads not make a difference? I/O threads offload kernel write()

calls but cannot parallelise the PUBLISH loop, which remains single-threaded. Only the

core event loop can fan-out or distribute the PUBLISH commands. As the bottleneck is

in this core event loop, increasing I/O threads provides no benefit. This negative result

does not mean that the experiment is a waste, as it helps us locate the true cause of the

bottleneck by removing the idea of it being socket-based. This result confirms that further

optimisation must come from increasing the number of pub/sub channels (MF1) or having

multiple Redis brokers.

43

5. EVALUATION

44

6

Related Work

Research on scalable online multiplayer game architectures has long been a central topic in

computer science, spanning areas like centralised servers, distributed peer-to-peer systems,

cloud gaming platforms, and more recently, database-backed and serverless approaches.

Each of these systems offers distinct advantages and limitations regarding scalability, fault

tolerance, and consistency. This section provides an overview of prior work within four

specific areas: (i) centralised and replicated server, (ii) distributed and peer-to-peer ar-

chitectures, (iii) cloud gaming platforms, and (iv) adaptive, database-driven consistency

models.

Centralised Servers and Replication: Early research on large scale multiplayer

games centred around increasing the scalability of dedicated servers via replication and

load balancing techniques. For instance, Lin et al. [12] developed MiddleSIR, a frame-

work that applied replication protocols like primary-copy and eager update-everywhere to

manage multiplayer states. Their findings showed that while replication could improve

fault tolerance and scalability, it occasionally resulted in constraints affecting gameplay,

such as batching or aborting updates. These findings illustrate how strongly consistent

replication protocols, which generally perform well in databases, might adversely impact

the responsiveness crucial to interactive gaming experiences.

Research conducted by Abdelkhalek et al. [13] examined the performance of early com-

mercial game servers, identifying CPU and network demands as primary limitations as

player numbers rose. Although their findings were based on early 2000s hardware, the

underlying observation remains valid today: centralised, single threaded event loops tend

to max out on CPU and network usage with increased concurrency. This architectural con-

straint continues to drive the exploration of alternative architectures, such as the database-

centric approach discussed in this thesis.

45

6. RELATED WORK

Distributed and Peer-to-Peer Architectures: Another line of research explored dis-

tributed and peer-to-peer approaches. Colyseus [14] managed to distribute both the game

logic and its state, blending strong consistency for crucial actions with weaker guarantees

for frequent updates such as player movement. Donnybrook [15] focused on large-scale

shooter games, utilising aggressive interest management techniques to manage hotspots

involving thousands of players. Surveys conducted by Yahyavi and Kemme [16] provide

comprehensive classifications of consistency strategies in multiplayer gaming, covering a

spectrum of dead-reckoning to optimistic and exact methods. These explorations empha-

sise the importance of flexibly easing consistency guarantees to achieve scalability while

maintaining interactive latencies, a principle also reflected in this thesis’s treatment of

movement and transactional state.

Cloud Gaming Platforms: Cloud gaming offers a distinct architectural approach by

offloading rendering and simulation processes to data centres. Shea et al. [17] analysed

systems such as OnLive and Gaikai, highlighting that while cloud offloading reduces the

demands on clients, it introduces strict latency budgets: ≤100 ms for first-person games

and up to 1 000 ms for strategy games. These findings establish clear benchmarks for

responsiveness in any distributed system, encouraging techniques such as local prediction

to hide network delay. Although this thesis does not specifically address cloud rendering,

the latency limitations provide an external baseline for assessing interactive responsiveness.

Adaptive and Database-Backed Consistency: More recent work explores adaptive

consistency models and database-centric architectures. Vector Field Consistency (VFC) [18]

reduces communication demands by relaxing guarantees based on spatial distance. Com-

plementing this, Donkervliet et al. [19] propose Dyconits, a middleware that dynamically

groups the game state into units with configurable bounds on staleness and numerical

inconsistency. These units adapt at runtime to player interests and workload patterns,

reducing unnecessary updates and preserving interactivity. Karsai’s 2024 BSc thesis [20]

provides a modern evaluation of Dyconits within a pub/sub context, demonstrating their

ability to dynamically adjust consistency in exchange for enhanced performance across

various topics.

In parallel, research in distributed systems has highlighted how key-value stores like

Dynamo, Cassandra, and Redis facilitate operations with low latency and high throughput

at scale. Building on this foundation, Donkervliet et al. [3] have introduced serverless

MVEs that utilise databases as the authoritative state store. Similarly, Eickhoff et al [7]

introduced Meterstick, a benchmarking tool designed for Minecraft-like virtual worlds,

aimed at assessing performance inconsistencies in both self hosted and cloud environments.

46

These works collectively support the feasibility of database-driven and serverless models for

MVEs while highlighting the need for further empirical evaluations, such as those presented

in this thesis.

Summary: This collection of research offers a comprehensive perspective on design pos-

sibilities, extending from centralised replication to distributed peer-to-peer systems, cloud

architectures, and adaptive database-driven consistency models. Prior studies show: the

trade-offs between consistency and scalability, the need for adaptive or flexible guaran-

tees on consistency, and the latency limitations imposed by interactive games. This thesis

contributes to this by developing and evaluating a prototype based on Redis, which inte-

grates a database-managed state with publish/subscribe messaging. It illustrates that this

methodology can support over a thousand concurrent users while maintaining responsive-

ness.

47

6. RELATED WORK

48

7

Conclusion

In today’s expansive digital realms, the constraint is not the size of the map or the ren-

dering capabilities, but rather the limitations of the servers that keep them coherent. This

thesis explores whether a key-value store could take over the role traditionally assigned to

monolithic game servers.

7.1 Answering Research Questions

In this section we will address the Main Research Questions proposed in Section 1.2.

RQ1 - Design: Chapter 3 highlighted the essential components present in modern

key-value systems, such as: hashes, sets, publish/subscribe channels, and atomic compare-

and-swap scripts. We also demonstrated their adequacy in addressing four functional

requirements: player presence, real-time state synchronisation, conflict resolution, and

durable world data. By dividing state into monotonic logs versus non-monotonic keys

and applying the CALM principles, most updates can occur seamlessly without requiring

coordination.

RQ2 - Implementation: Chapter 4 translated the design into KeyVerse, a Unity

prototype directly leveraging a Redis 6 backend. It employs a sliding 3 x 3 proximity

window to sustain constant message loads for each client. Additionally, micro-services

explained in Chapter 3 like simulation, anti-cheat, and analytics can integrate without

needing to modify the client code.

RQ3 - Evaluation: Chapter 5 revealed that with the dynamic pub/sub system (MF1)

and a single Redis node, the system can support approximately 1 200 concurrent play-

ers under R4 (≥8.33 Hz), with the recommended 10 Hz operating point being approxi-

mately 1 000 players. Beyond 1 200 players, the Redis single-threaded publish loop capped

49

7. CONCLUSION

throughput at ≈12 000 ops/s, reducing the per-player update rate below the target. This

represents a nearly fourfold improvement over MF2, showing that dynamically splitting

pub/sub traffic substantially delays CPU saturation. A single Redis node supports approx-

imately 300 concurrent players on a single pub/sub channel at a sending rate of 10 Hz until

the pub/sub fan-out loop becomes saturated (MF2). Providing additional I/O threads

did not alleviate this issue, identifying the event loop, not the socket output, as the critical

bottleneck (MF4). MF3 shows that increasing the view distance to a 5×5 grid decreases

the capacity to approximately 400 players, representing a reduction of roughly 67%. This

decrease is expected and provides a measure of the trade-off between immersion and scal-

ability. The larger the view distance, the lower the supported player count, and the lower

the view distance, the higher the supported player count.

7.2 Limitations and Future Work

This section will bring light to some limitations faced during this thesis and possible future

projects.

Single-broker ceiling: The experiments revealed that the while the baseline single-channel

design could accommodate approximately 300 players (MF2), the dynamic pub/sub sys-

tem (MF1) increases this limit to approximately 1 200 players. This confirms that a single

broker can only scale so far, and future work should explore: the deployment of multiple

brokers, or alternative mechanisms for event distribution to surpass this limitation.

Best-effort Consistency: Most keys can rely on the last-write-wins approach, but unique

items sill need CAS or transactional pipelines.

Scope of workload: While benchmarks have been concentrated on movement updates,

other activities such as crafting, terrain modifications, and high-frequency combat deserve

dedicated stress tests.

7.3 Closing Remark

KeyVerse suggests a simple paradigm shift: let the database become the server. By in-

tegrating authoritative state and real-time messaging within the key-value store, we suc-

cessfully separate Simulator and State, paving the way for serverless , horizontally scalable

virtual worlds. While the prototype exposes the limitations of a single-broker design, it

also highlights the opportunities of database-backed architectures as a foundation for fu-

50

7.3 Closing Remark

ture large scale MVEs and hints that this future may lie one well-placed SET command

away.

51

7. CONCLUSION

52

References

[1] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Distributed

Systems and Ecosystems. In 2019 IEEE 39th International Conference on Dis-

tributed Computing Systems (ICDCS), pages 1765–1776, 2019. 3

[2] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Behavior

and performance of interactive multi-player game servers. Cluster Computing,

6:355–366, 2003. 7

[3] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards Sup-

porting Millions of Users in Modifiable Virtual Environments by Redesign-

ing Minecraft-Like Games as Serverless Systems. In Amar Phanishayee and

Ryan Stutsman, editors, 12th USENIX Workshop on Hot Topics in Cloud Comput-

ing, HotCloud 2020, July 13-14, 2020. USENIX Association, 2020. 8, 46

[4] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of factors

affecting players’ performance and perception in multiplayer games. pages

1–7, 10 2005. 10

[5] Valentin Forch, Thomas Franke, Nadine Rauh, and Josef Krems. Are

100 ms Fast Enough? Characterizing Latency Perception Thresholds in

Mouse-Based Interaction. pages 45–56, 05 2017. 10

[6] Shengmei Liu and Mark Claypool. The Impact of Latency on Navigation

in a First-Person Perspective Game. In Proceedings of the 2022 CHI Confer-

ence on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022.

Association for Computing Machinery. 10

53

https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://doi.org/10.1145/3491102.3517660
https://doi.org/10.1145/3491102.3517660

REFERENCES

[7] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meter-

stick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games. In 2022 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 147–149, 2022. 10, 46

[8] Günter Wallner. A brief overview of data mining and analytics in games.

Data analytics applications in gaming and entertainment, pages 1–14, 2019. 14

[9] Joseph M. Hellerstein and Peter Alvaro. Keeping CALM: when dis-

tributed consistency is easy. Commun. ACM, 63(9):72–81, August 2020. 15

[10] Henri E. Bal, Dick H. J. Epema, Cees de Laat, Rob van Nieuwpoort, John

Romein, Frank J. Seinstra, Cees G. M. Snoek, and Harry A. G. Wijshoff.

A Medium-Scale Distributed System for Computer Science Research: In-

frastructure for the Long Term. IEEE Computer, 49(5):54–63, May 2016. 32

[11] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yardstick:

A Benchmark for Minecraft-like Services. In Proceedings of the International

Conference on Performance Engineering, Mumbai, India, April, 2019, 2019. 32

[12] Yi Lin, Bettina Kemme, Marta Patino-Martinez, and Ricardo Jimenez-

Peris. Applying database replication to multi-player online games. In

Proceedings of 5th ACM SIGCOMM Workshop on Network and System Support for

Games, NetGames ’06, page 15–es, New York, NY, USA, 2006. Association for Com-

puting Machinery. 45

[13] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Behavior

and performance of Interactive Multi-player Game Servers. Cluster Comput-

ing, 6(4):355–366, Oct 2003. 45

[14] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: a

distributed architecture for online multiplayer games. In Proceedings of the

3rd Conference on Networked Systems Design & Implementation - Volume 3, NSDI’06,

page 12, USA, 2006. USENIX Association. 46

[15] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Mosci-

broda, Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook:

enabling large-scale, high-speed, peer-to-peer games. In Proceedings of the

54

https://doi.org/10.1145/3369736
https://doi.org/10.1145/3369736
https://doi.org/10.1145/1230040.1230080
https://doi.org/10.1145/1402958.1403002
https://doi.org/10.1145/1402958.1403002

REFERENCES

ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM ’08, page

389–400, New York, NY, USA, 2008. Association for Computing Machinery. 46

[16] Amir Yahyavi and Bettina Kemme. Peer-to-peer architectures for massively

multiplayer online games: A Survey. ACM Comput. Surv., 46(1), July 2013. 46

[17] Ryan Shea, Jiangchuan Liu, Edith C.-H. Ngai, and Yong Cui. Cloud gam-

ing: architecture and performance. IEEE Network, 27(4):16–21, 2013. 46

[18] Manuel Cajada, Paulo Ferreira, and Luıs Veiga. VFC-RTS: Vector-Field

Consistency para Real-Time-Strategy Multiplayer Games. Master of Science

Disertation, 2012. 46

[19] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. Dyconits: Scaling

Minecraft-like Services through Dynamically Managed Inconsistency. In

41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021,

Washington DC, USA, July 7-10, 2021, pages 126–137. IEEE, 2021. 46

[20] Martin Karsai. Dynamically Managed Inconsistency in Distributed Systems. PhD

thesis, Vrije Universiteit Amsterdam, 2024. 46

55

https://doi.org/10.1145/2522968.2522977
https://doi.org/10.1145/2522968.2522977
https://doi.org/10.1109/ICDCS51616.2021.00021
https://doi.org/10.1109/ICDCS51616.2021.00021

	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.5 Plagiarism Declaration

	2 Background
	2.1 Traditional Game Server Architectures
	2.2 Key-Value Store (KVS) Databases
	2.3 Modifiable Virtual Environments (MVEs)

	3 Architecture of a KVS-Based Backend for MVEs
	3.1 System Requirements
	3.2 Architecture Overview
	3.3 Game Simulators
	3.4 Conflict Resolution and Consistency
	3.5 Scalability and Performance
	3.6 Player Presence and Session Management
	3.7 Real-Time Communication via Pub/Sub

	4 Implementation
	4.1 Implementation Overview
	4.2 Implementation of the Communication Sub-system
	4.3 Dynamic Pub/Sub System
	4.4 Data Model and Consistency
	4.5 Client Lifecycle
	4.6 Future Work

	5 Evaluation
	5.1 Main Findings
	5.2 Experimental Setup
	5.3 Dynamic Pub/Sub: How many players can we handle? (MF1)
	5.4 Single-channel Redis: How many players can we handle? (MF2)
	5.5 Dynamic Pub/Sub: How does View Distance impact Player Count? (MF3)
	5.6 Effect of I/O Threads on Single-channel Redis: (MF4)

	6 Related Work
	7 Conclusion
	7.1 Answering Research Questions
	7.2 Limitations and Future Work
	7.3 Closing Remark

	References

