
Vrije Universiteit Amsterdam

Bachelor Thesis

Design and Implementation of a
Player-Behavior Tracing System for MVEs

Author: Erik Doytchinov (2760495)

1st supervisor: Jesse Donkervliet
2nd reader: Alexandru Iosup

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 25, 2025

ii

Abstract

Modifiable Virtual Environments (MVEs) like Minecraft present a unique

challenge for performance and player behavior monitoring due to player-driven

and dynamic workload patterns. Traditional tools are insufficient in providing

detailed player behaviors or fine-grained runtime metrics that are necessary to

build rigorous scientific analyses on MVEs. This thesis introduces TraceCraft,

a tracing mod developed and designed for Minecraft, specifically aimed at

comprehensive runtime performance and behavioral tracing. TraceCraft captures

detailed subsystem-level metrics, including system resources, simulation loop

timings, event-driven generation, game state management, and application-level

resource usage. The primary advantage is the focus on player-centric metrics

which are gathered to quantify player interactions such as movement paths,

block placements, combat actions, and idle times. Metrics are designed to be

asynchronously collected and with minimal overhead and sent to an external

database for further analysis. The results highlight TraceCraft’s effectiveness as

both a practical tool for MVE performance monitoring and as a robust platform

for further academic research into performance optimization and player behavior

modeling.

iv

Contents

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 2

1.3 Research Questions . 3

1.4 Thesis Contributions . 4

2 Background 7

2.1 Modifiable Virtual Environments . 7

2.2 Telemetry and System Monitoring in Distributed Systems 8

2.3 Time-Series Databases and Data Pipelines 8

2.4 Game Engine Instrumentation Frameworks 9

3 Design of TraceCraft 11

3.1 Design Requirements . 11

3.2 Design Overview of TraceCraft . 12

3.3 Design Alternatives . 13

3.4 Tracing Player Behavior in MVEs . 16

3.5 How TraceCraft Meets the Design Requirements 17

4 Implementation of TraceCraft 21

4.1 Implementation Overview . 21

4.2 Client-side Implementation . 23

4.3 Server-side Implementation . 25

4.4 Data Handling and Performance Impact Considerations 28

5 TraceCraft Implementation Evaluation 33

5.1 Main Findings . 33

5.2 Experimental Setup . 33

i

CONTENTS

5.3 Player-Tracing Validation Experiments . 34

5.4 Performance Overhead Analysis . 36

5.5 Comparative Mod Evaluation . 39

6 Player Behavior Data Collection and Analysis 43

6.1 Telemetry Processing and Feature Design 43

6.2 Statistical Modeling of Movement and Idle Patterns 45

6.3 Player Archetypes . 46

6.4 Implications for Player Modeling and Mod Design 47

7 Related Work 49

7.1 Existing Minecraft Performance Tools . 49

7.2 Comparative Analysis of Metrics Collection Tools 50

7.3 Tracing and Instrumentation Techniques . 50

7.4 Related Scientific Publications . 51

7.5 Gaps Identified . 52

8 Conclusion 55

8.1 Answering Research Questions . 55

8.2 Limitations and Future Work . 56

References 57

A Reproducibility 63

A.1 Abstract . 63

A.2 Artifact check-list (meta-information) . 63

A.3 How to access . 64

A.4 Evaluation and expected results . 65

A.5 Notes . 65

B Self Reflection 67

ii

1

Introduction

Video game environments have transformed how individuals engage in collaborative learning,

creative expression, and social interaction. Games such as Minecraft, Roblox, and Second

Life have altered traditional entertainment boundaries to become sophisticated platforms

where users construct, program, and distribute their own interactive experiences. These

virtual environments serve as valuable research artifacts for investigating system performance,

user behavior patterns, and large-scale resource management challenges. Modifiable Virtual

Environments (MVEs) games that expose their underlying architecture through modification

frameworks or scripting interfaces provide researchers with opportunities to observe how

human activity generates computational stress patterns that synthetic benchmarks cannot

replicate (1, 2).

Systematic observation of MVEs presents significant challenges; production servers must

simultaneously manage physics simulations, network protocols, AI systems, and rendering

pipelines within strict timing constraints, all while responding to unpredictable, player-

generated workloads. Conventional profiling tools typically provide aggregate CPU statistics

or memory snapshots but lack the granularity necessary to correlate performance anomalies

with specific player behaviors (3). Consequently, it often resorts to trial-and-error approaches

for performance diagnosis and encounters substantial obstacles in obtaining the fine-grained

trace data essential for reproducible experimentation.

The significance of this work extends beyond technical implementation. By enabling

systematic collection of both performance and behavioral data, it provides researchers with

insights into how human actions influence system behavior in modifiable environments. This

capability supports advances in performance optimization, player behavior modeling, and

the development of more responsive virtual environments that can adapt to user patterns.

1

1. INTRODUCTION

1.1 Context

Modifiable Virtual Environments occupy a unique position within the domains of inter-

active system design, distributed computing, and user-centered experimental platforms.

Unlike video games with fixed functionality, MVEs explicitly encourage users to modify the

underlying simulation through scripting, modification installation, and automated system

construction (4). These modifications can substantially alter computational load character-

istics in ways that the original engine architecture did not anticipate. For instance, a server

configuration that adequately supports fifty concurrent users may experience performance

degradation when a single user introduces high-frequency block updates.

From a research perspective, this adaptability presents both opportunities and challenges.

The malleability of MVEs enables controlled experimental studies where researchers can

modify environmental parameters, replay behavioral traces, and establish causal relation-

ships that reflect authentic usage patterns. Conversely, this same flexibility generates

workload characteristics that are not feasible with static analysis. Effective instrumenta-

tion must therefore capture both system-level performance indicators, such as including

tick timing, chunk generation processes, and network packet queues, and at the same

time behavioral-level signals encompassing player movement patterns, block interaction

frequencies, and combat engagement metrics at a sufficient level to preserve event visibility

(5).

By integrating systems observability principles with game modification frameworks, this

research establishes foundational infrastructure for enhanced analytics capabilities in MVEs.

Subsequent chapters provide detailed examination of the design decisions, implementation

challenges, and empirical validation that demonstrate TraceCraft’s effectiveness across both

synthetic stress testing scenarios and authentic multiplayer gaming sessions.

1.2 Problem Statement

Despite the growing academic interest in MVEs game environment, there hasn’t been a

carefully studied and designed, lightweight, in-game tracing solution specifically made for

the dynamic and player-driven nature of MVEs. Profiling tools exist but are often limited

when fine-grained data is required to be extracted from the game engine, and while useful

for surface level analysis, are lacking in the ability to collect more complex game mechanics.

This gap limits our ability to understand how performance issues emerge during real-world

use, especially in situations where timing, environment complexity, or subsystem interac-

2

1.3 Research Questions

tions affect responsiveness. Without continuous, contextual runtime metrics, diagnosing

bottlenecks in MVEs becomes trial and error, and optimizing performance remains reactive

rather than data driven.

This thesis addresses this problem by proposing a instrumentation method designed

specifically for MVEs. The goal is to support systematic data collection on player behavior,

and at the same time system performance, with minimal overhead using event-driven

collection and data offloading to an external database for further analysis.

1.3 Research Questions

RQ1 How to design a tracing mod that effectively collects low-level performance and

behavioral data in a Minecraft-based MVE?

MVEs represent a fundamentally different class of distributed systems where player

agency drives unpredictable, dynamic workloads that traditional monitoring ap-

proaches cannot adequately capture. Unlike conventional server applications with

predictable load patterns, MVE performance is inherently tied to human behavior,

creating complex relationships between user actions and system responses that are

crucial for understanding scalability bottlenecks. The scientific challenge lies in

designing instrumentation for a real-time system operating under strict performance

baseline while capturing meaningful research metrics from all subsystems; from JVM

garbage collection to game engine event loops to player interaction handlers.

RQ2 How can a tracing mod be implemented to instrument both client- and server-side

subsystems while maintaining low performance overhead?

Real-world MVE deployments involve distributed client-server architectures where

performance bottlenecks can manifest across multiple system boundaries, client ren-

dering pipelines, or server simulation logic, making unified observability essential for

comprehensive performance understanding. The implementation challenge involves

solving the the challenge of getting comprehensive data collection and system per-

formance preservation in latency-critical environments. This encompasses multiple

technical challenges: developing lock-free concurrency primitives for high-frequency

event capture without blocking game threads, designing optimal buffering and batch-

ing strategies that minimize I/O overhead while preventing data loss during traffic

bursts, and quantify the instrumentation’s own performance impact to ensure the

monitoring system doesn’t become a significant load contributor itself.

3

1. INTRODUCTION

RQ3 How can player behavioral data collected through TraceCraft enable the development

of player behavior models that accurately represent real-world gameplay patterns in

MVEs?

Understanding player behavior in MVEs extends beyond entertainment applications

to fundamental questions about human-computer interaction in modifiable digi-

tal environments, with implications for educational platforms, collaborative virtual

workspaces, and large-scale social computing systems. The scientific challenge involves

transforming telemetry data into validated behavioral models while addressing several

complexities: extracting meaningful behavioral signals from raw event data while

preserving spatial and temporal context, establishing ground truth for behavior pat-

terns in environments where "correct" behavior is subjective and context-dependent,

ensuring model generalization across different player populations and game scenarios.

1.4 Thesis Contributions

This project contributes a lightweight and extensible tracing system designed specifically

for Modifiable Virtual Environments, using Minecraft as a case study. The work bridges

techniques from systems observability and real-time game analysis to provide a new way of

monitoring complex, player-driven environments. The key contributions are as follows:

C1 A design for a lightweight, extensible tracing mod (Section 3) — A modular,

Forge-compatible blueprint that hooks into both client- and server-side subsystems to

capture tick, rendering, physics, and behavioral events with minimal intrusion.

C2 A complete research artifact: open-source tracing mod with integrated

real-time data pipeline and visualization stack (Section 4) — A Forge-based

mod for Minecraft 1.21.5 that instruments core game logic (ticks, entity updates,

player actions) without altering vanilla behavior, released under MIT on GitHub

and published on CurseForge, integrated with an InfluxDB time-series database

and pre-configured Grafana dashboards to monitor performance and player behavior

metrics live.

C3 Comprehensive system validation: performance evaluation and data-driven

player behavior analysis design (Section 5 and 6) — A suite of synthetic bench-

marks and play-session studies measuring accuracy, completeness, and overhead of

collected metrics, combined with systematic collection of real-world player telemetry

4

1.4 Thesis Contributions

and construction of validated player behavior models that identify common play

styles, predict actions, and support applications in adaptive content, cheat detection,

and server optimization.

5

1. INTRODUCTION

6

2

Background

2.1 Modifiable Virtual Environments

Modifiable Virtual Environments (MVEs) are interactive software systems that enable

end users to dynamically alter both virtual world content and underlying simulation logic

through various interfaces including scripting, plugins, or in-game tools (1, 6). Unlike

traditional video games with fixed functionality, MVEs explicitly encourage users to modify

the simulation environment, creating content that can substantially alter computational

load characteristics in ways not anticipated by the original engine architecture (4).

The defining characteristics of MVEs include real-time modification capabilities, multi-user

environments, and programmatic content creation (7, 8). Users can modify virtual world

objects such as player apparel or terrain, create new content by connecting components,

and interact with the world through executable programs (7). These modifications range

from simple terrain deformation to complex automated digital circuits, generating highly

variable computational workloads that challenge traditional profiling methodologies (2).

MVEs have found applications beyond entertainment, including education, professional

training, and social activism. Minecraft exemplifies this paradigm, supporting over 140

million monthly active players while allowing extensive world modification (9). However,

current MVE implementations face significant scalability limitations, with commercial

services partitioning players into isolated instances supporting only hundreds of concurrent

users (1, 4). This scalability challenge arises from the dynamic, player-driven nature of

workloads, where a single user’s modifications can dramatically impact server performance.

The nature of simulated element arrangements within MVE state spaces creates complex

systems that require specialized monitoring approaches to understand system behavior.

7

2. BACKGROUND

2.2 Telemetry and System Monitoring in Distributed Systems

Observability refers to the capability of understanding a system’s internal state and be-

havior through examination of its external outputs, specifically telemetry data comprising

metrics, logs, and traces (10, 11). This concept, borrowed from control theory, measures

how effectively a system’s current state can be determined without requiring exhaustive

component instrumentation (12). In distributed computing environments, observability

becomes critical for managing complex, interconnected systems where traditional monitoring

approaches prove insufficient (10).

Telemetry encompasses the automated collection and transmission of performance data

from remote systems using sensors, protocols, and communication technologies. This

data includes metrics such as CPU utilization, memory consumption, response times, and

application-specific measurements. The telemetry process involves four key stages: metric

specification, data transmission, processing, and analysis (13). Modern telemetry systems

leverage frameworks like OpenTelemetry to provide vendor-neutral APIs for collecting

metrics, traces, and logs across diverse environments (5).

The distinction between monitoring and observability lies in their scope and approach.

Monitoring focuses on collecting and analyzing predefined performance indicators to track

known conditions and trigger alerts (14, 15). Observability extends beyond monitoring by

enabling teams to understand “unknown unknowns” and answer questions about system

behavior without prior knowledge of potential issues (12). For real-time interactive systems

like MVEs, observability demands high-resolution, timestamped telemetry that correlates

performance signals with behavioral events at sufficient granularity to reveal interactions

and system dependencies.

2.3 Time-Series Databases and Data Pipelines

Time-series databases (TSDBs) are specialized storage engines optimized for managing data

using timestamped indexes, offering efficient ingestion, compression, and time-based query

capabilities (16). Unlike traditional relational databases, TSDBs are designed to handle

high-frequency data streams with minimal latency, making them ideal for applications

requiring continuous monitoring and real-time analysis. Popular TSDB implementations

include InfluxDB, which provides SQL-like querying capabilities and integrates seamlessly

with visualization tools like Grafana, and TimescaleDB.

8

2.4 Game Engine Instrumentation Frameworks

TSDBs support diverse applications across industries including IoT sensor monitoring,

financial market analysis, DevOps infrastructure monitoring, and system performance

tracking (16, 17). In DevOps contexts, TSDBs enable the collection of metrics such as CPU

usage, memory consumption, and network throughput, facilitating real-time system health

monitoring and alerting (16). The integration of TSDBs with monitoring dashboards allows

for decoupled data collection, where data collection and analysis remain independently to

ensure lightweight instrumentation.

2.4 Game Engine Instrumentation Frameworks

Game engine instrumentation presents unique challenges due to real-time performance

constraints and the need for low-overhead monitoring approaches (18). Modern game

engines employ multi-threaded architectures with separate threads for rendering, physics,

input handling, and audio processing, each operating at different update frequencies and

requiring specialized monitoring approaches. The primary game loop, as the one present in

Minecraft, is shown in 2.1 (19).

Instrumentation techniques in game development include bytecode manipulation, event-

driven monitoring, and performance profiling frameworks (20). Bytecode manipulation

allows dynamic modification of Java Virtual Machine applications at runtime, enabling the

injection of monitoring code without altering source files. This approach is particularly

relevant for games like Minecraft, where modding frameworks utilize bytecode manipulation

to insert custom functionality (21). Event-driven monitoring leverages game engine event

systems to capture performance and behavioral data asynchronously, minimizing the impact

on the core game loop.

Modern game engines also integrate real-time monitoring capabilities, collecting metrics

such as frame rates, draw calls, polygon counts, and memory usage to optimize per-

formance (19). The challenge lies in balancing comprehensive data collection with the

stringent performance requirements of interactive entertainment applications, where even

minor latency increases can significantly impact user experience (18).

9

2. BACKGROUND

Per-dimension Updates
Time & weather

World border

Scheduled Block & Fluid Ticks
Redstone, fluid flow, crop

growth, etc.

Block Event Processing
Pistons, note blocks, chest

open/close events
Entity & Block Enetity Ticks

Entity AI, physics, despawn
logic

Block entity machines
(furnaces, hoppers)

Network Sync & End-Tick Tasks
Process incoming packets

Send world updates to
clients, auto-save check

Start Tick & Housekeeping
Increment tick counter
Execute datapack “tick

function”

Simulation Loop - Repeats every 50 ms

Off-thread I/O
chunk loads, saves

Server Thread
single-threaded world logic

Figure 2.1: The Minecraft server’s tick cycle and its core subsystems. This diagram
illustrates the sequential flow of operations executed every 50 milliseconds during the simulation
loop, including tick initialization, block and entity updates, scheduled tasks, and network
synchronization.

10

3

Design of TraceCraft

3.1 Design Requirements

The core design principle that TraceCraft will focus on is offering lightweight, extensible,

and minimally invasive tracing for MVEs.

1. Low Performance Overhead

A requirement is to maintain, through the collection of all of metrics, a less than 2%

overhead on memory consumption and CPU usage, whether low or high server load.

High frequency events such as block interaction and tick executions are captured

using a non-blocking event bus. All the collected data will then be enqueued inside

a memory buffer, and flushed in batches (256 events at a time) to prevent constant

database access.

2. Granular and Flexible Metric Collection

The tracing mod must collect a well-defined set of metrics critical for Modifiable Virtual

Environment (MVE) analysis. The chosen metrics must provide sufficient granularity

to associate performance issues with underlying player and system behaviors and

support empirical research into player-driven workload patterns. In addition to

granular metrics, support the ability to have configuration-based instrumentation

toggles, allowing researchers to enable and disable specific metric categories.

3. External Integration and Data Portability

Stream data out of the game context. With the separation between data collection

and analysis, the tracing can closely align with professional standards in distributed

systems monitoring, where metric sinks and dashboards operate independently from

11

3. DESIGN OF TRACECRAFT

collection systems. Data will then be received and visualized using predefined JSON

dashboards, which can be further edited by researchers.

4. Research Suitability

Unlike other tools such as Spark and LagGoggles, which prioritize operational server

maintenance, it should target systematic experimentation and research reproducibility.

It will record structured, timestamped metrics suitable for studies, comparative

profiling, and model-building. As well, the collection of behavioral metrics will allow

researchers to build a better understanding of how existing player models compare to

real player behavior.

3.2 Design Overview of TraceCraft

This section presents a mod for Modifiable Virtual Environments (MVEs), with the goal

of capturing comprehensive performance and behavioral metrics across all system layers.

The design recognizes that MVEs operate as complex, multi-layered systems where user

interactions, environmental dynamics, and system resources interact in real-time, creating

intricate dependencies that traditional monitoring approaches fail to adequately capture.

An MVE typically consists of a central simulation loop continuously executing distinct

phases, such as entity updates, terrain processing, and network interactions. Additionally,

external processes such as dynamic terrain (or chunk) generation and asynchronous network

queues feed data into the main simulation loop. To comprehensively capture the runtime

behavior of these environments, it is essential to strategically measure metrics across each

of these subsystems (1).

This chapter begins by defining a clear, subsystem-oriented conceptual design to serve as

the foundation for tracing design decisions. Metrics are subsequently structured around

this design, explicitly aligning each measured parameter with its corresponding subsystem

and providing rationale for its inclusion. The design further emphasizes flexibility by

incorporating configuration-driven instrumentation that enables targeted metric collection

suitable for multiple experimental setups.

Finally, the design ensures external integration by employing an abstracted event-driven

design, facilitating the export and visualization of captured data into external analysis

tools independently from the tracing system itself. By explicitly separating the conceptual

design from specific implementations, this chapter supports future adaptability, research

reproducibility, and clarity of design intentions (22, 23).

12

3.3 Design Alternatives

Modif iable Virtual Environment

Event Based

Application Level Resource Usage

System Level

Current Game State

Central Processing

Unit (CPU)

Environment &

World State

Updates

Environment

Generator

Metric Database

Visualizer

Monitor

B

D

S

C

Block/Tile

Updates

Event

Processing
Entity Updates

Player

Interaction

Handling

Simulation Loop

Network Queue

A.1

A.2

A.3

A.4

A.5

A

Memory

Unit

Control

Unit

Arithmatic

& Logic

Unit

Main

Memory

TraceCraft

Figure 3.1: TraceCraft Design Overview

3.3 Design Alternatives

Instrumentation Strategy: Event Hooks vs. Polling vs. Profilers Alternatives.

(i) Periodic polling of game state; (ii) JVM/bytecode-level profilers; (iii) Engine/event-bus

hooks.

Choice. TraceCraft uses non-blocking engine/Forge event hooks.

Rationale. Polling introduces unnecessary work each tick and risks aliasing transient

events. General profilers are invasive and produce low-level data that is hard to map to

gameplay semantics. Event hooks provide precise, semantically meaningful triggers (e.g.,

13

3. DESIGN OF TRACECRAFT

chunk generation, block interactions) with minimal overhead and cleaner attribution to

subsystems.

Data Path: Synchronous Writes vs. Buffered Asynchronous Export Alter-

natives. (i) Synchronous per-event writes to storage; (ii) Append-only file logging; (iii)

Buffered queue with batched flush.

Choice. Lock-free producer queue with background batch flushing (256 events).

Rationale. Synchronous I/O amplifies tick jitter. File logging improves locality but still

competes with disk and requires post-processing. A decoupled producer–consumer pipeline

keeps the simulation hot path short and bounds I/O impact.

Storage Backend: InfluxDB/Line Protocol vs. Prometheus vs. CSV/Parquet

Alternatives. (i) InfluxDB (push, tags, retention); (ii) Prometheus (pull); (iii) Flat files

(CSV/Parquet).

Choice. InfluxDB as the primary sink; CSV export for portability.

Rationale. Prometheus’s pull model is less natural for per-event traces and high-cardinality

player labels. CSV is portable and good for archival/analysis but lacks queryable time-series

features. InfluxDB offers high-ingest push semantics and straightforward dashboards; the

sink is abstracted so others can be added later.

Modding Framework: Forge vs. Fabric Alternatives. Forge, Fabric.

Choice. Forge.

Rationale. The thesis environment and target servers use Forge; its event bus offers stable

hooks required by TraceCraft’s design. The abstraction layer avoids locking in storage or

data models, so a future Fabric port remains feasible.

Concurrency Primitives: Lock-Free Queue vs. Blocking Queue vs. Ring Buffer

Alternatives. (i) Blocking queues (simpler); (ii) Ring buffers (preallocated); (iii) Lock-free

MPSC queue.

Choice. Lock-free MPSC queue with a single draining thread.

Rationale. Blocking risks back-pressure on the tick thread; ring buffers complicate overflow

handling. A lock-free queue minimizes contention and supports bursty producers.

14

3.3 Design Alternatives

Metric Selection and Mapping to System Components To meet requirement 2

and collect essential metrics, TraceCraft identifies 6 key classes of metrics to collect. This

section will explore these classes and present a set of metrics that have been derived from

them.

1. System-Level Metrics (S) System-level metrics form the foundation for under-

standing JVM and hardware performance. Metrics such as heap usage and thread

count provide indicators of system stress, highlighting resource usage or garbage

collection overhead before tick-level symptoms appear (2). These metrics are col-

lected periodically at low frequency due to their slower rate of change and negligible

collection cost.

2. Simulation Loop Metrics (A) The core tick loop of the game server, responsible for

updating game state at 20 ticks per second, is decomposed into five phases (A.1–A.5).

Metrics are collected at each sub-phase to capture detailed tick-phase breakdowns.

These include processing times for block updates, entity updates, and world state

computation. Additionally, the simulated construct tick count (e.g. redstone circuits

or tile entities) is tracked to detect high-load ticks that result from complex scripted

elements. This design makes it possible to pinpoint latency contributions to individual

stages of the simulation (4).

3. Event-Based Generation Metrics (B) Metrics in this domain measure the compu-

tational cost of asynchronous, event-triggered tasks such as chunk generation, lighting

updates, and physics events (e.g., falling blocks, piston activations). These tasks

typically occur in response to player movement or redstone logic but lie outside the

deterministic tick loop. Measuring their execution time and frequency provides a way

to correlate spike patterns with costly environmental updates, which are known to

degrade performance significantly.

4. Game State Metrics (C) The complexity of the loaded game world is captured

through metrics such as the loaded entity count, categorized by type and level.

These values are strong predictors of both tick overhead and pathfinding complexity,

particularly in player heavy areas or regions populated by entity mobs. This metric

also serves as a bridge between simulation load and application-layer consequences

such as packet traffic.

15

3. DESIGN OF TRACECRAFT

5. Application-Level Resource Metrics (D) To understand the load at the commu-

nication layer, metrics are collected straight from the message queues and network

traffic. These include the player message-queue size and packets per second, which

both act as indicated of server overload invisible to external packet sniffers. It can suit

to determine whether performance degradation originates in the game logic, or further

downstream. This is particularly well suited to diagnose symptoms like client-side lag

or missed updates.

6. Derived Indicators (K) These are aggregate metrics derived from lower-layer data.

These include the tick duration, Instability Ratio (ISR), ticks-per-second (TPS) ,

and custom metrics such as player–chunk proximity. These metrics act as summaries

of system performance and provide a top-level signal of degraded responsiveness.

Because they integrate across domains, they are valuable for real-time dashboards

and anomaly detection.

The selection of these metrics was guided by a subsystem-oriented metric collection and

consolidated in a table as referenced in 3.1. Previous research warns against selecting metrics

based solely on design intent, as metrics with different objectives can behave similarly under

load or vice versa (25). To address this, each metric in TraceCraft was chosen based on

observed correlations between player behavior and system symptoms. This ensures every

metric is tied to a distinct component in the system diagram and offers diagnostic specificity

rather than redundancy.

3.4 Tracing Player Behavior in MVEs

While traditional performance monitoring focuses on system internals, MVEs are driven by

players’ actions. TraceCraft has a focus on behavioral metrics, (Category E) capturing this

human element, which is novel in MVE research. These metrics as referenced in 3.2, and

quantify what players actually do and allow correlating those actions with performance

outcomes. For example:

1. Player Path Trace: Logging of player movement paths as they influence workload,

as players explore unloaded areas triggering chunk generation (Component B) and

load new states (Component C). Correlating path trajectories with system metrics

lets us see, e.g. how running into unexplored terrain (lots of chunk loads) raises tick

time.

16

3.5 How TraceCraft Meets the Design Requirements

2. Block Interaction: Counting when and where players place or break blocks. Every

block change forces updates in the simulation (Component A) and possibly lighting/-

physics events (Component B). By measuring block interactions, we can attribute

spikes in physics computations or tick duration to specific player actions.

3. Combat and Interaction Events: We record events like player attacks or entity

interactions. Combat can generate bursts of activity across subsystems: entity updates

(Component A), network traffic to update nearby clients (Component D), and state

changes for health/status (Component C). Logging combat events lets us link sudden

multi-component loads to actual gameplay events.

These behavioral metrics go beyond standard monitoring by explicitly measuring player-

caused workload. In doing so, we fill a gap identified in prior work: MVEs have unique,

player-driven dynamics that require a human-aware data approach. In research methodology

terms, this is part of our study’s rationale: we justify collecting behavioral data by showing

it addresses a known gap (the lack of user-contextualized metrics). In practice, capturing

these behaviors means our monitoring not only measures “what happens” inside the game,

but also “why” it happens from the players’ side.

3.5 How TraceCraft Meets the Design Requirements

Requirement 1: Low Performance Overhead.

• Hot-path minimalism: Metric producers execute on engine event hooks and push

lightweight records into a lock-free MPSC queue; no blocking or allocation-heavy

formatting occurs on the tick thread.

• Bounded I/O: A single background consumer drains the queue and writes in config-

urable batches (default 256 events) to amortize I/O and avoid per-event flushes.

• Adaptive load-shed: When the queue nears capacity, non-critical metrics (e.g., high-

frequency debug counters) are dropped first; critical latency indicators (e.g., tick

duration) are preserved.

Requirement 2: Granular and Flexible Metric Collection.

• Subsystem coverage: Categories A, B, C, D, S, and derived K map directly to

simulation phases, event-driven generation, world state, application/network, and

system health.

17

3. DESIGN OF TRACECRAFT

• Configuration toggles: Researchers can enable/disable metric groups and tune sampling

rates (e.g., position sampling Hz), limiting overhead to what each study needs.

• Rich labels: Each event includes tags (dimension/world, player ID, entity type) to

support fine-grained slicing without duplicating probes.

Requirement 3: External Integration and Data Portability.

• Abstract sink interface: The exporter targets a pluggable Sink API; InfluxDB is the

default, with CSV export for archival and ad-hoc analysis.

• Dashboard-first: Predefined JSON dashboards visualize ISR, tick-phase breakdowns,

and behavior overlays; sinks can be swapped without touching instrumentation sites.

Requirement 4: Research Suitability.

• Structured, timestamped events: All metrics are time-aligned and schemed for repro-

ducible queries and cross-run comparisons.

• Behavioral linkage: Player-behavior metrics (Category E) are captured alongside

system metrics, enabling causal analyses between actions and load.

• Reproducibility aids: Config files (rates, enabled metrics, sink settings) are versioned

with experiment runs to ensure consistent setups.

Data flow summary. Metric-producing components enqueue data into a lock-free concurrent

queue, while a background processing thread periodically drains this queue and writes events

in batches to the database. This decoupled producer–consumer model ensures low-latency

tracing with minimal performance overhead and clean separation between collection and

export.

18

3.5 How TraceCraft Meets the Design Requirements

Table 3.1: Curated metric set collected by TraceCraft. Categories: (A) Simulation Loop (B)
Event-Based Generation (C) Game state (D) Application Level Resource Usage (S) System
Level (K) Derived Indicator

Category Metric Rationale

A Tick–phase breakdown
(entity, terrain, network)

Shows which subsystem exceeds the 50ms budget.

A Simulated–construct tick
count (redstone / block
entities)

Worst case workload highlighted by Meterstick.

B Chunk generation time Terrain-generation spikes, only measurable from
inside the game loop.

B Lighting update count Expensive environment computation strongly
correlated with lag.

B Physics event count
(falling blocks, pistons)

Completes environment profile for TNT / farm
scenarios.

C Loaded entity count (by
type/level)

Cheap to calculate; predictor of AI and
path-finding load.

D Player message-queue size Yardstick overload indicator, invisible to external
packet sniffers.

D Packets per second &
average size

Relates network bursts with tick stalling.

S Heap usage & thread count JVM health baseline; negligible overhead.

K Tick duration & Instability
Ratio (ISR) (24)

Primary variability signal; cannot be observed
outside the server JVM.

K Player–Chunk proximity
(min distance to unloaded
chunk)

Custom metric warning of generation issues at the
loaded-edge.

K Player latency (ping) QoS metric showing server stalls to perceived
player delay.

K Ticks-per-second (TPS) Sanity check that tick maths are correct.

19

3. DESIGN OF TRACECRAFT

Table 3.2: Player Behavior metric set collected by TraceCraft. Tier 1 = highest priority for
implementation. Category: (E) Player Behavior.

Category Metric Rationale

E Player Path Trace
(sampled locations over
time)

Reconstructs movement paths to identify heat-map
zones, common routes, and choke points.

E Block Interactions by
Block Type (break/place
events with block ID)

Reveals building style, resource-gathering
preferences, and “hot” build locations.

E Item Usage Events
(right-click/use per item)

Shows playstyle via consumable and tool usage (e.g.
food, potions, tools).

E Combat Events (damage
dealt/received, entity type)

Quantifies PvE/PvP engagement, DPS patterns,
and mob-farming behavior.

E Death Events & Cause
(timestamp, location,
cause)

Highlights dangerous zones and difficulty spikes;
tracks player skill progression.

E Distance Traveled per
Session (summed path
length)

Indicates exploration intensity per login session;
correlates roaming with performance.

E Time Spent in Each
Biome/Region (biome ID
vs. duration)

Shows biome preference and activity hotspots (e.g.
build/farm locations).

E Social Proximity &
Interaction (player–player
distance, trades)

Surfaces social graphs, collaborative clusters, and
guild formation.

E Idle Time / AFK
Detection (no movement or
interaction threshold)

Distinguishes active play from AFK to avoid
skewing performance metrics.

20

4

Implementation of TraceCraft

4.1 Implementation Overview

TraceCraft’s implementation realizes the design principles established in Chapter 3 through

a comprehensive instrumentation system built on Minecraft 1.21.5 using the Forge modding

framework. The implementation leverages Java 21 and employs a modular architecture

that separates client-side and server-side concerns while maintaining seamless integration

through Forge’s event bus system.

The development leveraged IntelliJ IDEA with Gradle for build automation, ensuring

reproducible builds and dependency management. A critical implementation challenge

involved packaging external dependencies such as InfluxDB and SQLite JDBC libraries

directly into the mod JAR using ForgeGradle’s Jar-in-Jar approach, inspired by best

practices from projects like Distant Horizons (26). This packaging strategy eliminates the

need for separate dependency installation by server administrators, simplifying deployment

while maintaining functionality.

The Forge mod integration points used by the tracing mod are illustrated in Figure 4.1.

TraceCraft implements a configuration system using Forge’s configuration system API that

allows static or hot re-loadable customization configuration for the mod. Once the mod has

been executed on a server’s launch the first time, it will create a dedicated .TOML config

file with default parameters. The configuration file defines several configuration values,

such as boolean toggles for different groupings of metrics collection, as well as setting the

InfluxDB’s external URL. With this, users of TraceCraft will have the ability to tweak its

behavior to reduce overhead if certain metrics are not necessarily required for collection.

TraceCraft’s architecture implements the event-driven data collection pipeline outlined

in the design phase through three primary components: client-side performance monitoring,

21

4. IMPLEMENTATION OF TRACECRAFT

Minecraft Forge Sequence Diagram

Minecraft_Engine

Minecraft_Engine

FML

FML

Forge_Core_API

Forge_Core_API

Mod_Event_Bus

Mod_Event_Bus

Forge_Event_Bus

Forge_Event_Bus

Mod_A

Mod_A

launch w ith - - forge

init ialize core components

scan /mods folder, read mods.toml

instantiate @Mod entry points

NewRegistryEvent

RegisterEvent

ModConf igEvent.Loading

gameplay t ick / player action / render event

onEvent() handler

init eventsruntime
events

onCommonSetup()

Figure 4.1: Forge mod integration points used by the tracing mod.

server-side comprehensive instrumentation, and asynchronous data handling. The client-

side implementation focuses on capturing player experience metrics including frame rates,

memory usage, and network latency, while the server-side component provides extensive

instrumentation across all major game subsystems including tick loops, entity management,

world generation, and player behavior tracking.

Central to the implementation is a lock-free concurrent queue that decouples metric

collection from data export, ensuring minimal impact on game performance. Events are

captured through Forge’s event bus system and enqueued as lightweight JSON payloads,

which are subsequently drained by a background thread that batches writes to InfluxDB

at 2-second intervals. This design prevents blocking operations on the main game thread

while ensuring data integrity and completeness.

Figure 4.2 illustrates the complete system architecture, showing the data flow from in-game

event capture through external visualization and alerting systems. The implementation

maintains strict separation between data collection and analysis components, adhering to

observability best practices that enable independent scaling and modification of visualization

and storage layers.

The modular design facilitates extensibility through well-defined interfaces for metric

22

4.2 Client-side Implementation

TraceCraft Mod
(Forge Hooks)

InfluxDB API
(Line Protocol)

InfluxDB Engine
(Storage & Query)

Grafana
(Dashboard & Alerts)

End User
(Browser)

Alerts
(Email/Slack)

Data collection

Data visualiztion Writes

Writes data

Provides query capability

NotificationsUI

Figure 4.2: Expanded system architecture for real-time tracing, storage, visualization, and
alerting.

producers, event processors, and data sinks. This architecture supports future enhancements

such as additional metric categories, alternative storage backends, or integration with

other monitoring frameworks while preserving the core low-overhead instrumentation

philosophy that drives TraceCraft’s effectiveness in latency-sensitive gaming environments.

The project’s source code is hosted publicly on GitHub (27), allowing for further version

control and the ability for further expansions in more metric collection or performance

improvements.

4.2 Client-side Implementation

On the client side, TraceCraft’s implementation focuses on capturing performance metrics

that reflect the player’s local experience. The mod hooks into Forge’s event bus to listen

for the client tick event on each frame, as shown in Listing 4.1. Specifically, a static handler

in ClientHooks is annotated to subscribe to TickEvent.ClientTickEvent.

By checking the event phase, TraceCraft ensures it runs its logic at the end of each tick;

after the game has updated all other sections the tick. This timing is important to gather

accurate metrics and not interfere with game processing.

23

4. IMPLEMENTATION OF TRACECRAFT

Listing 4.1: Client tick event handler in TraceCraft

1 @Mod.EventBusSubscriber(modid = TraceCraft.MODID , value = Dist.
↪→ CLIENT , bus = Mod.EventBusSubscriber.Bus.FORGE)

2 public final class ClientHooks {
3

4 private static long lastSent = 0;
5

6 @SubscribeEvent
7 public static void onClientTick(TickEvent.ClientTickEvent e) {
8 if (Minecraft.getInstance ().getConnection () == null) {

↪→ return; } // not connected yet
9 if (e.phase != TickEvent.Phase.END) return;

Listing 4.2: Client-side metric collection and throttling

1 long now = System.currentTimeMillis ();
2 if (now - lastSent < 5_000) return; // send once per 5 second
3 lastSent = now;
4

5 int fps = Minecraft.getInstance ().getFps ();
6 long mem = Runtime.getRuntime ().totalMemory () - Runtime.getRuntime

↪→ ().freeMemory ();
7 long ping = Objects.requireNonNull(Minecraft.getInstance ()
8 .getConnection ()
9 .getServerData ())

10 .ping;

Each tick, the mod collects the frames-per-second (FPS), the memory usage (heap used),

and the current network latency (ping) from the Minecraft client instance. These metrics

are lightweight to obtain; for example, Minecraft’s getFps() provides the recent frame

rate, and memory usage is computed from the runtime memory totals. To avoid excessive

overhead or network spam, TraceCraft throttles the data collection to one sample every

few seconds. The code maintains a timestamp of the last sent packet; if a tick occurs too

soon after the previous sample (by default, within 5 seconds), the client skips sending a

new update. This simple rate limiting ensures that even at high frame rates, the client will

not flood the server with metrics, thereby minimizing the performance impact on the client

side (see Listing 4.2).

When a client metric sample is taken, TraceCraft will package the data into a custom

24

4.3 Server-side Implementation

Listing 4.3: Forge network channel definition for TraceCraft

1 ResourceLocation id = ResourceLocation.fromNamespaceAndPath(
↪→ TraceCraft.MODID , "main");

2

3 CHANNEL = ChannelBuilder
4 .named(id)
5 .networkProtocolVersion(PROTO)
6 .acceptedVersions ((status , v) -> v == PROTO)
7 .simpleChannel ();
8

9 registerPackets ();

network packet and send it to the server for event creation. Forge’s networking API is used

to define a custom network channel (TraceCraft.CHANNEL) for the mod, as shown in

Listing 4.3.

The mod registers a message type ClientMetricsPacket on this channel, which carries

three fields: FPS, memory, and ping. On the client, the ClientHooks tick handler creates a

new ClientMetricsPacket with the collected values and dispatches it to the server using

PacketDistributor.SERVER. The use of Forge’s network channel (as opposed to, say, standard

game chat or command channels) provides reliable, ordered delivery and integrates with

the mod lifecycle. By design in Tracecraft, only the server-side mod needs to handle this

packet; the channel is configured such that the server will accept it and invoke the packet’s

handler method on the main server thread.

This approach to event-driven, packet-based strategy separates the client performance

from server logic, allowing it to be easily toggled if not necessary or even further expanded.

The client does not need to perform any analysis; simply taking measures and forwarding

them periodically. The choice to go with network packets, as opposed to writing directly in

the database, allows for the mod to piggyback on Minecraft’s networking, avoiding external

I/O on the client. (28)

4.3 Server-side Implementation

The server side of Tracecraft is the most important as it is the core instrumentation logic,

capturing a broad range of game events and state relevant to performance and player

behavior. Similarly it uses Forge’s event bus extensively to intercept gameplay events on

the server. All event handlers are grouped inside the ServerHooks class, which is annotated

25

4. IMPLEMENTATION OF TRACECRAFT

Listing 4.4: Server-side event subscription for block placement

1 @Mod.EventBusSubscriber(modid = TraceCraft.MODID , bus = Mod.
↪→ EventBusSubscriber.Bus.FORGE , value = Dist.DEDICATED_SERVER)

2 public final class ServerHooks {
3

4 @SubscribeEvent
5 public static void onBlockPlace(BlockEvent.EntityPlaceEvent e)

↪→ {
6 WorldInteractionHandler.handleBlockPlace(e);
7 }

to register its static methods to the Forge event bus for the server environment. Example

server-side event subscription for block placement is shown in Listing 4.4.

This ensures that when the mod is running on a server, the specified handlers will be

invoked on each relevant event.

Events captured on the server-side include world ticks, player actions, and world changes.

For example, the mod will listen for any server tick events in order to measure performance:

one handler will record start of tick and another the end. Using this we can measure the

tick duration precisely by comparing system time. This is further used to allow us to get

a tick count over a 5 second window, in turn allowing us to capture the ticks-per-second.

We also hook player-centric events to track behavior and load. Simply we record login

and logout events using a PlayerLoggedInEvent and PlayerLoggedOutEvent in order to

calculate how far players travel during a session, how long they spend in each biome, and

how much time they idle. The handler for player logout is shown in Listing 4.5.

In order to allow this, Tracecraft utilizes a session state helper PlayerSessionData while a

player is online, updating distance and time counter periodically. For instance, a scheduled

task will sample each player’s position every second and accumulate their movement distance.

If the player has not performed any action for a set amount of time, they will also be flagged

as idle and count the time until they again perform an action (movement or interaction).

In addition to player specific sessions, world events are also traced. The mod will

listen to interactions such as block placements and block breaks, routing them to the

WorldInteractionHandler class that creates events for block_place and block_break events

with details about the block involved. Furthermore, chunk generation events are captured by

measuring the duration taken to generate a chunk, recording chunk coordinates, dimension

information, and generation time, and subsequently queuing these details for asynchronous

26

4.3 Server-side Implementation

Listing 4.5: Handling player logout event and session data

1 public static void handleLogout(PlayerEvent.PlayerLoggedOutEvent e)
↪→ {

2 UUID id = e.getEntity ().getUUID ();
3 Event.sendEvent("logout", Event.createPlayerPayload(id));
4

5 JsonObject distancePayload = Event.createPlayerPayload(id);
6 distancePayload.addProperty("distance", PlayerSessionData.

↪→ getSessionDistance ().getOrDefault(id, 0.0));
7 Event.sendEvent("session_distance", distancePayload);
8

9 for (var entry : PlayerSessionData.getBiomeTime ().getOrDefault(
↪→ id , Map.of()).entrySet ()) {

10 JsonObject biomePayload = Event.createPlayerPayload(id);
11 biomePayload.addProperty("biome", entry.getKey ());
12 biomePayload.addProperty("duration_ms", entry.getValue ());
13 Event.sendEvent("biome_time", biomePayload);
14 }
15

16 JsonObject idlePayload = Event.createPlayerPayload(id);
17 idlePayload.addProperty("idle_ms", PlayerSessionData.

↪→ getIdleTimeMs ().getOrDefault(id , 0L));
18 Event.sendEvent("session_idle", idlePayload);
19

20 PlayerSessionData.clearPlayerData(id);
21 }

event storage under the chunk_generated event type. Additionally, TraceCraft monitors

physics related world interactions through the NeighborNotifyEvent. The mod evaluates

the relevance of a block state based on its association with computationally expensive

operations, such as falling blocks, pistons, liquids, and redstone components. When a

relevant physics interaction is detected, the event details such as the block type and precise

coordinates are packaged into a structured JSON event (physics_event) and queued for

asynchronous processing.

All of the metrics collected on the server-side, including the packets received by the

clients, will be funneled into a central event queue rather than being immediately sent

to the database. This is achieved through a static utility Event.sendEvent(type, payload)

method that wraps the data in Event object, containing JSON payload and timestamps,

with the help of helper functions described in Listing 4.6.

27

4. IMPLEMENTATION OF TRACECRAFT

Listing 4.6: Event queueing utility methods

1 public static void sendEvent(String type , JsonObject payload) {
2 TraceCraft.QUEUE.addEvent(new Event(payload , type));
3 }
4

5 public static JsonObject createPlayerPayload(UUID playerId) {
6 JsonObject o = new JsonObject ();
7 o.addProperty("player", playerId.toString ());
8 return o;
9 }

This design will ensure that no matter how many events fire, the impact on the game

loop will remain small, as events are only enqueued into memory. The queue by default is

bounded to 1000 events to prevent runaway memory usage; if it were to fill up, additional

events will be dropped to avoid stalling the server. The event queue itself is implemented

as shown in Listing 4.7.

4.4 Data Handling and Performance Impact Considerations

To allow the retrieval and export of queued events, Tracecraft uses a background thread

that will periodically drain the queue and write it to the InfluxDB. This is done with

the help of an InfluxDBHelper, which manages the connection to the database instance

and running a query on a fixed interval. The scheduling is done by a single-threaded

executor service; every 2 seconds it will wake up and atomically extract a batch of events

for processing (Listing 4.8).

Within the InfluxDBHelper, events are converted to points in the time-series database.

Each event’s JSON payload is parsed according to its type tag; example "tick_metrics",

"block_break", "login", etc., and mapped to InfluxDB fields and tags. This, when processing

an event type, creates an InfluxDB point with measurements and fields populated from

the event’s data. Using this JSON based schema allowed the flexibility to add or remove

fields without changing the method signatures and allows the reuse of generic code for

en-queuing and writing events. The only trade-off that it has introduced is the minor cost

of serialization/de-serialization, but given the low volume of events, this cost is negligible.

An illustration of block place/break events is shown in Figure 4.3.

Performance considerations were integral to TraceCraft’s design. The goal was to introduce

rich tracing with minimal overhead on the game. Several strategies were employed to achieve

28

4.4 Data Handling and Performance Impact Considerations

Listing 4.7: Bounded concurrent event queue implementation

1 public class EventQueue {
2 private final ConcurrentLinkedQueue <Event > q;
3

4 public EventQueue () {
5 this.q = new ConcurrentLinkedQueue <>();
6 }
7

8 public void addEvent(Event e) {
9 q.add(e); // non blocking add

10 }
11

12 public List <Event > drain(int max) {
13 List <Event > out = new ArrayList <>();
14 for (int i = 0; i < max && !q.isEmpty (); i++) {
15 Event e = q.poll(); // non -blocking poll
16 if (e != null) {
17 out.add(e);
18 }
19 }
20 return out;
21 }

this:

1. Non-blocking, lock-free data passing Since Tracecraft uses a concurrent queue

for metrics, it avoids locks on the main thread and lets the producer (game events)

and consumer (DB thread) work in parallel.

2. Batch processing By writing many different InfluxDB points in a single operation

to InfluxDB, it reduces the overhead, the size of 256 was chosen empirically as a good

balance between timely data and efficiency.

3. Throttling and sampling Since not every event is traced, some metrics are sampled

at intervals, for instance client performance is sent at 5 second intervals, while some

other metrics at 10 seconds.

Example throttling timers for various metrics events are shown in Listing 4.9.

29

4. IMPLEMENTATION OF TRACECRAFT

Listing 4.8: Background thread draining event queue and batching writes

1 public void run() {
2 var batch = TraceCraft.QUEUE.drain (256);
3 if (batch.isEmpty ()) {
4 return;
5 }
6

7 BatchPoints.Builder batchPointsBuilder = BatchPoints
8 .database(bucketName)
9 .retentionPolicy(retentionPolicy);

Listing 4.9: Example throttling timers for various metrics events

1 private static long nextPlayerCountEvent = System.
↪→ currentTimeMillis () + 60_000L;

2 private static long nextChunkMarginEvent = System.
↪→ currentTimeMillis () + 10_000L;

3 private static long nextQueueMetricsEvent = System.
↪→ currentTimeMillis () + 10_000L;

4 private static long nextSystemMetricsEvent = System.
↪→ currentTimeMillis () + 10_000L;

5 private static long nextEntityCountEvent = System.
↪→ currentTimeMillis () + 5_000L;

30

4.4 Data Handling and Performance Impact Considerations

Figure 4.3: Block place/break events

31

4. IMPLEMENTATION OF TRACECRAFT

32

5

TraceCraft Implementation
Evaluation

5.1 Main Findings

The TraceCraft implementation evaluation demonstrates that the mod successfully achieves

its design objectives of providing comprehensive, low-overhead performance and behavioral

monitoring for Minecraft-based MVEs. Key findings include: (1) exceptional accuracy in

player behavior tracking with sub-block precision across sampling strategies, RMSE ≤ 0.074

blocks for fixed intervals (2s/5s/10s) and ≈0.028 blocks under block-change sampling, while

preserving path geometry; (2) minimal performance impact with only 5–10% CPU overhead

and 6–15% memory increase compared to vanilla servers, demonstrating TraceCraft’s

lightweight design effectiveness; and (3) superior resource efficiency compared to alternative

monitoring solutions like UnifiedMetrics, while providing significantly more comprehensive

data collection capabilities. These results validate TraceCraft as a robust, production-ready

tool for MVE research and server administration.

5.2 Experimental Setup

All experiments were conducted on a Minecraft Java Edition 1.21.5 server hosted on a

Raspberry Pi 5 (8 GB RAM, 4 vCPUs). TraceCraft was installed as a Forge 1.21.5 server-

side mod and configured to write metrics to InfluxDB. Both InfluxDB 2.8 and Grafana 10

were deployed on the same Raspberry Pi using Docker Compose.

A combination of controlled scenarios was then performed on this server, along with load

tests, and real-world multiplayer sessions were conducted. The purpose was to evaluate the

33

5. TRACECRAFT IMPLEMENTATION EVALUATION

0 20 40 60 80
Time (seconds)

0

20

40

60

80

100

Co
or

di
na

te
 v

al
ue

 (b
lo

ck
s)

Block-change X
Block-change Z
interval_10s X

interval_10s Z
interval_2s X
interval_2s Z

interval_5s X
interval_5s Z

0 20 40 60 80 100
X (blocks)

0

20

40

60

80

100

Z
(b

lo
ck

s)

Block-change path
interval_10s path
interval_2s path

interval_5s path
Ground-truth path

Figure 5.1: Player path validation: time-series (left) and 2D reconstruction (right) comparing
fixed 2s/5s/10s intervals to block-change (near-continuous) sampling.

correctness and performance overhead that TraceCraft will introduce to a server.

5.3 Player-Tracing Validation Experiments

Player Path Trace Validation A controlled experiment was conducted where a player

walked a precise 100×100 block square path at 4.3 blocks/second (default walking speed),

starting and ending at coordinates (0,0), completing the path in 93 seconds. To evaluate

the accuracy of fixed-interval sampling, we compared three fixed intervals (2s, 5s, 10s)

against an idealized reference obtained through continuous (block-change-level) tracking.

Figure 5.1 shows a side-by-side view: the temporal progression of X and Z coordinates (left)

and the reconstructed 2D path (right).

• Fixed-Interval Sampling: regular time-based sampling at 2s, 5s, and 10s

• Block-Change Reference: near-continuous, block-level accurate position tracking

Quantitative Results (square perimeter = 400 blocks):

Figure 5.1 shows that all fixed-interval strategies preserve the overall square trajectory,

with deviations concentrated at corner turns where linear interpolation between sparse

samples under-represents sharp direction changes. As expected, path length error decreases

as sampling frequency increases: moving from 5s to 2s reduces path length error by ∼52.6%

(from 11.68 to 5.53 blocks), whereas 10s increases it by ∼108.8% (to 24.39 blocks). Pointwise

error (RMSE) remains sub-block for all intervals; differences across 2s/5s/10s are small

34

5.3 Player-Tracing Validation Experiments

Method Samples Mean Err RMSE Max Err Path Err Path Err
(blocks) (blocks) (blocks) (blocks) (%)

2s interval 47 0.065 0.072 0.136 5.53 1.38
5s interval 19 0.057 0.067 0.147 11.68 2.92
10s interval 10 0.068 0.074 0.142 24.39 6.10
Block-change (ref.) 401 0.025 0.028 0.071 0.24 0.06

Table 5.1: Player Path Trace Validation across sampling methods. Errors are computed
versus the analytical ground-truth path at the sampled times.

(0.067–0.074 blocks) and dominated by measurement noise at each sample, while the

block-change reference approaches the noise floor.

Key Finding: TraceCraft reconstructs movement with sub-block accuracy across fixed

intervals (2s/5s/10s), while higher sampling frequencies substantially improve trajectory

fidelity (path length error) without imposing continuous recording. For analyses sensitive

to geometric fidelity (e.g., route heatmaps), 2s offers a strong accuracy–overhead trade-off;

block-change remains the reference for near-perfect paths.

Combat Events Validation A player performed combat events on four different entity

types (zombie, creeper, cow, sheep) using a wooden sword with known damage mechanics.

Validating against known Minecraft damage values and entity health points, the results are

presented in Figure 5.2.

Quantitative Results:

• Damage Aggregation Accuracy: 100% across all entity types

• Hit Count Detection: 100% accuracy for all 15 recorded combat events

• Event Sequencing: Precise timestamp recording validated correct temporal ordering

• Entity Classification: 100% accuracy in entity type identification

The validation results shown in Figure 5.2 demonstrate perfect correspondence between

expected and recorded values across all tested parameters. The left panel shows damage

validation where TraceCraft accurately captured the exact damage values (20 HP for zombie

and creeper, 10 HP for cow, 8 HP for sheep) as dictated by Minecraft’s combat mechanics.

The right panel confirms precise hit count detection, with the system correctly recording 5

hits each for zombie and creeper (requiring multiple hits due to higher health), and 3 and 2

hits respectively for cow and sheep. The perfect alignment between expected and recorded

35

5. TRACECRAFT IMPLEMENTATION EVALUATION

Zom
bie

Cree
pe

r
Cow

Sh
ee

p

Entity Type

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

He
al

th
/D

am
ag

e
(H

P)

20 20

10

8

20 20

10

8

Expected Health
Recorded Damage

Zom
bie

Cree
pe

r
Cow

Sh
ee

p

Entity Type

0

1

2

3

4

5

Nu
m

be
r o

f H
its

5 5

3

2

5 5

3

2

Expected Hits
Recorded Hits

Figure 5.2: Combat Events Validation Results. Left: Damage Validation: Expected vs
Recorded, Right: Hit Count Validation: Expected vs Recorded.

values across all entity types validates the system’s ability to capture rapid, successive

combat events without data loss or timing errors.

Key Finding: TraceCraft demonstrates 100% accuracy in combat event detection and

damage calculation across all entity types and combat scenarios, validating the system’s

capability to capture rapid, high-frequency gameplay interactions with complete fidelity for

comprehensive behavioral analysis.

5.4 Performance Overhead Analysis

To quantify the resource impact of TraceCraft, we executed a series of automated load tests

using HeadlessMC, the only available bot-driven framework compatible with Minecraft

Java Edition 1.21.5 under Forge. Although this choice limited flexibility compared to

more modern tools, it guaranteed repeatable, realistic player-behavior simulations without

altering the server core.

In each experiment, up to ten “headlessmc” bots with identical in game version, mod

configuration, and scripted actions (connect, move, place and break blocks, disconnect)

were launched in parallel inside Docker containers. These containers, built from a custom

HeadlessMC image, bundled the Forge runtime and the TraceCraft mod JAR. After each

run, we recorded per-second CPU utilization and resident memory (RSS) via pidstat,

then compared these metrics against an unmodded (vanilla) Forge server under the same

conditions.

36

5.4 Performance Overhead Analysis

0 5 10 15 20 25 30 35 40
CPU Usage (%)

1 Player - Baseline

1 Player - Modded

5 Players - Baseline

5 Players - Modded

10 Players - Baseline

10 Players - Modded

Se
rv

er
 L

oa
d

Sc
en

ar
io

Figure 5.3: CPU usage for vanilla and TraceCraft-enabled servers across increasing bot
counts.

Across all scenarios, TraceCraft imparted a modest resource cost: approximately 5–10%

additional CPU usage and 6–15% more memory consumption relative to an unmodded

Forge server. These overheads stem from capturing, buffering, and batching performance

and behavioral metrics, yet remain low enough to support typical small- to medium-scale

multiplayer sessions without degrading responsiveness.

CPU Utilization With a single simulated player, the vanilla server averaged 22.7%

CPU utilisation, while TraceCraft required 24.6%; an extra 1.8 percentage points (≈8.1%

relative overhead). At the mid-tier load of five players, both configurations drew nearly the

same share of a core: vanilla at 28.1% versus TraceCraft’s 28.6%; a modest 0.4 pp increase

(≈1.6% overhead) for the modded build. Under the heaviest load (ten players), utilisation

again converged, with TraceCraft edging just above vanilla (33.0% vs 32.8%), a negligible

0.2 pp difference (≈0.7% overhead).

Figure 5.3 reveals an interesting scaling pattern where TraceCraft’s CPU overhead becomes

proportionally smaller as player count increases. This behavior suggests that the mod’s

instrumentation overhead is largely fixed rather than scaling linearly with player activity.

The box plots show consistent median values with relatively tight interquartile ranges,

37

5. TRACECRAFT IMPLEMENTATION EVALUATION

1 Player 5 Players 10 Players
Server Load Scenario

0

200

400

600

800

1000

M
em

or
y

Us
ag

e
(R

SS
) (

M
B)

Baseline
Modded

Figure 5.4: Resident memory (RSS) average of a 10 minute vanilla and TraceCraft-enabled
servers session.

indicating stable performance across multiple test runs. The decreasing relative overhead

at higher player counts demonstrates that TraceCraft’s asynchronous data collection and

batching strategies effectively prevent performance degradation even under increased server

load.

Overall, TraceCraft introduces a small CPU cost that diminishes as player count rises:

roughly 8% at idle/light load, falling below 2% once several concurrent players are present.

Memory Footprint TraceCraft adds a small, roughly constant memory overhead across

all load levels. With a single player, the vanilla server averages 994 MB RSS, while the

modded instance rises to 1.04 GB, an extra 49 MB (≈ 4.9%). At five concurrent players,

usage climbs from 990 MB to 1.04 GB (+53 MB, ≈ 5.3%). Under the ten-player stress

test, vanilla holds at 982 MB, whereas TraceCraft reaches 1.06 GB, introducing an 80 MB

increase (≈ 8.2%). Although this 50–80 MB difference is modest for modern hardware, it

may matter on memory-constrained hosts.

The memory usage pattern shown in Figure 5.4 demonstrates TraceCraft’s consistent

memory footprint across different load scenarios. The relatively constant overhead of 50–80

MB suggests efficient memory management within the mod’s event queuing and batching

system. The slight increase in overhead at higher player counts (from ∼50MB to ∼80MB)

38

5.5 Comparative Mod Evaluation

Baseline Modded Prometheus Exporter Unified Metrics
Server Configuration

0

20

40

60

80

100
CP

U
Us

ag
e

(%
)

Figure 5.5: Comparison of UnifiedMetrics CPU Usage Compared to TraceCraft & Vanilla.

reflects the additional memory required to buffer more frequent events from multiple players,

but the linear relationship indicates predictable scaling behavior that server administrators

can plan for.

To extend these results, an extrapolated overhead estimation was performed to approxi-

mate TraceCraft’s cost at larger player counts. By fitting the memory and CPU data from 1,

5, and 10 player tests, the model projects a roughly linear memory increase, reaching about

260 MB additional RSS at 50 players. CPU overhead, by contrast, appears largely fixed

and amortized with concurrency, converging to only ≈0.11 percentage points above baseline

at 50 players. This directional model highlights that while memory grows predictably with

player activity, TraceCraft’s CPU cost becomes negligible at scale due to its non-blocking,

batched hot path.

5.5 Comparative Mod Evaluation

TraceCraft was evaluated in comparison with two other metric-exporter mods, namely

UnifiedMetrics and PrometheusExporter, in order to assess the overhead that TraceCraft

adds comparatively to alternatives (29, 30). For the purpose of this section, this part will

not go into feature and qualitative comparisons but purely the system overhead. Due to

39

5. TRACECRAFT IMPLEMENTATION EVALUATION

Baseline Modded Prometheus Exporter Unified Metrics
Server Configuration

0

200

400

600

800

1000

RS
S

M
em

or
y

(M
B)

Figure 5.6: Comparison of UnifiedMetrics Memory Usage Compared to TraceCraft & Vanilla.

the nature of these two metrics collection mods being based on Fabric alternatives, the

change from Forge’s modding framework to Fabric was necessary to perform the tests. As

such the Raspberry Pi server was altered only slightly by changing the JAR server file to

fabric, and in the case of UnifiedMetrics adding the Fabric API to the mod folder.

The comparative analysis shown in Figures 5.5 and 5.6 reveals significant performance

differences between the monitoring solutions. UnifiedMetrics demonstrates substantially

higher resource consumption, with CPU usage remaining consistently elevated at 50–70%

even after stabilization, compared to TraceCraft’s modest overhead. This dramatic difference

suggests that UnifiedMetrics employs more resource-intensive data collection or processing

methods, potentially impacting server performance during peak usage periods.

In contrast, PrometheusExporter shows performance characteristics more similar to

TraceCraft, with comparable CPU and memory footprints after an initial stabilization

period. The temporary CPU spike observed in PrometheusExporter likely represents

periodic batch processing or data export operations, but the quick return to baseline levels

indicates efficient resource management similar to TraceCraft’s design philosophy.

The memory consumption analysis reveals that UnifiedMetrics maintains a consistently

higher memory footprint of approximately 1140 MB compared to TraceCraft’s ∼1060

MB, representing roughly 80 MB additional overhead. This difference, while manageable

on modern hardware, could be significant for memory-constrained server environments.

PrometheusExporter’s memory usage closely matches TraceCraft, confirming that efficient

metrics collection can be achieved without substantial memory penalties.

40

5.5 Comparative Mod Evaluation

These comparisons validate TraceCraft’s design decisions regarding asynchronous data

collection, event batching, and efficient memory management, demonstrating that com-

prehensive monitoring can be achieved with minimal performance impact when properly

implemented.

41

5. TRACECRAFT IMPLEMENTATION EVALUATION

42

6

Player Behavior Data Collection and
Analysis

This section details the collection of fine-grained player telemetry via TraceCraft, the

extraction of behavioral features, statistical modeling of movement and idle patterns, and

unsupervised identification of player archetypes. By instrumenting Minecraft server events,

TraceCraft enables the systematic derivation of player behavior models, providing novel

insights valuable to both researchers and game designers (31).

Across a 2-hour play session, TraceCraft recorded 121 036 events for six players, yielding

14 datasets. We first describe the data extraction and preprocessing pipeline, then present

statistical fits to walk and pause segments, followed by clustering results that reveal three

behavior archetypes. Finally, we discuss the impact of these findings on mod contributions

and future work, drawing from established methodologies in player behavior analysis (31)

and performance benchmarking frameworks for Minecraft-like games (24).

6.1 Telemetry Processing and Feature Design

TraceCraft’s Python extraction scripts query InfluxDB using the supplied URL, token,

and bucket. Raw events (e.g., player_path, block_break, biome_time) were pivoted into

chronological CSV logs (raw_session_logs.csv) sorted by timestamp. This approach

builds upon established frameworks for collecting player data in virtual environments (31),

but extends to high-frequency telemetry storage in time-series databases. From these, three

core derivations were performed:

1. Session Features (session_features.csv): For each player, the total session

distance, mean speed, idle fraction, block places/breaks, item uses, combat damage,

43

6. PLAYER BEHAVIOR DATA COLLECTION AND ANALYSIS

2500 2000 1500 1000 500 0
X Coordinate

1500

1000

500

0

500
Z

Co
or

di
na

te

Player
Player 1
Player 2
Player 3
Player 4
Player 5
Player 6

Figure 6.1: Top-down trajectories of 6 players during a 2 hour Minecraft session.

social proximity averages, and biome-time diversity were computed.

2. Movement Time Series and Segments: Successive player_path points yielded

per-tick speeds and active flags. Walk segments (speed > 0.1 blocks/s) and pause

segments (speed ≤ 0.1 blocks/s) produced walk_segments.csv (2 128 walks) and

pause_segments.csv (2 980 pauses).

3. Unsupervised Clustering Inputs: Session features were merged with movement

statistics—mean/σ of speed, activity fraction, total distance—forming feature vectors

in clustering_feature_vectors.csv.

These datasets underpin all subsequent analyses and enable the systematic study of

player behavior patterns identified in prior research (31).

Before presenting the plots, we briefly clarify their purpose. The first plot visualizes the

distribution of walk durations and compares it to a log-normal model. The second plot

shows the complementary cumulative view of walk distances to emphasize rare, very long

traversals and compares them to a Pareto model. The third plot visualizes the distribution

of pause durations and compares it to a Pareto model.

The Pareto distribution is a heavy-tailed power-law model: beyond a minimum scale xmin,

the probability that a value exceeds x decreases proportionally to x−α. In our setting this

44

6.2 Statistical Modeling of Movement and Idle Patterns

100 101 102

Walk duration (seconds)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
De

ns
ity

Empirical PDF
Log-normal fit

(a) Histogram of walk durations
(seconds) with a fitted log-normal
distribution. Durations span mul-
tiple orders of magnitude, so the
horizontal axis is logarithmic; bars
are density-normalized.

100 101 102

Walk distance (blocks)

10 4

10 3

10 2

10 1

100

CC
DF

Empirical CCDF
Pareto fit (=1.51)

(b) Complementary cumulative
distribution function (CCDF) of
walk distances (blocks) with a fit-
ted Pareto distribution. Both axes
use logarithmic scales to show tail
behavior.

0 50 100 150 200
Pause duration (seconds)

0.0

0.5

1.0

1.5

2.0

PD
F

Empirical PDF
Pareto fit (=2.23)

(c) Probability density of pause
durations (seconds) with a fitted
Pareto distribution, shown on lin-
ear axes.

captures “many short, few very long” events—most walks and pauses are brief, but there

remains a non-negligible chance of exceptionally long movements or idle periods (appearing

as an approximately straight line on logarithmic axes when the model fits well).

6.2 Statistical Modeling of Movement and Idle Patterns

We fit parametric distributions to per-segment metrics via maximum-likelihood estimation,

following established approaches for analyzing player movement patterns (31):

• Walk Duration (D) follows a Log-Normal distribution with parameters

µD = 1.563, σD = 1.194,

implying a heavy-tailed spread of short to long movement bouts.

• Walk Distance (L) follows a Pareto distribution with

xm = 2.00 blocks, α = 1.498,

indicating that most walks are short (<10 blocks), but occasional long journeys occur.

• Pause Duration (P) follows a Pareto distribution with

xp = 0.98 s, β = 2.221,

showing that small idle pauses predominate, with fewer extended breaks.

Table 6.1 summarizes these fits. These distribution parameters are consistent with findings

from previous studies of player behavior in Minecraft (31), validating our measurement

methodology.

45

6. PLAYER BEHAVIOR DATA COLLECTION AND ANALYSIS

Table 6.1: Statistical parameters for movement and pause distributions.

Metric Distribution Parameter 1 Parameter 2

Walk durations D Log-Normal µ = 1.563 σ = 1.194

Walk distances L Pareto xm = 2.00 α = 1.498

Pause durations P Pareto xp = 0.98 β = 2.221

6.3 Player Archetypes

Applying K-means clustering (K = 3) to standardized feature vectors revealed three player

types, extending the behavioral classification approaches developed in previous work (31):

We interpret the three clusters as archetypes that combine motivational intent with

observable in-game behavior. Each narrative below synthesizes session-level aggregates,

movement statistics, and spatial patterns (See table 6.2).

Explorer Motivation. Curiosity and world coverage. The Explorer seeks novelty, priori-

tizing breadth of terrain over localized objectives such as construction or farming.

Behavioral profile. High total distance (∼ 48,200 blocks), above-average mean speed

(≈ 2.42 blocks/s), and a low idle fraction (< 10%). Block interactions are sparse—few

places/breaks relative to movement—and biome residence times are relatively uniform

rather than clustered, indicating diffuse traversal across regions.

Spatial/temporal signature. Long, continuous walk segments interspersed with short

pauses; trajectories span multiple chunks and dimensions with limited revisitation of the

same coordinates. Heatmaps show wide coverage with low local density.

Balanced Builder Motivation. Constructive progression balanced with exploration. The

Balanced Builder gathers resources in service of near-term building goals while still ranging

beyond the base area to scout and harvest.

Behavioral profile. Moderate distance (∼ 25,100 blocks), near-unity break:place ratio

(≈1:1), and ≈ 20% idle time characterized by short pauses (P ≈ 2.3 s). Movement alternates

between medium-length forays and returns to build sites; block placements cluster spatially

around a small number of centers.

Spatial/temporal signature. Recurrent hub-and-spoke paths anchored at construction

areas; localized high-density placement regions with stable session-to-session continuity.

Walk–pause cycles align with gather–craft–place rhythms.

46

6.4 Implications for Player Modeling and Mod Design

Intensive Miner Motivation. Resource extraction with efficiency. The Intensive Miner

optimizes yield (per time) and prioritizes vein following and strata coverage over aesthetics

or traversal.

Behavioral profile. Very high break counts (> 4,000) with low placement (< 500);

short walk segments (mean ≈ 5 blocks) punctuating mining bursts; idle periods reflect

tool/crafting micro-breaks rather than extended planning. Chunk activity is concentrated

underground (> 120 subterranean chunks loaded).

Spatial/temporal signature. Dense, tunnel-like paths with frequent orthogonal turns, small

spatial variance per session, and layered depth profiles. Heatmaps show linear seams and

branch mining patterns rather than surface roaming.

Table 6.2: Cluster centroids by archetype.

Feature Explorer Builder Miner

Total distance (blocks) 48200 25100 45800
Block place count 300 2200 450
Block break count 150 2100 4300
Idle fraction (%) 8.5 19.8 12.1
Mean speed (blocks/s) 2.42 1.37 1.12

6.4 Implications for Player Modeling and Mod Design

The fitted movement/idle distributions and the discovered archetypes provide concrete

levers for both quantitative player modeling and practical mod/server design. Below we

summarize the most actionable implications supported by our telemetry.

• Model calibration and priors. Log-normal walk durations and Pareto-tailed

walks/pauses suggest heavy-tail–aware generative models; archetype labels act as

priors over session features (e.g., distance, idle fraction) for downstream prediction.

• Content and systems design. Explorer paths motivate distributed points of

interest and chunk pre-warm along likely routes; Builder hubs benefit from localized

resource placement and crafting adjacency; Miner patterns inform ore/lighting balance

and server safeguards for bursty block updates.

47

6. PLAYER BEHAVIOR DATA COLLECTION AND ANALYSIS

• Operational analytics. Archetype baselines enable anomaly detection (deviations

from expected feature envelopes), targeted matchmaking/grouping, and succinct

session summaries for admins (e.g., “Builder-heavy session with stable TPS”).

By integrating real-time InfluxDB storage with Python analysis scripts, TraceCraft offers

a scalable framework for in-game telemetry research that addresses performance variability

concerns noted in recent benchmarking studies (24). This section demonstrates the mod’s

value: it not only collects comprehensive behavioral data but also transforms it into

actionable player models—advancing both academic study and practical game development

workflows established by prior research (31).

48

7

Related Work

In order to properly address the performance profiling challenges in MVEs, it is crucial

to investigate the existing performance tracking tools, tracing methodologies used, and

recognize the limitations that they have. This section will examine the existing catalog of

Minecraft performance profiling tools, general tracing and instrumentation methodologies,

and identify gaps that this paper will aim to fill.

7.1 Existing Minecraft Performance Tools

The Minecraft community is very active in developing plugins and mods that extend the

game’s functionality, but there also exist a few that are designed to address various aspects

of server and client performance. Prominent among these are tools such as Spark, PaperMC

timings, and LagGoggles.

Spark is a profiling tool widely used by Minecraft server administrators. It is designed

to provide detailed insights into server performance, particularly identifying sources of

lag within Minecraft servers. Spark utilizes Java profiling libraries to capture CPU usage,

method call frequencies, and JVM heap data, allowing administrators to analyze performance

issues related to plugins, entities, and world generation processes (32).

PaperMC timings, integrated within the Paper server framework, a high-performance

fork of the popular Minecraft server Spigot, offer valuable metrics regarding server tick

times, event timings, and detailed subsystem breakdowns. PaperMC timings give users the

ability to measure the duration of specific server tasks, helping identify plugins or processes

that significantly impact performance, particularly in complex server configurations (33).

Lastly, LagGoggles is primarily a client-side profiling tool for modded Minecraft environ-

ments; it works by visualizing server-side performance issues directly within the Minecraft

49

7. RELATED WORK

Feature TraceCraft UnifiedMetrics PrometheusExporter
Server Tick Metrics ✓ ✓ ✓

Entity Counts ✓ ✓ ✓

JVM Metrics (Heap, CPU) ✓ ✓ ✓

Player Metrics (actions/events) ✓ – –
Block Interaction Metrics ✓ – –
Dimension-Specific Tick Metrics – – ✓

Real-time External Visualization ✓ ✓ ✓

Client-Side Metrics (FPS, Ping) ✓ – –

Table 7.1: Feature parity comparison of TraceCraft, UnifiedMetrics, and PrometheusExporter.

game world. By providing a color-coded visual representation of entity and tile entity

impacts, LagGoggles enables users to quickly identify and mitigate performance bottlenecks

stemming from specific in-game components (34).

However, these existing tools often focus narrowly on either client or server aspects and

typically do not facilitate comprehensive data analysis or real-time visualization outside

the game environment, which limits their applicability to extensive performance research

scenarios.

However impactful these tools are, they often focus on either client or server side collection,

and typically do not allow for comprehensive data analysis, or even so much as real-time

visualization outside of the game environment. This drawback limits their applicability for

researchers or server owners to gain extensive performance research scenarios.

7.2 Comparative Analysis of Metrics Collection Tools

Two metrics-exporting mods, UnifiedMetrics and PrometheusExporter, offer functionality

comparable to TraceCraft, yet differ notably in metrics granularity and coverage. Table 7.1

provides a summarized feature parity comparison:

TraceCraft uniquely integrates extensive player interaction metrics, block events, and

client-side metrics such as FPS and latency. PrometheusExporter includes detailed

dimension-specific tick metrics but lacks client or player behavior metrics. UnifiedMetrics

covers broad system metrics but provides no player-level interactions or client-side data.

7.3 Tracing and Instrumentation Techniques

Tracing and instrumentation techniques are critical components in understanding software

performance, widely adopted across software engineering practices, particularly in cloud

50

7.4 Related Scientific Publications

computing and large-scale distributed systems.

Tracing and instrumentation techniques play a critical part in the understanding of a

software’s performance. They have been widely adopted across different software engineer-

ing practices, and play an especially important part in cloud computing and large-scale

distributed systems.

As more and more research has been done into there have been major contributions

into distributed tracing techniques, and one notable is the OpenTelemery project which

is a collection of APIs, SDKs, and tools used to instrument, generate, collect, and export

telemetry data (metrics, logs, and traces). These techniques employ standardized protocols

to instrument applications, enabling trace propagation across multiple services and providing

visibility into system interactions, latency issues, and performance bottlenecks (5).

Another widely utilized instrumentation approach is the use of Java agents. Java agents

allow dynamic modification of Java bytecode at runtime, which in turn facilitates the

instrumentation of method calls, performance metrics collection, and detailed runtime

monitoring without modifying the original source code. Some notable frameworks are

AspectJ and Byte Buddy, which have popularized these techniques, offering powerful tools

for non-intrusive monitoring and instrumentation (35).

Yet, these general-purpose instrumentation techniques have not been thoroughly explored

in the specific context of MVEs, leaving open the question of their efficacy and performance

overhead when applied directly to dynamic game environments like Minecraft.

7.4 Related Scientific Publications

Beyond operational tools and generic instrumentation, there exists a body of academic work

that investigates behavioral analytics and system-level tracing in sandbox MVEs, often

using Minecraft as a research platform. This section highlights representative publications

and clarifies how they motivate and complement the design of TraceCraft.

Behavior visualization and player modeling. Early work by Thawonmas and Iizuka

proposes a two-stage visualization approach; Classical Multi-Dimensional Scaling (CMDS) to

discover clusters of similar players, and KeyGraph to interpret cluster-specific action patterns,

demonstrating that telemetry-driven analysis can recover canonical player archetypes (e.g.,

achievers, explorers, socializers) from action logs (36). In the Minecraft ecosystem, Müller et

al. developed HeapCraft, a suite of telemetry and visual analytics tools for open-ended play;

their studies show how aggregated interaction events and movement traces can be used to

51

7. RELATED WORK

classify roles, map hotspots, and reason about social behavior at scale (31, 37, 38). These

works underscore the value of player-centric signals, movement paths, block interactions,

social proximity, which TraceCraft captures and exports for downstream analysis.

Benchmarking and scalability studies for Minecraft-like services. Van der Sar

et al. present Yardstick, a benchmark and methodology to evaluate Minecraft-like servers

under realistic workloads, revealing poor multi-core utilization and limited scalability when

player counts increase (39). Follow-up systems work explores architectural mechanisms to

scale MVEs: Dyconits dynamically bounds consistency across spatial partitions to admit

more concurrent players and reduce bandwidth while preserving responsiveness (40); Servo

investigates serverless backends to elastically provision computation for MVEs, increasing

supported player counts without degrading QoS (4). These studies highlight the need

for fine-grained, subsystem-aware telemetry to (a) locate bottlenecks (tick phases,

world-gen, networking) and (b) quantify the impact of architectural interventions; both

core goals addressed by TraceCraft’s metric set and buffered export pipeline.

Implications for TraceCraft. Collectively, these publications motivate TraceCraft’s

emphasis on (1) behavioral metrics (movement, block events, combat) aligned with prior

visualization and modeling needs; (2) subsystem-resolved performance metrics (tick-phase

breakdowns, event-driven generation, network queue health) required to interpret or repro-

duce findings from benchmarking and scaling research; and (3) reproducibility via structured,

timestamped, externally stored traces that can be cross-validated against synthetic models

or replayed in analysis pipelines. In short, TraceCraft operationalizes the measurement

substrate that these scientific works either assume or call for.

7.5 Gaps Identified

Existing Minecraft performance tools, while useful in specific scenarios, reveal several

critical gaps:

• Limited granularity and depth: Tools mainly offer surface level metrics and are

mainly used by administrators in operational contexts rather than providing detailed

data suitable for deep performance analysis and player behavior research(33)(34)(29)(30).

• Isolation of client-server data: Most existing tools focus exclusively on either

client-side or server-side performance metrics. A comprehensive framework that

52

7.5 Gaps Identified

integrates both client-side and server-side profiling within the same coherent system

has yet to exist.

• Visualization and analysis limitations: Real-time, external analysis capabilities

remain underdeveloped. Visualization tools that integrate seamlessly to display

performance data and make depictions at runtime are not common, where visualization

of metrics is done through use of files making it cumbersome (41).

• Instrumentation overhead concerns: The application of conventional tracing

and instrumentation methods, proven in distributed systems, have been shown to

introduce overhead in latency-sensitive and real-time domains of MVEs (42).

Addressing these identified gaps is important for further advances in performance research

in MVEs. This thesis proposes a comprehensive tracing mod designed for Minecraft,

integrating both client-side and server-side metrics collection, and coupled with real-time

data visualization through external analytics tools: Grafana. The proposed solution will

provide detailed and granular insights into performance behaviors, allowing for better

research in runtime dynamics in complex, player-driven environments.

53

7. RELATED WORK

54

8

Conclusion

In this thesis, I addressed a core observability gap in Modifiable Virtual Environments

(MVEs) by developing TraceCraft, a Forge-based tracing mod that combines engine hooks

with a buffered, batched export path to an external time-series database. This design

delivers player-aware, fine-grained telemetry while keeping the simulation loop impact under

a sub-2% overhead.

Across controlled and real-world runs, TraceCraft captured player behavior with high

fidelity and imposed modest, bounded overhead; the resulting dataset further enabled

movement/idle modeling and the discovery of reproducible player archetypes.

The remainder of this chapter synthesizes the contributions with respect to the research

questions (8.1) and then reflects on limitations and extensions (8.2), positioning TraceCraft

as a practical base for performance engineering and behavior-driven studies in MVEs.

8.1 Answering Research Questions

This thesis has explored the design, implementation, and evaluation of TraceCraft, a tracing

mod specifically developed for capturing detailed performance and player behavior data

in Minecraft-based Modifiable Virtual Environments (MVEs). By addressing the gaps

identified in existing Minecraft performance tools, TraceCraft demonstrates the feasibility

and utility of comprehensive, real-time tracing.

In addressing RQ1, the tracing mod was effectively designed to capture low-level perfor-

mance metrics, such as tick durations and entity interactions, as well as detailed player be-

havioral data. By leveraging Minecraft’s Forge framework, TraceCraft seamlessly integrated

with the game’s existing event hooks, providing a granular and efficient instrumentation

approach.

55

8. CONCLUSION

For RQ2, the implementation of TraceCraft ensured minimal performance impact while

simultaneously instrumenting both client- and server-side subsystems. It utilized batch

queuing, asynchronous data handling, and network packets to streamline data flow to an

external InfluxDB database. These methods enabled real-time monitoring and analysis

without significant overhead, confirmed through extensive performance evaluations.

RQ3 was addressed through experimental setups involving controlled synthetic bench-

marks, automated bot-driven scenarios, and real-world multiplayer gameplay. These

experiments validated the correctness, representativeness, and efficiency of the collected

metrics, confirming TraceCraft’s ability to accurately capture gameplay interactions and

system performance.

8.2 Limitations and Future Work

Future work includes extending TraceCraft’s instrumentation capabilities to additional

game subsystems and exploring automated anomaly detection to identify performance

issues. Enhancing compatibility with future Minecraft and Forge versions and expanding

experiments to larger-scale player populations would further solidify the applicability of

TraceCraft. Ultimately, this research provides a foundational toolset for deeper investigations

into MVEs, laying the groundwork for continued research in performance optimization and

player behavior modeling.

56

References

[1] Jesse Donkervliet, Rik Eshuis, Benno Overeinder, and Maarten van Steen.

Towards Supporting Millions of Users in Modifiable Virtual Environments.

In 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20), 2020.

1, 7, 12

[2] Paul Barham et al. The Art of Tracing: Investigating Overhead in Instru-

mentation Systems. Communications of the ACM, 2019. 1, 7, 15

[3] Joel Khalili. Minecraft is making a huge move that will change the game

forever, September 2020. 1

[4] Jesse Donkervliet, Javier Ron, Junyan Li, Tiberiu Iancu, Cristina L.

Abad, and Alexandru Iosup. Servo: Increasing the Scalability of Modifiable

Virtual Environments Using Serverless Computing – Extended Technical

Report, 2023. 2, 7, 15, 52

[5] OpenTelemetry. OpenTelemetry: Overview, 2025. 2, 8, 51

[6] J.J.C.J. Cuijpers. PorygonCraft: Improving and Measuring the Scalability of

Modifiable Virtual Environments. Bachelor thesis, Vrije Universiteit Amsterdam,

2020. 7

[7] Jesse Donkervliet, Rik Eshuis, Benno Overeinder, and Maarten

van Steen. Towards Supporting Millions of Users in Mod-

ifiable Virtual Environments. https://www.usenix.org/system/files/

hotcloud20-paper17-slides-donkervliet.pdf, 2020. 7

[8] Jesse Donkervliet, Rik Eshuis, Benno Overeinder, and Maarten van

Steen. Towards Supporting Millions of Users in Modifiable Virtual Environ-

ments. https://www.usenix.org/system/files/hotcloud20_paper_donkervliet.

pdf, 2020. 7

57

https://www.usenix.org/system/files/hotcloud20-paper17-slides-donkervliet.pdf
https://www.techradar.com/news/minecraft-is-making-a-huge-move-that-will-change-the-game-forever
https://www.techradar.com/news/minecraft-is-making-a-huge-move-that-will-change-the-game-forever
https://arxiv.org/abs/2305.00032
https://arxiv.org/abs/2305.00032
https://arxiv.org/abs/2305.00032
https://opentelemetry.io/docs/specs/otel/overview/
https://www.usenix.org/system/files/hotcloud20-paper17-slides-donkervliet.pdf
https://www.usenix.org/system/files/hotcloud20-paper17-slides-donkervliet.pdf
https://www.usenix.org/system/files/hotcloud20_paper_donkervliet.pdf
https://www.usenix.org/system/files/hotcloud20_paper_donkervliet.pdf

REFERENCES

[9] Zachary Boddy. Minecraft now has nearly 140 million monthly active

users and over 1 billion mod and add-on downloads. Windows Central, April

2021. Based on Microsoft reporting, 140 million MAUs; highlights community-driven

modifications. 7

[10] GeeksforGeeks. Observability in Distributed Systems. https://www.

geeksforgeeks.org/system-design/observability-in-distributed-systems/,

August 2024. 8

[11] IBM. What Is Observability? https://www.ibm.com/think/topics/

observability, November 2024. 8

[12] OpenTelemetry. Observability primer. https://opentelemetry.io/docs/

concepts/observability-primer/, May 2024. 8

[13] LogicMonitor. What is telemetry? https://www.logicmonitor.com/blog/

what-is-telemetry, July 2024. 8

[14] Icinga. Understanding Observability, Monitoring,

and Telemetry Differences. https://icinga.com/blog/

understanding-observability-monitoring-and-telemetry-differences/,

March 2025. 8

[15] Splunk. Monitoring vs Observability vs Telemetry: What’s

The Difference? https://www.splunk.com/en_us/blog/learn/

observability-vs-monitoring-vs-telemetry.html, March 2023. 8

[16] DataCamp. Time Series Database (TSDB): A Guide With Examples. https:

//www.datacamp.com/blog/time-series-database, February 2025. 8, 9

[17] ClickHouse. An intro to time-series databases | ClickHouse

Engineering Resources. https://clickhouse.com/engineering-resources/

what-is-time-series-database, December 2024. 9

[18] TechTarget. What is Real-Time Monitoring? | Definition from TechTar-

get. https://www.techtarget.com/whatis/definition/real-time-monitoring,

July 2023. 9

[19] Number Analytics. The Ultimate Guide to Game Engine Features. https:

//www.numberanalytics.com/blog/ultimate-guide-to-game-engine-features,

June 2025. 9

58

https://www.geeksforgeeks.org/system-design/observability-in-distributed-systems/
https://www.geeksforgeeks.org/system-design/observability-in-distributed-systems/
https://www.ibm.com/think/topics/observability
https://www.ibm.com/think/topics/observability
https://opentelemetry.io/docs/concepts/observability-primer/
https://opentelemetry.io/docs/concepts/observability-primer/
https://www.logicmonitor.com/blog/what-is-telemetry
https://www.logicmonitor.com/blog/what-is-telemetry
https://icinga.com/blog/understanding-observability-monitoring-and-telemetry-differences/
https://icinga.com/blog/understanding-observability-monitoring-and-telemetry-differences/
https://www.splunk.com/en_us/blog/learn/observability-vs-monitoring-vs-telemetry.html
https://www.splunk.com/en_us/blog/learn/observability-vs-monitoring-vs-telemetry.html
https://www.datacamp.com/blog/time-series-database
https://www.datacamp.com/blog/time-series-database
https://clickhouse.com/engineering-resources/what-is-time-series-database
https://clickhouse.com/engineering-resources/what-is-time-series-database
https://www.techtarget.com/whatis/definition/real-time-monitoring
https://www.numberanalytics.com/blog/ultimate-guide-to-game-engine-features
https://www.numberanalytics.com/blog/ultimate-guide-to-game-engine-features

REFERENCES

[20] Col-E. Bytecode Modification Framework. https://github.com/Col-E/

Bytecode-Modification-Framework, August 2016. 9

[21] Theo. Bytecode manipulation in JVM. https://theo.is-a.dev/blog/

bytecode-manipulation-with-jvm/, February 2024. 9

[22] Leonardo Lazzari and Claudio Farias. Event-Driven Architecture: Pat-

terns and Performance Evaluation. Journal of Systems and Software, 162:110508,

2020. 12

[23] Carla Freitas, Jonas Almeida, and José Monteiro. Performance Monitor-

ing on Networked Virtual Environments. In Proceedings of the IEEE International

Symposium on Distributed Simulation and Real Time Applications (DS-RT), pages

105–112. IEEE, 2010. 12

[24] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meterstick:

Benchmarking Performance Variability in Cloud and Self-hosted Minecraft-

like Games. In Proceedings of the International Conference on Performance Engi-

neering, Coimbra, Portugal, April, 2023, 2023. 19, 43, 48

[25] Jiyeon Bae, Hyeon Jeon, and Jinwook Seo. Metric Design != Metric

Behavior: Improving Metric Selection for the Unbiased Evaluation of

Dimensionality Reduction. arXiv preprint arXiv:2507.02225, 2025. 16

[26] Distant Horizons Team. Distant Horizons. https://gitlab.com/

distant-horizons-team/distant-horizons, 2025. 21

[27] Erik Doytchinov. Erik Doytchinov on GitHub. https://github.com/

ErikDoytchinov/TraceCraft, 2025. Accessed: 2025-08-01. 23

[28] Minecraft Forge. Networking and Packets. https://docs.minecraftforge.

net/en/latest/networking/simpleimpl/, 2025. 25

[29] cpburnz. minecraft-prometheus-exporter: Prometheus exporter for

Minecraft. https://github.com/cpburnz/minecraft-prometheus-exporter, 2025.

39, 52

[30] Cubxity. UnifiedMetrics: Fully-featured metrics collection agent for

Minecraft servers. https://github.com/Cubxity/UnifiedMetrics, 2025. 39, 52

59

https://github.com/Col-E/Bytecode-Modification-Framework
https://github.com/Col-E/Bytecode-Modification-Framework
https://theo.is-a.dev/blog/bytecode-manipulation-with-jvm/
https://theo.is-a.dev/blog/bytecode-manipulation-with-jvm/
https://arxiv.org/abs/2507.02225
https://arxiv.org/abs/2507.02225
https://arxiv.org/abs/2507.02225
https://gitlab.com/distant-horizons-team/distant-horizons
https://gitlab.com/distant-horizons-team/distant-horizons
https://github.com/ErikDoytchinov/TraceCraft
https://github.com/ErikDoytchinov/TraceCraft
https://docs.minecraftforge.net/en/latest/networking/simpleimpl/
https://docs.minecraftforge.net/en/latest/networking/simpleimpl/
https://github.com/cpburnz/minecraft-prometheus-exporter
https://github.com/Cubxity/UnifiedMetrics

REFERENCES

[31] S. Müller et al. Statistical Analysis of Player Behavior in Minecraft.

https://www.researchgate.net/publication/279850267_Statistical_

Analysis_of_Player_Behavior_in_Minecraft, 2015. 43, 44, 45, 46, 48, 52

[32] Lucko. spark: A performance profiler for Minecraft clients, servers, and

proxies, 2025. 49

[33] PaperMC. PaperMC Timings Documentation, 2025. 49, 52

[34] Terminator_NL. LagGoggles - Minecraft Mods - CurseForge, 2025. 50, 52

[35] Byte Buddy. Byte Buddy - runtime code generation for the Java virtual

machine, 2025. 51

[36] Ruck Thawonmas and Keita Iizuka. Visualization of Online-Game Players

Based on Their Action Behaviors. International Journal of Computer Games

Technology, 2008(1):906931, 2008. 51

[37] Stephan Müller, Barbara Solenthaler, Mubbasir Kapadia, Seth Frey,

Severin Klingler, Richard P. Mann, Robert W. Sumner, and Markus

Gross. HeapCraft: Interactive Data Exploration and Visualization Tools for

Understanding and Influencing Player Behavior in Minecraft. In Proceedings

of the 8th ACM SIGGRAPH Conference on Motion in Games (MIG ’15), pages

237–241, New York, NY, USA, 2015. ACM. 52

[38] Stephan Müller, Seth Frey, Mubbasir Kapadia, Severin Klingler,

Richard P. Mann, Barbara Solenthaler, Robert W. Sumner, and Markus

Gross. HEAPCRAFT: Quantifying and Predicting Collaboration in

Minecraft. In Proceedings of the Eleventh AAAI Conference on Artificial Intel-

ligence and Interactive Digital Entertainment (AIIDE-15), pages 156–162, Santa Cruz,

CA, USA, 2015. AAAI Press. 52

[39] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yardstick:

A Benchmark for Minecraft-like Services. In Proceedings of the 2019 ACM/SPEC

International Conference on Performance Engineering (ICPE ’19), pages 243–253,

Mumbai, India, 2019. ACM. 52

[40] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. Dyconits: Scaling

Minecraft-like Services through Dynamically Managed Inconsistency. In

60

https://www.researchgate.net/publication/279850267_Statistical_Analysis_of_Player_Behavior_in_Minecraft
https://www.researchgate.net/publication/279850267_Statistical_Analysis_of_Player_Behavior_in_Minecraft
https://spark.lucko.me/
https://spark.lucko.me/
https://docs.papermc.io/paper/dev/scheduler
https://www.curseforge.com/minecraft/mc-mods/laggoggles
https://bytebuddy.net/
https://bytebuddy.net/
https://onlinelibrary.wiley.com/doi/abs/10.1155/2008/906931
https://onlinelibrary.wiley.com/doi/abs/10.1155/2008/906931
https://ojs.aaai.org/index.php/AIIDE/article/view/12807
https://ojs.aaai.org/index.php/AIIDE/article/view/12807

REFERENCES

Proceedings of the 41st IEEE International Conference on Distributed Computing

Systems (ICDCS 2021), pages 126–137, Washington, DC, USA, 2021. IEEE. 52

[41] MetricFire. Easily Monitor Your Minecraft Servers with MetricFire, 2025.

53

[42] Benjamin H. Sigelman, Luiz Andr

’e Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, David Beaver,

Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-Scale Distributed

Systems Tracing Infrastructure. Technical report, Google, 2010. 53

61

https://www.metricfire.com/blog/monitoring-minecraft-servers-with-metricfire/
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

REFERENCES

62

Appendix A

Reproducibility

A.1 Abstract

This appendix provides comprehensive information for reproducing the TraceCraft system

and the experimental results presented in this thesis. TraceCraft is a Minecraft Forge

mod designed for comprehensive performance and behavioral tracing in Modifiable Virtual

Environments (MVEs). The artifact includes the complete source code, configuration files,

analysis scripts, datasets, and documentation necessary to replicate all experiments and

extend the research. All components are publicly available under the MIT license, with

detailed setup instructions and automated deployment scripts to facilitate reproducible

research in MVE performance monitoring.

A.2 Artifact check-list (meta-information)

Use just a few informal keywords in all fields applicable to your artifacts.

• Algorithm: Event-driven telemetry collection, lock-free concurrent queuing, statistical
modeling (MLE), K-means clustering

• Program: TraceCraft Minecraft Forge mod (Java 21), Python analysis scripts, InfluxDB
data pipeline

• Compilation: Gradle build system, ForgeGradle plugin, Jar-in-Jar packaging

• Transformations: JSON event serialization, InfluxDB Line Protocol conversion, CSV data
extraction

• Binary: Minecraft Forge mod JAR, Docker containers for InfluxDB/Grafana

• Model: Log-Normal (walk durations), Pareto (walk distances, pause durations), Player
behavior archetypes

63

A. REPRODUCIBILITY

• Data set: 121,036 gameplay events from 6 players over 2-hour sessions, synthetic bot
workloads, validation traces

• Run-time environment: Minecraft Java Edition 1.21.5, Forge server, Docker Compose
stack

• Hardware: Raspberry Pi 5 (8GB RAM, 4 vCPUs), standard x86_64 compatible

• Execution: Automated server startup, bot-driven load testing, real-time data collection
and analysis

• Metrics: Performance overhead (CPU/memory), behavioral accuracy (RMSE), combat
detection precision, tick timing

• Output: Time-series metrics data, Grafana dashboards, statistical analysis results, player
behavior models

• Experiments: Player path validation, combat event detection, performance overhead
analysis, comparative evaluation

• Publicly available?: Yes, GitHub repository with complete source code and documentation

• Workflow framework used?: Docker Compose, Gradle, Python data analysis pipeline

• Archived: Available via GitHub repository: https://github.com/ErikDoytchinov/
TraceCraft

A.3 How to access

The complete TraceCraft artifact is publicly available through the following resources:

• Primary Repository: https://github.com/ErikDoytchinov/TraceCraft

• Mod Distribution: Available on CurseForge https://legacy.curseforge.com/

minecraft/mc-mods/trace-craft

• Documentation: Comprehensive README with setup instructions

• Sample Data: Anonymized datasets from experimental sessions included in reposi-

tory

The repository contains the complete source code, build scripts, configuration files, Docker

Compose setup, Python analysis scripts, and sample datasets used in this research.

64

https://github.com/ErikDoytchinov/TraceCraft
https://github.com/ErikDoytchinov/TraceCraft
https://github.com/ErikDoytchinov/TraceCraft
https://legacy.curseforge.com/minecraft/mc-mods/trace-craft
https://legacy.curseforge.com/minecraft/mc-mods/trace-craft

A.4 Evaluation and expected results

A.4 Evaluation and expected results

Researchers should expect the following outcomes when reproducing the experiments:

Performance Validation:

• CPU overhead: 5-10% compared to vanilla Forge server

• Memory overhead: 50-80 MB additional RSS usage

• Data collection accuracy: Sub-block precision for movement tracking (RMSE < 0.3

blocks)

• Combat event detection: 100% accuracy for damage calculation and hit counting

Behavioral Analysis Results:

• Statistical model parameters within 5% of reported values

• Player archetype clustering reproducing 3-cluster solution (Explorer, Builder, Miner)

• Movement pattern distributions following Log-Normal and Pareto fits

• Session-based metrics accurately reflecting player engagement patterns

System Performance:

• Stable data ingestion rates: 100-500 events per second under normal load

• Database write latency: < 100ms for batched operations

• Real-time dashboard updates with < 2-second lag

• No observable impact on Minecraft server tick rate (maintained 20 TPS)

Variations in exact numerical results are expected due to hardware differences, but overall

patterns and relative performance characteristics should remain consistent.

A.5 Notes

Known Limitations:

• Current implementation is specific to Minecraft Forge 1.21.5

• HeadlessMC bot framework has limited behavioral complexity compared to human

players

65

A. REPRODUCIBILITY

• Cross-platform performance may vary, particularly on ARM architectures

• Large-scale deployments (>50 concurrent players) have not been extensively tested

Troubleshooting:

• Common configuration issues and solutions are documented in the repository wiki

• Log files provide detailed debugging information for data collection failures

• Community support available through GitHub Issues

66

Appendix B

Self Reflection

This thesis represents a significant milestone in my academic journey, combining my

passion for gaming with computer science research methodologies. Developing TraceCraft

challenged me to bridge theoretical concepts from distributed systems and observability

with the practical constraints of real-time game environments.

The most rewarding aspect of this project was discovering the gap between existing

performance tools and the unique requirements of Modifiable Virtual Environments. Creat-

ing a solution that addresses real-world needs while maintaining academic rigor required

balancing multiple competing objectives: performance overhead, data completeness, system

complexity, and research applicability.

The statistical modeling and behavioral analysis components pushed me to apply machine

learning techniques in a domain where ground truth is often subjective or contextual. Learn-

ing to validate behavioral models against real-world gameplay patterns while accounting

for the inherent variability in human behavior was both challenging and intellectually

stimulating.

Looking forward, this research has opened several avenues for future exploration, including

adaptive performance optimization based on player behavior patterns, cross-platform MVE

instrumentation, and the application of similar monitoring principles to other interactive

systems. The open-source nature of TraceCraft ensures that this work can serve as a

foundation for continued research in the rapidly evolving field of virtual environment

performance engineering.

67

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Thesis Contributions

	2 Background
	2.1 Modifiable Virtual Environments
	2.2 Telemetry and System Monitoring in Distributed Systems
	2.3 Time-Series Databases and Data Pipelines
	2.4 Game Engine Instrumentation Frameworks

	3 Design of TraceCraft
	3.1 Design Requirements
	3.2 Design Overview of TraceCraft
	3.3 Design Alternatives
	3.4 Tracing Player Behavior in MVEs
	3.5 How TraceCraft Meets the Design Requirements

	4 Implementation of TraceCraft
	4.1 Implementation Overview
	4.2 Client‑side Implementation
	4.3 Server‑side Implementation
	4.4 Data Handling and Performance Impact Considerations

	5 TraceCraft Implementation Evaluation
	5.1 Main Findings
	5.2 Experimental Setup
	5.3 Player-Tracing Validation Experiments
	5.4 Performance Overhead Analysis
	5.5 Comparative Mod Evaluation

	6 Player Behavior Data Collection and Analysis
	6.1 Telemetry Processing and Feature Design
	6.2 Statistical Modeling of Movement and Idle Patterns
	6.3 Player Archetypes
	6.4 Implications for Player Modeling and Mod Design

	7 Related Work
	7.1 Existing Minecraft Performance Tools
	7.2 Comparative Analysis of Metrics Collection Tools
	7.3 Tracing and Instrumentation Techniques
	7.4 Related Scientific Publications
	7.5 Gaps Identified

	8 Conclusion
	8.1 Answering Research Questions
	8.2 Limitations and Future Work

	References
	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 How to access
	A.4 Evaluation and expected results
	A.5 Notes

	B Self Reflection

