Vrije Universiteit Amsterdam

Bachelor Thesis

Designing a Protocol-Agnostic
Benchmark for MVEs

Author: Alexandr Costei (2771504)

1st supervisor: Jesse Donkervliet
daily supervisor: Jesse Donkervliet
2nd reader: dr. Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 24, 2025

ii

Abstract

Modifiable Virtual Environments (MVEs), such as Minecraft, are widely used
for entertainment, education, and research, however their performance level
remains difficult to compare across different engines. Existing benchmarks
are dependent on specific protocols or implementations, which hinders their
ability to provide fair evaluations between these various systems. Therefore,
this thesis investigates how to design, implement, and evaluate a protocol-
agnostic benchmark that enables reproducible performance analysis of MVEs,

with a focus on the voxel engine Luanti.

Luantick is an extension of the Yardstick benchmark, that translates high-
level player behaviors into engine-specific actions through lightweight protocol
adapters. The system orchestrates automated deployments of Luanti servers,
imitates hundreds of concurrent player bots, and collects application-level met-
rics, like tick duration and player counts, alongside system-level metrics, such as
CPU and memory utilization. Results are then processed through an integrated

analysis pipeline to generate standardized visualizations and comparisons.

The findings demonstrate that Luantick can reliably execute controlled experi-
ments on Luanti without modifying the engine, while also maintaining protocol
independence. Moreover, the benchmark exposes how responsiveness, through-
put, and scalability are affected under increasing load, and therefore establishes
a basis for comparing MVEs that rely on different network protocols. This work
done to achieve this, contributes to a practical and extensible toolchain for fu-

ture research on performance variability and scalability in MVEs.

v

Contents

1 Introduction il
1.1 Context
1.2 Problem Statement
1.3 Research Questions
1.4 Research Methodology 4
1.5 Thesis Contributions
1.6 Plagiarism Declaration]

2 Background ird
2.1 Modifiable Virtual Environments (MVEs) [
2.2 MVE Networking Stack I

3 Design of Luantick: A Benchmark for Protocol-Agnostic MVE’s K]
3.1 System Requirements. 13]
3.2 Design Overview
3.3 Player Emulation i
3.4 Server Orchestration 19
3.5 Network and Metrics Analysis 20

4 Implementation Overview 23
4.1 Luantick Framework Overview 23
4.2 Metrics Collection System Implementation
4.3 Rust Bot Implementation and Authentication 26
4.4 Deployment Automation and Integration

5 Evaluation 29
5.1 Main Findings 29]
5.2 Experimental Setup 30

CONTENTS

5.3 Maximum concurrent players (MF1| MF2)) 321
5.4 Movement pattern & Spawn Radius matters (MF3| MF4) B34
5.5 Placing blocks costs more than walking (MF5) 36]
6 Related Work 39]
7 Conclusion 41]
7.1 Answering Research Questions, 41l
7.2 Limitations and Future Work 0L 42
7.3 Closing Remarks 43l

References 45]

ii

Introduction

Online gaming has quickly evolved into a significant global industry (I). In 2024, the
global games market generated approximately $187.7 billion in revenue, therefore reflect-
ing a 2.1% year-on-year growth (Il). This is driven by numerous players coming together
and engaging on different platforms such as desktops, mobile devices, and consoles, to play
games. However, this is not limited to entertainment as online gaming serves as a platform
for social interaction and educational purposes. Specifically, the game “Minecraft" has
been utilized in educational contexts, mainly "Math Essentials with Minecraft Education"
which provides lessons on geometry and algebra, engaging students through interactive
gameplay (2). However, the effectiveness of games mixed with education has been a de-
batable topic for many years. Therefore, a study was conducted to understand the impact
of Minecraft in math class. The findings showed that students enjoyed learning math with
Minecraft which simultaneously increased confidence in their math abilities (3]).
Furthermore, Modifiable Virtual Environments (MVEs) are a subset of online games
that give users the ability to alter the game world by modifying terrain, adding content, or
scripting new behaviors in real-time (4)). This ability enables MVEs to be powerful tools
for education, collaborative design, and simulations. This is evident in a virtual STEM
tool called the Urban Ecology Kit which allowed students to modify simulated city envi-
ronments to explore concepts like population density, green space planning, and wildlife
conservation (5)). This enabled the students to engage in real-world problem-solving situa-
tions, enhancing critical thinking and active learning (5). However, MVEs do present some
challenges concerning scalability and performance because as user modifications increase,
it becomes harder to maintain the systems performance which also hinders the overall

consistency ().

1. INTRODUCTION

A method that assesses and compares the performance of systems in order to ensure
desired standards are met under controlled conditions is benchmarking (7). But in re-
gard to effective benchmarking with MVEs it is important to address their operational
demands which involves simulating realistic player behaviors and measuring a spectrum
of performance metrics, from low-level packet transmission timings to high-level tick-time
distributions. For example, the state-of-the-art benchmark, Yardstick, simulates lifelike
player behavior in representative virtual environments, monitoring various systems, ap-
plications, and service-level metrics to analyze the scalability of Minecraft-like network
protocol implementations (§). Nevertheless, this comprehensive benchmarking is crucial
to ensure that MVEs maintain consistent performance, even as users dynamically alter the

environment.

1.1 Context

Building on the introduction above, this thesis focuses on how to study performance in
MVEs while worlds are actively being edited. The main challenge with this focus is how to
measure responsiveness and capacity in a way that reflects real play and can be compared
across different systems. Although current research on the topic exists, researchers either
focus on a specific MVE or use a custom set up. Because they use different player scripts,
track different metrics, and follow different test steps, their results are hard to generalize
and fairly compare (4). I see a missing component in this research which is a neutral,
repeatable method that drives every MVE with the same types of player actions and reads
out the same core metrics, regardless of how the system is built (9)).

A solution to this is the benchmarking approach this thesis employes which (i) uses stan-
dardized, realistic workloads to create comparable pressure on each system, (ii) relies on
non-intrusive metrics that track user-visible responsiveness and capacity, and (iii) follows
an automated, documented process so experiments can be reproduced and extended. Con-
sidering the aforementioned solution, the aim of this thesis is to produce fair comparisons
and actionable insights about how MVEs behave under change, without privileging any

single engine.

1.2 Problem Statement

Despite the increasing use of MV Es, there is no benchmark with the ability to consistently

evaluate MVEs with different engine and networking designs, while also keeping workloads,

1.3 Research Questions

measurements, and reporting comparable. Traditional MVE benchmarks often connect the
test scenario with how a given engine communicates. To avoid this, we first decouple the
workload from the engine’s communication style (P1). To do this, there must be a defined
workload model regarding what players do (e.g., move, look, interact, place), how quickly
they act (e.g.,pacing and jitter), and where those actions occur, meaning spatial locality
and contention zones. By keeping the actions the same across engines, we avoid favoring a
specific system, allowing us to examine differences solely from the engines instead of how
the test was conducted.

Additionally, we must have a non-intrusive, end-to-end measurement (P2). The bench-
mark should reveal what users feel and what the system sustains without rewriting the
system under the test at hand. Therefore observing signals at the system, application, and
service layers, emphasizes action-to-effect latency, steady-state throughput, and coarse re-
source use on servers and drivers. By collecting these metrics externally where possible,
we reduce the risk that measurement itself distorts the behavior we aim to capture.

Lastly, an automated and reproducible deployment is required (P3). Thus, the experi-
ments should start on standard clusters with little manual effort, scale from pilot runs to
heavy loads, and emit artifacts that others can replay. This process involves setting up
worlds from a clean seed, running scenarios at multiple scales with controlled warm-up and
cool-down phases, and exporting traces, configurations, and reports in a standard format.
Built-in safeguards, such as health checks and clean teardowns, ensures that a failed run

doesn’t affect the next one, so results stay comparable.

1.3 Research Questions

Our work explores how the design of network protocols shapes the performance of mod-
ifiable virtual environments (MVEs). To keep the study focused and reproducible, we
translate the broad problem statement into three concrete research questions. Each ques-
tion focuses on a different layer of the benchmarking pipeline: concept design, practical
implementation, and empirical evaluation, so that their combined answers will form a

coherent foundation for future research and engineering. The questions are:

RQ1 How can we design a network-protocol-agnostic benchmark for MVEs?

There is no benchmark that can fairly compare different MVEs without assuming the
way one engine works. A neutral design will make it easy to extend the benchmark

to additional games.

1.

INTRODUCTION

RQ2

RQ3

1.4

To do this, clear requirements, a defined workload model in high-level player actions,
a specific layered architecture with a thin connector boundary, standardized metrics,
and simple defaults are all required. This will yield the high-level architecture of the

benchmark and the required metrics.

How can we implement this benchmark in practice?

The only way this design will be impactful and effective is if it becomes a tool people
can run, extend, and trust. Without an implementation that handles multiple MVEs,

we cannot compare systems in a meaningful way.

To do this, I extend an existing benchmark and add per-game translation libraries
that mimic the same high-level actions to each MVE’s expected inputs. By com-
bining automation, documentation, and non-intrusive measurement newcomers can
run experiments out of the box and contributors can add new engines with minimal
changes. Therefore creating a working toolchain that researchers can deploy without

modifying the target engine.

How can we evaluate MVFEs that rely on different network protocols?

Fair and repeatable evidence about responsiveness and scale are important to under-

stand which designs perform better and handle more players.

Shared metrics, namely time from action to visible effect, sustained throughput, and
high-level resource use, are established to then run controlled tests at multiple load
levels with repeated trials. This should establish a procedure for collecting, analyzing,

and comparing results across various platforms.

Research Methodology

To answer these RQs, we will design and implement a benchmark and use it to conduct

real-world experiments.
To address I employed a AtLarge Design Process (10), which consists of an it-

eration through (i) collecting requirements, (ii) sketching a design, (iii) implementation,

and (iv) testing and validating. This process will be repeated until the design fits the

requirements well. I must combine what MVESs need from a benchmark, mainly workload

realism, neutrality to engine/networking choices, and ease of measurement. Additionally,

a practical element is needed. For this, one part of the design will generate player actions,

1.5 Thesis Contributions

another translates them for the system under test, a third records measurements, and the
final part turns the data into clear reports.

For a working prototype called Luantick was built by extending an existing MVE
benchmark with a connector that can drive a second family of engines in addition to the
original. The prototype maintains the workload and metrics modules with the only aspect
changing being the connector. When implementing this, there is an emphasis on clarity,
specifically small configuration files, non-intrusive measurement, and a quick start which
allows newcomers to run it without struggling.

In regards to metrics are clearly defined in three ways. First, is the response
time, where the action to visible effect. Throughput, is the second, with completed actions
per unit time. Third being resource use, such as CPU, memory, and network I/O at a
coarse level. Then there are tests that cover different numbers of simulated players and
the different ways they interact with the world. Each test is repeated to rule out flukes,

and all scripts alongside raw data are shared so anyone can reproduce the results.

1.5 Thesis Contributions

This thesis makes three complementary contributions that advance the state of experimen-
tal research on modifiable virtual environments. First, it offers a design (Section |3) for
a network protocol-agnostic benchmark that isolates the effects of the protocol from the
internals of the engine. The design specifies a layered architecture with workload gener-
ation, protocol adapter, metric externaliser, and analysis modules that can be redirected
to any MVE provided its wire format is known. Design decisions are grounded in the
requirements analysis from Chapter [3] and distilled into a set of reusable patterns that
researchers can adopt when studying emerging engines or proprietary platforms. To the
best of our knowledge, this is the first benchmark blueprint that treats protocol diversity
as a first-class concern rather than an afterthought.

Second, the thesis delivers a working prototype (Section called Luantick, an extension
of Yardstick that supports the Luanti server and its network protocol in addition to the
original Minecraft implementation. Luantick implements a pluggable packet codec layer,
a language-agnostic control channel, and an automated deployment script suitable for
local clusters and public clouds. The entire toolchain is released under an open source
license, accompanied by unit tests, continuous integration recipes, and a quick-start guide.

By sharing both source code and packaging artefacts, the prototype reduces the barrier

1. INTRODUCTION

for other researchers to reproduce our results, port the benchmark to further engines, or
integrate new workload models.

Thirdly, the thesis describes and evaluates (Section 5) an extensive experimental cam-
paign using Luantick. The experiments were executed across tens of runs and multiple
load levels on shared-cluster hardware. Using the same networking-agnostic workloads
and a common measurement pipeline, I quantified user-visible response time, steady-state
throughput, and server resource use for multiple MVEs. These repeated trials meant that
any differences were a direct result of engine design instead of the test harness. This will
then help identify when and why engines separate in performance and when they behave
similarly, and those patterns are translated into practical guidance for scaling and design
choices.

The GitHub repository link containing the implementation code: https://github.com/

energetlk/luantickl.

1.6 Plagiarism Declaration

I confirm that this thesis is entirely my own work, and has not been submitted elsewhere
for evaluation. However, artificial intelligence (AI) played as a supportive role to help
me, understand unfamiliar topics, such as how Luanti was built along with their server
functionality. This was the prompt I would use "I do not understand X topic, can you

explain and give examples to help me understand it."

https://github.com/energet1k/luantick
https://github.com/energet1k/luantick

Background

This chapter introduces the key concepts and system models that underpin a protocol-agnostic
benchmark for Modifiable Virtual Environments (MVEs). Figure presents a high-level
deployment model, while Figure details the internal flow of a representative MVE server
(Minecraft Java Edition).

2.1 Modifiable Virtual Environments (MVEs)

An MVE is an interactive, multiuser virtual world in which participants can alter the
environment in real time by (i) adding/removing terrain, (i) scripting new behaviors
or (iii) installing custom modifications. Unlike fixed-content games, MVEs must handle
arbitrary user input while maintaining a consistent shared world state. Representative
examples include Minecraft, Luanti (formerly Minetest), and Roblox. MVEs are typically
deployed as continuous online services with different client devices and variable network
conditions. Their main challenge is to remain responsive under simultaneous edits while
preserving world consistency and scalability. Every MVE deployment comprises three

logical layers (illustrated in Figure [2.1)):

1. Client Layer: Runs on the player’s Device and includes the MVE Client. It renders
graphics, captures user input, and transmits input packets labeled “Player actions”
toward the Router; it also receives “State updates” from the Router. The client
performs local prediction (e.g., movement smoothing), manages an on-disk cache of
world assets, and subscribes to the player’s area of interest to render only relevant
chunks/entities. Key pitfalls include GPU/CPU contention on the device, clock
drift affecting latency measurements, and the cost of reconciling predicted state with

authoritative updates received from the server.

2. BACKGROUND

I
e
Player ' Internet / GameService po--cocoooooo O\
Home | 2 1 Game Server !
User : 5 i Cluster ..
Input g ' : ; '
np+u Frames . . 'T = mMvE !
1 i .
—— 5 5 Distributing) g Server :
g :’ @ ' Load Requests , 1
Device |\\/E Glient 5 6 Balancer [4 ;oo :
ien i [|Internet Service| : 1 £ MVE 0!
T : Provider : ' Ca
Player actions T Packets 5 : Server I
i State Updates : ; D oprosinreeee e 0!
1 :] Y MVE '
= ' ' 1 (=) ol
S : : ' (=) Server P!
Router L 5 f \\ g T _IJ

Figure 2.1: System model of an MVE deployment. A player uses their device to run
MVE client that connects over custom Protocol through the Internet Service Provided to

a load-balanced game-server cluster.

2. Network Layer: Spans the Router, the ISP, and the public Internet path to the
Game Service. It transports Packets between client and server using either TCP (e.g.,
PaperMC/Minecraft stacks) or a UDP-based protocol with selective reliability (e.g.,
Luanti). This layer is where head-of-line blocking (T'CP) or per-channel reliability
(UDP/RUDP) influences how latency, jitter, reordering, and loss manifest in the
observed action-to-effect timing. A protocol-agnostic benchmark must not assume
stream (TCP) or datagram (UDP/RUDP) semantics; it should record RTT(duration
it takes for packets to go from the client to the MVE server and back), jitter, loss,

and reordering while keeping the workload independent of transport details.

3. Server Layer: Lives inside the Game Service component and starts at the Load
Balancer, which accepts incoming connections and distributes requests to the Game
Server Cluster. Each Minecraft Server instance maintains an authoritative world
state, processes player actions, enforces game rules, and advances the simulation
in a deterministic, tick-based loop. Minecraft-like servers typically target 20 ticks
per second (about 50 ms per tick) under healthy load; exceeding the tick budget
causes visible slowdowns and degraded responsiveness. The figure highlights that a
given player is pinned to exactly one backend instance (the dark-green, solid-border
server); the other dashed, pale instances represent additional available servers for

other players or future scale-out.

A well-designed benchmark must observe the metrics in all three layers at the same

time. At the system level, it watches the CPU and memory (RAM) usage, disk I/O for

2.2 MVE Networking Stack

A

Minecraft Server Tick Latency

D - —> .

@50ms Start / Stop Timestamps Monitor
A
;. < > Client Main Game Loop
[Authentication
Players vy
Packets World & Entity Chunk I/O Terrain & NPC
v Update Generation
Server Updates
Network L. N A

Manager | API ‘

< < 5 Server Plugin

il

i Input Output ! State Storage
. Queue Queue ;

Figure 2.2: Internal flow of the Minecraft server. Packets from clients enter via the Client
Authentication check and Network /Session handler, propagate through the Main Game Loop,
and are eventually dispatched back to clients.

world saves, and the network throughput rates along with losses and retransmits. At the
application level, it times how long each tick takes and how that time is split across major
phases like world updates and plugin/mod loads. And at the service level, it checks the big-
picture capacity: how many players actions per second the server can complete, how many
concurrent clients it can sustain before the latency grows, and how stable the connection

stays when the server experiences multiple join/leave or other synchronized edits.

In the reference deployment, the Load Balancer distributes player connections across the
Game Server Cluster, while each client maintains a single active session to exactly one
server instance (as depicted by the dark-green server). Automated testbeds emulate tens
to hundreds of clients and replay realistic workloads (mixed actions, pacing/jitter, spatial

locality, contention zones).

It’s important to understand that unlike static game worlds, MV Es must deal with many
players changing the space at the same time, which demands low-latency synchronization,
persistent state storage, and dynamic capacity. Even with a load balancer and a cluster
of server instances, players are pinned to a single backend, so hotspots and uneven load
remain a challenge. As player counts and edit actions increase, maintaining responsiveness
and consistency becomes increasingly difficult unless the system is carefully measured,

tuned, and scaled out.

2. BACKGROUND

2.2 MVE Networking Stack

The game server is the authoritative simulator for the virtual world. It runs the in-game
physics and rules, maintains the global state (players, entities (e.g. NPC), and terrain),
and transmits state updates to all connected clients. In Minecraft-like stacks the simulation
advances in discrete steps called ticks, where the target is 20 ticks per second (about 50 ms
each). When the tick rate drops, players experience stutter and increased game latency. In
Figure we have a representation of one of the most popular MVE games - Minecraft.

Incoming traffic first hits the Client Authentication and Network Manager. Together,
they accept protocol packets like TCP handshakes (or UDP/RUDP sessions), decrypt,
verify identity and permissions, and turn raw player packets into structured player actions.
Those actions land in the Input Queue so that the simulation can consume them cleanly
at the next tick.

The “Main Game Loop” is the heart of the server. Each iteration records a start times-
tamp, processes queued player actions, fires a tick event, and then captures a stop times-
tamp so the latency monitor can compute per-tick duration and its distribution. If load or
slow I/O pushes a tick past 50 ms, the server becomes overloaded, and players see jitter
and rollbacks as the authoritative state arrives behind their local predictions. With each
tick, the server generates terrain and entities, updates them, and stores them in the State
Storage. The World € Entity Update moves players and NPCs, resolves collisions, applies
game rules, and runs plugin/mod hooks. Terrain and NPC Generation kicks in as players
explore or edit new regions. Once changes are decided, they’re saved into to storage.

On the way out, the Output Queue prepares updates for each subscribed client it serializes
the relevant world differences (placements, breaks, entity movement), and hands them to
the networking layer for delivery. This keeps the tick thread free while the network side
handles batching, congestion, and retransmissions.

Although many MVEs follow this general shape, real servers differ in ways that can
affect performance. Minecraft-like servers, share a similar architecture and rely on Netty
for networking, but their internals vary. For example, PaperMC introduces asynchronous,
worker-threaded chunk loading to reduce tick stalls during exploration (11)). Community
stacks such as Bukkit /Spigot/ PaperMC and Glowstone expose plugin systems (APIs) that
can add functionality and with that, overhead at runtime (12)). The world-generation code
paths also differ across implementations. For instance, Glowstone is a from scratch server

whose ecosystem includes plugins specifically to provide vanilla-style world gen on non-

10

2.2 MVE Networking Stack

official servers (13). Under the same workload, these choices generate various performance
profiles.

Yardstick’s comparative experiments on vanilla, Spigot, and Glowstone report different
scalability limits and show Glowstone performing worst among those tested, while vanilla
performs the best (8). Measurement at identified instrumentation points allows evaluation
of protocol-agnostic performance, independent of the underlying game engine. This thesis
underlines the importance of benchmarking: by testing different engines with the same
actions and reading out the same cross-layer metrics, we can report real-world capacity

and user-visible responsiveness instead of relying on assumptions.

11

2. BACKGROUND

12

Design of Luantick: A Benchmark
for Protocol-Agnostic MVE’s

This chapter describes the design of Luantick, a benchmark specifically developed to ad-
dress "How can we design a metwork-protocol-agnostic benchmark for MVEs?" .
First, it outlines and elaborates on the functional and non-functional requirements that
guide the development of the benchmark itself, highlighting key design criteria like protocol
independence, scalability, and modularity (Section. Then, it providse a comprehensive
design overview, describing the overall process, workloads, and metrics, and how these ele-
ments fit together (Section. Next, outlines player emulation by explaining how realistic
play patterns are modeled and arranged (Section . This is followed by server orches-
tration which serves as the component that automatically sets up, arranges, and manages
game servers across multiple machines, this involves building and installing the Luanti
server, applying settings, and starting/stopping servers remotely (Section . Finally,
where tests are monitored and measured for me to collect system metrics (e.g., CPU and
memory usage) and application metrics (e.g., server ticks, player count, and server respon-
siveness) (Section [3.5]). This structure ensures that Luantick accurately reflects authentic

player interactions and provides protocol-specific performance metrics.

3.1 System Requirements

For this research, functional requirements refer to the features that Luantick must sup-
port, whereas non-functional ones are regarding the quality attributes needed to ensure

robustness and usability. These requirements are combined leaving the following:

13

3.

DESIGN OF LUANTICK: A BENCHMARK FOR

PROTOCOL-AGNOSTIC MVE’S

Requirements:

R1

R2

R3

R4

R5

R6

Simulate player behavior across network protocols: To benchmark MVEs with
different networking architectures, the system must support simulated clients, that
are bots, who communicate over diverse application-level protocols (e.g., TCP-based,
UDP-based, or custom hybrids). Many MVEs define their own message formats and
state synchronization strategies, so that the bot logic must remain abstracted from

protocol details to enable compatibility.

Ease of use: The benchmark should be able to run itself from start to finish. This
automation involves setting up a fair test world to start and configure the server,
check that it’s healthy, run the workload, watch progress, handle crashes or timeouts
by retrying and restarting cleanly, alongside shutting down and saving logs, traces,
and reports. These steps should also work the same way for different MVEs and

world formats, ensuring that runs are consistent and easy to repeat.

Generate diverse and realistic player behavior: To reflect real gameplay and
examine how the game engine reacts, bots should be able to act like real players,
which involves them walking, idling, navigating toward a fixed coordinate, and block
placement. These actions put pressure on different parts of the server, like physics,
graphics, and world changes, which then helps in understanding how it performs

under different types of load.

Provide protocol-aware logging and metrics collection: To evaluate network
behavior and detect bottlenecks, the system must capture relevant protocol-level
metrics, including packet counts, latencies, disconnections. In addition, monitoring
should be passive and non-intrusive, to avoid significant interference with gameplay

or simulation logic.

Low Overhead: In order to test how MVEs behave under realistic pressure, the
system must support hundreds of concurrent bots. This requires efficient resource

management to avoid introducing overhead when collecting metrics.

Modular and cross-platform core: The benchmark should allow you to swap or
add different aspects, like bot behaviors, server connectors, and metrics collectors,
without touching the rest. This should run reliably on common operating systems
such as Linux, macOS, Windows. Therefore, making it easy to extend to new MVEs

and easy to use in different labs and CI setups.

14

3.2 Design Overview

Legend ‘ :
—>»Data ------- »Configuration - — —>» Results Player Emulation
Player
. Protocol Player
D It T JH Jyeupuutpty iyt - —>
____________ Benchmark > Behavior Adapter] Emulation
L Configuration |) Selector
User :
A |H
L e,
I ey
I
1 : -
Data Processing Network & Metrics Server Orchestration .
and Monitoring : Y
Visualization H
A -» World Selection [------------------1 » Server Setup
Metrics - - - Yardstick N MVE <
Retrieval Collector [Engine L

Figure 3.1: Luantick Design Overview

R7 Clarity and Relevancy: The benchmark should select and present results in a way
that clearly explains performance. Metrics must be relevant to MVEs and describe

system performance and scalability as perceived by real players.

3.2 Design Overview

All benchmarks, including Luantick, define the following three elements (I4)): The first
element is defining a process to conduct the benchmark, while also considering how a
single benchmarking experiment should run, and how and what to monitor about the
system under test, which is described in Sections [3.4] and [3.5] of this thesis. The second
element involves defining the workload given as input to the system under test, outlined
in Section of this thesis. Third, the metrics to assess the output of the system under
test are also defined, further elaborated in Section of this thesis. Specifically, Luantick
extends these principles to accommodate the protocol diversity essential in MVEs, allowing
for a comprehensive performance evaluation across different networking architectures and
game engine implementations.

3.2.1 The Benchmarking Process. Luantick’s end-to-end workflow directly addresses R1,
R2, R4, R6, and R7 mentioned in Section of this thesis. It evaluates MVE servers by
running experiments that combine protocol-agnostic parameters, such as world configura-

tion, player profiles, pacing, and load levels (R2|). Each experiment embodies a virtual

15

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

world and a set of bots defined by these parameters. Since the world and players are
configurable, the benchmark supports a wide range of workloads that remain comparable
across MVE platforms . To ensure these runs are repeatable and efficient, the
benchmark uses non-intrusive measurement and automated setup and teardown methods
. The workload generated by these bots players is defined by selecting a built-in
player behavior pattern, such as random movement, circular navigation, or block place-
ment activities . The Protocol Adapter component decouples these behaviors from
the network implementations, therefore allowing the same logical behaviors to run across
TCP-based, UDP-based, or hybrid protocol architectures (R1)). The resulting workloads
produced from the configuration files, are independent of the specific MVE undergoing the
experiment(s) . These scenarios are designed to cover a broad set of operating condi-
tions, like varying player densities, complex behavior mixes, and across world interaction
patterns . During each experiment, Luantick monitors the machine that hosts the
MVE server alongside the machines that runs the bots. Luantick measures these systems
using CPU, memory, network use and application level metrics such as server utilization
(R4)). The monitoring setup is designed to avoid interfering with the system under test
while supporting hundreds of concurrent bot connections . After each experiment,
Luantick stores both the raw data, such as time stamps and resource samples, and the
processed data, like tables and plots, which allows me to analyze server performance using
metrics that are relevant for MVEs , @

3.2.2 The Benchmark Design. Figure showcases the design of Luantick, which con-
sists of three main components that extends Yardstick’s architecture to support protocol
diversity in MVE systems. The first is the Server Orchestration layer, which manages the
MVE service by starting and stopping the server, which exposes the APIs, applies the
current configuration, and loads the virtual world for the run. The World Selection mod-
ule enables standardized world configurations across different platforms, while the Server
Setup automation handles deployment, configuration, health monitoring, and cleanup pro-
cedures. This element is seamlessly integrated with the Yardstick Collector under the
second component, Player Emulation, to provide real-time performance monitoring with-
out manual intervention. Second, Player Emulation connects the bots to the system under
test via a Protocol Adapter component. The adapter enables Luantick’s protocol-agnostic
behavior by translating player action, such as moving, interacting, and communicat-
ing, into the protocol-specific network messages expected by each MVE, including Luanti’s
UDP protocol and Minecraft’s TCP implementation. It is designed to maintain consistent

behavioral models across engines while accommodating protocol specifics (R1} [R3|). The

16

3.3 Player Emulation

Player Behavior Selector offers configurable profiles that reproduce realistic activity, from
basic movement patterns to complex ones, for instance building and exploration .
Third, the Network & Metrics Monitoring layer observes the bots alongside the server
environment to collect and process measurements using a Yardstick Collector. The imple-
mentation of said Yardstick Collector is specific to the MVE under test. Luantick provides
collectors for Luanti and offers an extendable interface to add other platforms. These col-
lectors are then implemented as minimal changes to the server source code or as external
monitoring agents to keep implementation effort low while still providing player-
focused metrics, such as how quickly actions take effect . The Collector standardizes
the measurements and forwards them to the results database for analysis. Moreover, the
modular architecture enables extension to new MVE platforms through pluggable Proto-
col Adapters and collectors . The management of the experiment’s lifecycle ensures
consistent and repeatable benchmarks across different platforms. The collected metrics

provide clear insights into the performance characteristics that matter to real players and

server operators (R2] [R7).

3.3 Player Emulation

The purpose behind Player Emulation is to reproduce the actions of real players with
simulated workloads, this can range from moving and looking around to interacting and
placing objects within the virtual environment. The goal of these workloads is not to mimic
a single session perfectly, but to generate repeatable behavior that is similar to everyday
play activities so that user experience is reflected through meaningful system responses.
That said, this section explains the design principles, modeling choices, and validation
steps that make these workloads realistic and comparable across different MVE platforms.

Luantick implements workloads for multiple MVE platforms, including Luanti and Minecraft
(via Yardstick’s existing PaperMC support). Each platofrm has its own interaction model,
meaning the workloads are not identical. Despite their lack of similarity, they do share
a single high-level configuration interface which specifies the number of simulated players
alongside their behavioral profiles. Internally, each game uses a separate execution en-
vironment, which keeps player behavior faithful to each platform, to ensure that, at the
configuration level, users specify “what” happens rather than “how” any engine prefers to
receive it .

At the design level, these workloads were written in a clear manner. The configuration

describes players in terms of high-level actions and the conditions in which those actions

17

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

occur. Then, the Protocol Adapter converts the scenario, of what the simulated players
do, how many there are, where they act, how fast they act, and for how long, into engine-
specific interactions. This allows me to describe what players do once, and the adapter
then handles how each game expects to receive it. This approach keeps the focus on player
intent rather than technical protocol details, thereby improving ease of use for benchmark
operators .

In practice, extending Luantick in a manner to support another MVE means implement-
ing only the adapter, rather than rewriting the behavior model . Similarly, most
experiments can run again on different platforms by changing the connector but keep-
ing the scenario unchanged, which aligns with the requirement for platform-independent
workload generation .

Additionally, to enforce the requirement, that the defined behavior remains unchanged
across MVE platforms, Luantick defines invariants that every protocol implementation
must maintain regarding the order and timing of player actions. The following rules make
cross-engine results easier to interpret. First, is order, where it is required for actions
to happen in sequence, for instance “move from A to B, then place one block, and look
around.” After, the connector preserves that sequence within a reasonable time frame.

Second, is where the action (e.g., moving) triggers the corresponding in-game effect as
intended. In our example, a movement action must result in visible player displacement,
block placement must result in world modification, and camera orientation changes must
reflect the specified viewing direction.

Third, is where timing windows arises where it must be specified how often actions should
occur, and the connector should meet the given time frame.

However, this raises the question of why there isn’t a reliance on one universal script
for all games. Such scripts usually blur the differences in how engines handle movement,
interaction, and world updates. If the workload is too generic, then it can hinder the exact
effects that should be measured. This is why Luantick focuses on what the player is trying
to do and allows each game connector to express it in the way the engine expects. This
focus keeps things fair, because every engine is asked to do the same set of player actions
while allowing each MVE platform to behave in its natural way. Therefore, the benchmark
stays neutral to design choices yet still shows the performance impact of those choices.

Furthermore, Luantick groups the actions of the players into two families that can be
combined to form rich behavior . First is movement, which covers waypoint walks,
simple random wandering, circular paths, and short idle periods with camera turns. The

second is block interaction, where bots create, modify, and remove blocks, from small

18

3.4 Server Orchestration

towers and walls to quick exploratory placements like house. Two parameters control both
families. One of which is pacing that sets how often actions happen. The other is locality,
which defines where they occur and how long players stay in a region.

Locality matters because real players cluster at points of interest such as spawn areas or
build zones. By shaping locality, the benchmark creates natural crowding and contention
that stresses scheduling, chunk input and output, and update propagation, revealing how
engines behave under spatial pressure . At this point, the engine reveals differences
regarding how they schedule work and spread world updates.

Each experiment follows a simple phase based schedule with a fixed workload so results
are comparable across runs and platforms: warm up to reach steady state, measure to
collect data, and cool down for clean tear down. This consistency enables side-by-side
comparisons and large automated campaigns , .

In addition, each experiment runs in phases to make results comparable. Movement
validation confirms that paths produce the expected position updates, and interaction
validation confirms that placements and edits are acknowledged by the server. Moreover,
runs that fail these checks are excluded from this thesis, in order to avoid bias results so

findings reflect real system behavior rather than experiment faults (R7)).

3.4 Server Orchestration

As mentioned in Section 3.2.2 of this thesis, the first layer of Luantick is Server Orches-
tration that addresses the complexity of managing different MVE platforms through a
protocol-agnostic interface. This component addresses requirements and [R6] by
providing automated deployment, configuration, and experiment management capabilities
that effectively work across different MVE implementations.

Regarding protocol-agnostic server management, Luantick implements a unified Server
Management API that provides consistent deployment and control interfaces across differ-
ent MVE platforms. This defines the following four operations: ’deploy()’, ’start()’, 'stop()’
and ’cleanup()’. These operations are implemented by protocol-specific server classes, such
as "LuantiServer" for Luanti’s UDP-based architecture, with the possibility to extend it to
Minecraft servers and other MVE platforms . Furthermore, the automated de-
ployment pipeline handles the servers lifecycle without manual intervention . Building
on this API, infrastructure provisioning allocates cluster nodes on demand and prepares
the runtime environment by installing required dependencies and configuring networking.

The configuration abstraction provides standardized server configuration forms that adapt

19

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

to different MVE engines. This system keeps the benchmark consistent, by generating
protocol specific configuration files, so that the experiments are comparable across plat-
forms. Then, binary distribution builds or retrieves the target MVE server and distributes
the same build to all nodes, which ensures consistent versions and stable build settings for
the benchmark. Combing these steps, each experiment consist of identical starting points
which reduces the chance of configuration drift.

Additionally, world configuration is a crucial part of benchmark reproducibility and
cross-platform comparison. Luantick implements standardized world generation mecha-
nisms to create consistent testing environments across different MVE platforms. Therefore,
the system is able to support multiple world types, including flat worlds for performance
tests, procedurally generated worlds for realistic scenarios, and pre-built worlds for spe-
cific benchmark scenarios. Moreover, deterministic world generation using fixed seeds
and standardized parameters ensures identical world states across experiment runs. This
is important for statistical analysis and performance comparison, because it eliminates
world-generation variations as factors in performance measurements. During deployment,
monitoring is automatically integrated, so that the system configures protocol specific
measurement components, allowing the relevant metrics to be captured without manual

Intervention.

3.5 Network and Metrics Analysis

As discussed in Section 3.2.2 of this thesis, the Network and Metrics Analysis layer of
Luantick implements a comprehensive monitoring and measurement ability and
R7). This element provides protocol metrics collection, low-overhead monitoring infras-
tructure, and clear presentation of performance results relevant to MVE systems. During
experimentation within a protocol-agnostic monitoring framework, Luantick implements
a monitoring strategy that captures system level and protocol-specific metrics across dif-
ferent MVE platforms. Each machine runs a local monitoring agent that automatically
collects and stores system level metrics, such as CPU utilization, memory consumption,
and network throughput. These agents are then organized based on hierarchy with a
central monitoring node, called the primary coordinator, that gathers data on all sensor
agents across the distributed benchmark to collect their measurements. This method of
data collection with these experiments is non-intrusive and it is designed to reduce im-
pact on the system under test . For each benchmark run, Luantick buffers samples

in memory and writes them to store in efficient formats, which consumes less than 2% of

20

3.5 Network and Metrics Analysis

CPU and memory even under high intensity scenarios with hundreds of concurrent connec-
tions. After the collection phase, Luantick performs cross protocol standardization, where
protocol-specific measurements are converted into a unified metric, allowing results to be
comparable directly across platforms . For instance, message transmission is reported
as messages per second regardless of the underlying protocol, the connection stability then
uses a single success rate definition across all connection management designs. The anal-
ysis tool only operates on this normalized dataset, making figures and tables consistent
across experiments and systems.

3.5.1 Connection(s) and Network Behavior Analysis. Luantick captures detailed connec-
tion lifecycle metrics that provide insights into network behavior and protocol performance
characteristics. The system then records connection attempt timestamps, handshake du-
rations, and failure reasons, which allows for a detailed analysis of connection behavior
under varying conditions. The session lifecycle monitoring records player session duration,
disconnection patterns, and reconnection behavior. It maintains detailed logs of session
events, including voluntary exits, network timeouts, and connection failures detected by
the protocol layer. These measurements are important because they provide insight into
the stability characteristics of different MVE protocols and their behavior under stress
conditions, so we can identify patterns that create instability and compare how different
systems recover from such faults . Next, is the behavioral impact assessment
which links performance measurements to specific player behavior patterns , by
measuring how simple movement, mixed interaction, and intensive building affect server
responsiveness, network use, and resource consumption. Comparing these elements under
the same conditions offers insight as to which behaviors trigger contention, which settings
remain stable, and where configuration changes yield the greatest improvements. These
results are beneficial to developers and benchmark operators as they can now adjust the
performance for the behavior mixes they expect in production . Building on the
session and behavior analyses, Luantick derives service level metrics from the system level
and protocol-aware measurements it collects. From the message transmission data, it cal-
culates frequency distributions, average message sizes, transmission rates for each message,
and statistical summaries. The message sizes reflect application level payloads rather than
full network packet sizes, keeping the results independent yet suitable for cross protocol
comparison. From server update data, Luantick also estimates the update measure of
the game loop to show how efficiently resources are used for a given workload. Together,
these metrics provide clear indicators of server performance that align with what players

perceive in practice (R7]). After each experiment, Luantick automatically runs a data

21

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

processing pipeline that takes the collected metrics and logs, checks their integrity, aligns
timestamps, and collected measurements into consistent time windows. Then, it calcu-
lates summary statistics later analysis, with the raw traces, supporting detailed inspection
and re-analysis, and the processed outputs, providing summaries for quick assessment and
comparison, saved @ Building on the mentioned processed dataset, Luantick also
provides interactive charts and comparison views to examine the results. Such visualiza-
tions help reveal trends across load levels, identify outliers, and compare experimental
conditions side by side. After, Luantick generates a complete results report that docu-
ments the setup and configuration, defines the metrics, presents statistical summaries and
figures, and records versions, seeds, and any deviations from the plan. The report gives
operators and researchers a single product that can be reviewed, shared, and archived,
which supports fair comparison across MVEs and makes follow up experiments easier to

plan and execute.

22

4

Implementation Overview

This chapter describes the implementation of Luantick, which is a benchmark prototype
developed to answer How can we implement this benchmark in practice? . The goal
is to translate the protocol-agnostic design from Chapter [3|into a working system that can
be executed, extended, and trusted for experiments.

First, there is an overview of the used implementation approach, explaining how the
existing Yardstick framework was extended and adapted to support the Luanti engine
(Section . Next, is the data analysis pipeline where collected metrics are processed
through Yardstick’s analysis scripts to generate standardized results and visualizations
(Section . This is followed by the bot implementation, where Rust-based clients are
built to mimic realistic player actions and interact with the Luanti server through its native
protocol (Section . Then, deployment automation is introduced, where the Luantick
Collector is enabled through server configuration templates and operates as an in-game
component that records application-level metrics such as tick duration and player activity,

exporting them in a structured format for analysis (Section [4.4)).

4.1 Luantick Framework Overview

The primary goal of the implementation is to turn the design into an extensible toolchain
that remains protocol-agnostic while still handling the realities of benchmarking MVEs. To
do that, the framework combines server orchestration, player workloads, and metrics col-
lection. It reuses Yardstick’s core ideas for experiment definition and analysis, but extends
the implementation of a stack that fits the Luanti’s C+-+, Lua, and UDP foundations.
The implementation follows a modular approach so that each concern evolves without

affecting the rest of the benchmark, which is achieved by a high-level architecture con-

23

4. IMPLEMENTATION OVERVIEW

Orchestration Layer System Under Test (SUT) Data Analysis Pipeline
. Yardstick Analysis
> Rust Bot F» player_metrics.tsv Scripts Generate—i
Compile and Run Write
Results Report and
Ansibl | Visualizations
nsible ;
Luantick
Playbooks Interact Collector |Collect Data——>] Resullts
Collection
Mod
Communicate
Deploy and Start Write
[| Luanti Server LP tick_metrics.tsv
- ' Legend I:] External Tools

Orchestrate D Active <> Internal
Processes Component

Figure 4.1: Luantick Implementation Overview

sisting of three main elements. First, is an Ansible-based orchestrator that manages the
experiment lifecycle end to end. Secondly, a Luanti server instrumented with a lightweight
Lua collector. Third being a fleet of Rust based bots that generate player workloads.
This means that layers communicate together through explicit files, networks, or process
boundaries, which maintains clear and repeatable responsibilities.

These implementation aspects, shown in Figure 4.1 ensures stable relationships. Rect-
angles with sharp edges denote external tools and systems, such as Ansible playbooks,
TSV files, and result collection. Rounded rectangles mark active processes and services
like the Luanti server and the Rust bots. Diamond shapes indicate internal modules em-
bedded within larger systems, for example, the Luantick collector mod. The technological
choices reflect trade-offs between portability, overhead, and development speed. For in-
stance, Ansible is used because of its agentless model, which simplifies setup in shared
research clusters. Declarative YAML playbooks give a versioned and readable description
of provisioning, configuration, execution, and teardown. Therefore, supporting automated
and reproducible deployment while avoiding background operations.

For metrics collection, Lua is used because Luanti already exposes Lua hooks as APIs,
where a collector mod reads timing and player state via

minetest.register_globalstep() and minetest.get_connected_players(). This
direct access removes the need for sidecars or polling exporters to get data. The result
is precise tick and event timing with negligible added latency. That said, we keep the
collector minimal to respect non-intrusive monitoring goals.

For workload generation we lean on Rust and the texmodbot ecosystem (15). Rust

offers predictable performance and memory safety, plus asynchronous concurrency that

24

4.2 Metrics Collection System Implementation

scales to hundreds of simulated players. Here, helper libraries such as mt_auth, mt_net,
and mt_rudp summarize protocol details so the high-level behavior logic can focus on
realistic scenarios rather than packet details (16)).

The monitored metrics are appended into TSV files. The reason why TSV was chosen
is because the format is simple and cheap to parse, which works well with the existing
Yardstick scripts. For example, TSV handles well partial writes and remains easy to
inspect during debugging. By contrast, JSON made debugging slower when something
went wrong.

Together, these choices implement the mentioned design requirements from Section
into practice. Specifically, modularity for easy extension , low overhead so that the
benchmark does not disturb the system under test , clear and relevant metrics for
interpretation , and protocol neutrality from client to wire to server .

4.2 Metrics Collection System Implementation

The server side metrics collection system is one of the most important parts of the frame-
work, because instead of relying solely on the Java plugin model, a Lua native Luantick
implementation is added. The goal behind this is to observe timing and activity patterns
such as tick duration, player actions, and interactions with the server without altering the
engine execution path or introducing blocking I/0. For example, timestamps are read, and
compact records are then written, but the tick thread never waits on the file system.

To implement this collection system, a Lua mod, called the Luantick Collector Mod,
integrates with the tick scheduler. The orchestration layer deploys the mod and the server
entirely, in a manner where no manual server edits are required to make this mod work.
Here, the collector attaches a single global step callback that performs minimal arith-
metic, where each tick is appended to the metrics file. As a result, measurement remains
predictable even when the world grows or many players connect.

The core loop presented in Listing 4.1 records three things. First, minetest.get_us_time()
is used to record in append mode per tick timing. This is done by each tick emitting one
formatted line for each to join, leave, or interact while also leaving visible small latency
spikes. However, if a process unexpectedly stops, the written lines are still valid, therefore
yielding durable logs with low overhead and simple inspection. If a mod fails, the test
continues to run as if the collector were absent. Second, player join and leave events,
which are registered from the engine callbacks, which then provide a timeline allowing the

correlation of player connections with tick variance. Third, block interactions such as place

25

4. IMPLEMENTATION OVERVIEW

and dig are recorded to later support action to effect analysis once client side timestamps

are available.

-- Define file paths
local metrics_file = minetest.get_worldpath() .. "/mod_storage/
tick_metrics.tsv"
local player_file = minetest.get_worldpath() .. "/mod_storage/

player_metrics.tsv"

-- Record tick performance
minetest.register_globalstep (function(dtime)
local now = minetest.get_us_time ()
local duration_us = now - last_time
last_time = now

tick_count = tick_count + 1

local timestamp_s = now / le6 -- seconds since epoch
local duration_ms = duration_us / 1000 -- milliseconds

local players_online = #minetest.get_connected_players ()

local file = io.open(metrics_file, "a")
if file then
file:write(string.format ("7 .3f\t%.3f\t%d\t%d\n",
timestamp_s, duration_ms, tick_count, players_online))
file:close ()

end

if duration_ms > 100 then
minetest.log("warning", string.format ("YARDSTICK: High tick
duration: %.2fms (players: %d)",
duration_ms, players_online))
end
end)

Listing 4.1: Example of the function that registers server ticks

4.3 Rust Bot Implementation and Authentication

Luantick runs the bots that drive the workload, which sign on to the server using the
expected handshake, where the client sends the server a message for the server to respond
to. For Luanti, there is an added adapter alongside the existing tools for Minecraft rather
than replacing them, so that both engines can run the same scenarios. However, some
network transports do not guarantee delivery or ordering. The bot implementation handles

re-sends and messages that arrive out of order, but this is done without affecting the

26

4.4 Deployment Automation and Integration

schedule of actions defined by the workload. For example, it will resend when required
and reorder only as needed while keeping the original timing for move, interact, and place
actions.

The mentioned authentication aspect is derived from the Secure Remote Password hand-
shake. Here, the mt_auth library involves verifier computation and proof exchange so that
higher layers only react to success or retry states. This flow is straightforward, as a bot
connects and sends an initial message with its username. The server, as aforementioned,
then replies with SRP parameters such as the server public key. After, the bot combines
the parameters with the user password to compute a proof of knowledge and sends that
proof back. Once the server validates the proof, access is then granted and normal game
play begins.

To keep the bot connection reliable and authentic, the library mt_auth changes in a man-
ner that allows bots to auto-register in the server. This is crucial as Luanti serves require
users to log in alongside having unique usernames, in order to play, creating challenges
when implementing bots. That said, bots now have distinct usernames which ensure that
they succesfully connect to server.

The behavioral realism system provides two bot classes, being Walkbot and Blockbot,
that target different subsystems. On one hand, Walkbot focuses on movement, while
offering four movement archetypes. First, the static mode provides a baseline with minimal
network interference. Second, the random mode involves simulating casual exploration by
randomly choosing directions and speeds. Third, the circular mode produces a predictable
yet consistent load by moving around a fixed center. Lastly, the follow mode drives bots
towards specific coordinates by using trigonometric functions to calculate the direction
of movement. On the other hand, Blockbot focuses on world mutation while emphasizing
mutation paths through structured build patterns such as tower, wall, platform, and spiral.

Finally, position management maintains the visibility and use of bots. To avoid falling
through terrain or getting stuck, the bots fix their vertical coordinates at Y equal to 8.5.
This places them above typical ground but below common build heights, which makes local

observation easy while keeping positions consistent for measurement.

4.4 Deployment Automation and Integration

The deployment system of the Luanti Server and Rust Bots handles machines, preserves

reproducibility, and reports failures clearly. With this, each trial is defined by declarative

27

4. IMPLEMENTATION OVERVIEW

playbooks that record the exact scripts and settings, so that one can trace any result back
to its inputs and replicate runs.

Additionally, orchestration also uses playbooks for each phase of the experiment life-
cycle, ranging from prepare and launch, to measure and teardown. Such a modular layout
allows us to test or debug one phase without touching the others, therefore keeping the
responsibilities separate. Another function of orchestration is that it handles the realities
of building Luanti from source on mixed cluster nodes, managing libraries, and keeping
build environments consistent. For example, luanti_deploy.yml provisions the server by
installing dependencies, compiling source, and generating configuration files.

Since building Luanti from source code requires multiple dependencies and is time con-
suming, the aforementioned playbook file that deploys said Luanti server copies the exe-
cutable file from the head node where it was complied in advance, which is evident in the
Figure Screenshot. It begins by preparing the environment with tool chains and libraries.
Next, it gathers and compiles the source to validate that the binary produced exists and
runs. If any step were to fail, the system reports the issue early, so nothing is launched
against a broken server.

Furthermore, when configuring the server the implementation uses Jinja?ﬂ templates to
produce server configures with experiment specific parameters. Here, the user sets network
options, world parameters, security policies, and mod-loading instructions, making the
Luantick Collector present and active. The template approach provides consistency across
runs while still allowing controlled variation for different scenarios.

Bot deployment is managed by rust_walkaround_deploy.yml, which sets up the Rust
toolchain and compiles the bots across all nodes. The texmodbot stack expects a nightly
rust toolchainEl, where the playbook then ensures that the correct compiler is available
everywhere. The source is then synchronized, which resolves dependencies, and builds
binaries optimized for the target hardware. To keep builds reliable, cargo fetch steps use
throttling and controlled serialization keeping logs readable while reducing failures. This
eliminates deployment issues when bots attempt to deploy on multiple machines.

Finally, results collection gathers metrics and logs into a time-stamped directory. Simple
structural checks look for the presence of tick, player, and interaction files and for the main
server log. As a result, missing artifacts are immediately noticed, allowing for a correct

analysis.

"https://jinja.palletsprojects.com/en/stable
’https://rust-lang.github.io/rustup/concepts/channels.html

28

https://jinja.palletsprojects.com/en/stable
https://rust-lang.github.io/rustup/concepts/channels.html

Evaluation

This chapter presents the evaluation of Luantick, helping to answer the third research
question "How can we evaluate MVEs that rely on different network protocols?" .
The goal is to apply the implemented benchmark to structured experiments that reveal
protocol-specific performance, scalability limits, and resource utilization patterns across
different engines.

First, the main findings are introduced, highlighting protocol-level performance differ-
ences, resource utilization trends, and the scalability boundaries of the tested environ-
ments (Section . Next, the experimental setup is outlined, describing the controlled
environment where Luantick was deployed and the variables selected for systematic testing
(Section [5.2)). This is followed by the presentations of the main findings (MF) from their
introduction in Section [5.1} As[MFT]and [MF2|address the impact of protocol differences

on responsiveness and throughput, they become interconnected and are discussed together
(Section [5.3)). [MF 3| and [MF4] also build on each other, since they expand the analysis to
cover scalability under increasing workloads and resource utilization trends (Section [5.4)).

Finally, describes a distinct aspect of the evaluation (Section [5.5).

5.1 Main Findings

We derive the following main findings from the experiments summarized in Table

MF1 On the minetest game mode, an official default Luanti server hits a retention
ceiling around ~180 concurrent players. Beyond that, performance is limited
by the game engine, which points to a connection/session management limit rather

than a resource limit, further elaborated on in Section [5.3

29

5. EVALUATION
Parameters
Focus Players Behavior Game Mod Environment Dur. |[m]
System scalability (walk) 5-300 circular minetest DAS-5 4
SC: Movement pattern (walk) 5-500 random minetest DAS-5 4
Spawn radius (walk) 5, 100, 150, 200 random (r==60) minetest DAS-5 4
Spawn radius (walk) 100, 200 random (r=120) minetest DAS-5 4
Build pattern (block) 5-300 tower (r=0) minetest DAS-5 4
Build pattern (block) 100, 200 tower (r=120) minetest DAS-5 4
Pattern variation (block) 100 wall (r=0) minetest DAS-5 4
Game mode (walk) 5-150 random extra_ordinance DAS-5 4

Table 5.1: Benchmark families grouped by focus, parameters, and environment. Spawn

radius is shown in the Behavior column as r = {0, 60, 120}.

MF2

MF3

MF4

MF5

5.2

Game mode selection materially changes capacity. The minetest mode con-
sistently supports more players at target TPS than the community extra_ordinance

mode under similar loads.

Movement pattern matters. At the same concurrency, Walkbots with 'random’
workload reduce TPS slightly and increase tick-time variance compared to circular
Walkbots. These circular movement represents an “idealized” steady load, while

random movement produces short micro bursts, which are described in Section

Spawn radius changes I/O and performance. Distributing players over larger
areas (radius 60 or 120) impacts workloads in different ways. For Random Walkbots,
this results in a minor performance penalty, with slightly reduced TPS, longer tick
durations, and increased network throughput, while CPU and memory usage remain
low. On the opposite end, Blockbot runs benefit from this distribution, achieving

higher TPS alongside reduced CPU consumption, as discussed in Section [5.4]

Placing blocks costs more than walking. For comparable amount of connected
players, Blockbots consume more memory than Walkbots while CPU and average

TPS stay similar, outlined in Section

Experimental Setup

All experiments run on the DAS-5 distributed medium-sized supercomputer, which is part
of the VU cluster (I7). The nodes of DAS-5 are equipped with two 8-core Intel E5-
2630v3 CPU @2.4 GHz with 64 GB RAM that give a lot of computing power for the

30

5.2 Experimental Setup

experiments. Unless stated otherwise, one node hosts the Luanti server and the remaining
nodes host the bot workload.

As mentioned in Chapter [4 the experiments ran on Luantick, which is an extension of
Yardstick for the MVE called Luanti [l The benchmark reserves one or more of the 68
DAS-5 nodes and deploys server and workload processes using custom Ansible playbooks
that (i) copy shared libraries from the head node to the server node, (ii) copy the Luanti
server binary and its data directories, (iii) install a nightly Rust toolchain on each worker
node, and (iv) copy the bot workloads and metric collectors. Therefore, there is no need for
custom VM (Virtual Machine) images since everything runs on the host Linux installation.

First, the system scalability test was conducted to bracket the feasible concurrency for
the server on minetest. In practice, this establishes the safe operating window that sub-
sequent experiments should target. Next, the movement pattern is varied because path
diversity directly affects the per-tick workload mix which includes entity updates, colli-
sion checks, and visibility calculations. After, the spawn radius is adjusted to reflect how
public servers often concentrate players in hubs influencing spatial locality and streaming
pressure. Finally, build patterns like tower vs. wall are compared, because different world
mutation pathways stress the engine instead of pure movement.

System metrics such as CPU, memory, and network and disk throughput are collected
with Telegra]ﬂ on all active nodes. For instance, CPU and memory come from cpu and
mem measurements, while per-interface network counters (net) and per-device disk counters
(diskio) are separated into rates. Application metrics are then exported by a Lua collec-
tor, including per-tick timing, player joins/leaves, and block interactions. All application
streams are append-only TSV files, with one line per event, making partial runs recover-
able in case the metric collector stops working or the server shuts down unexpectedly. In
the analysis step, each benchmark run gets its own ID, so then (i) timestamps are nor-
malized, (ii) concurrency whether peak or unique are obtained, and (iii) join network/disk
summaries are linked back to the run ID. This benchmark is designed in a manner where
the entire pipeline is reproducible, inputs are present in the per-run directory and the
notebooks/scripts write explicit CSV outputs alongside figures.

All experiments were carried out using the implemented protocol adapters for Luanti

and unless otherwise noted, follow this environment and setup.

"https://www.luanti.org
®https://github.com/influxdata/telegraf

31

https://www.luanti.org
https://github.com/influxdata/telegraf

5. EVALUATION

Bot Configuration vs Actual Concurrency

500 4 @ Walkbot o
Blockbot ',/
—=- Perfect efficiency (1:1) //’
-
400 4 e
-

o L
I -
> -
] -
E' -
g 300 A //’
E -
2 -
c -
=] e
8 -
% -7
g 2001 e
£ 8 ° 3 .
g A4 e
< e

100 g

T
-
o
0 o®
; : T : : :
0 100 200 300 400 500

Configured bot count

Figure 5.1: Maximum concurrent players against the desired number of emulated players

5.3 Maximum concurrent players (MF1|, MF2)

Prior works show scalability limits ranging from a few dozen to a few hundred concur-
rent players, depending on the Minecraft-like game and workload used. For example,
the serverless prototype Servo, reached around 150 players during its scaling evaluation,
whereas Luanti achieved 180 players under similar conditions as seen in Figure [5.1] The
theoretical limit for Minetest, and thus Luanti, is 65,535 players via max_users setting in
minetest.conf. That said, the practical and playable maximum depends on world con-
tent, mods, and server configuration, with community reports of lag above =~ 200 players
being common.

During the runs on minetest, the server maintains 20 TPS, with the general range
being from 19.4 to 19.9. The CPU and memory are below saturation, yet concurrency
stays around 180. This maximum of 180 concurrent players is concrete because at the 175-
180 mark, if new players join the server, that results in almost immediate disconnection of
existing peers, which looks like a retention ceiling rather than a throughput collapse.

During multi-bot runs on the community extra_ordinance mode, the server logs emit

the warning shown also in Figure [5.3

Third person will break aiming and many other things, turn back while you

still can. This is an engine limitation

As demonstrated in Figure the Minetest game mode remains stable close to 19.9

TPS even as the number of players increases. However, Fxtra Ordinance shows a decline,

32

5.3 Maximum concurrent players (MFlI, MEF'2)

TPS Performance Comparison in Different Game Modes

200 === e e e

19.9

19.8

19.7

Average TPS

19.6

19.4 Vanilla (Minetest Game)
Extra Ordinance (Community Mod)
~~+ Target TPS (20)

0 25 50 75 100 125 150 175
Actual Max Players Online

Figure 5.2: Average Ticks Per Second (TPS) variation between the 2 tested game modes:
Minetest and Extra Ordinance

THIRD PERSOM WILL
SREAR AIMING AND
RUARY (XTHER
THIMNGS, TURN DACE
WHILE ¥i0U STILL
CAN THIE 15 AN
EMGINE LIKITATICN

THIRM RERSR] WA

B
THIRD PERSOM wWILL
Tt BREAK AIMING AND D? Whllll-jl-
MANY OTHER NG A
THINGS, TURKN BACK THER pemn wiL

E WIHLE you T RN BACK
FAK THIS IS AR JSTILL

Figure 5.3: Descriptive message shown in the game mode "Extra Ordinance’ when more than
2 players join the server.

dropping below 19.5 TPS as the player number approaches 150 to 175 which is beyond
the recommended number of active players according to the server warnings, meaning
that while the added complexity of the community mod reduces scalability and introduces

overhead that directly impacts tick stability.

Luanti uses a per-iteration packet budget which is divided fairly across active peers. In

simplified form:
peer_quota = max(l, total_iteration_packets / active_peers)

In our configuration, max_packets_per_iteration = 2048 (twice the default). At ~ 171

peers this yields roughly 12—-13 packets per peer per iteration, matching warnings such as:

WARNING [ConnectionSend] : Packet quota used up for peer_id=64003, was 13 pkts

33

5. EVALUATION

Walkbot: Random Workload vs Circular Workload

56 Random Movement
Circular Movement
Target Tick Duration (50ms)

55

53

Average Tick Duration (ms)

51

50

0 25 50 75 100 125 150 175
Actual Max Players Online

Figure 5.4: Comparison of average tick duration (ms) between the 'random’ workload and

"circular’ workload

Here, the limiter is not the overall packet capacity but instead the portion of the fixed
budget allocated to each player. As the active set grows, each client receives fewer packets
per tick, therefore balancing the send loop but also makes marginal peers more fragile
during player action overload.

It is likely possible to push beyond 180 with tailored network settings or multi-instance
designs, but the evidence indicates a connection/session management ceiling rather than
a tick-rate or CPU/memory limit. This means that the main bottleneck at that point is
who gets how many packets per iteration rather than whether the main loop can keep 20
TPS.

5.4 Movement pattern & Spawn Radius matters (MF3}, [MF4]

Random Walkbots introduce uneven bursts in movement and entity updates, such as many
bots change direction at once, therefore colliding with world features, or cluster temporarily.
On the other hand, circular Walkbots, produce a steady, predictable stream of updates
at constant speed and curvature. This is evident in the Figure that show slightly
higher tick average and visibly larger variance for random movement at the same connected
players. The CPU deltas are small, which suggests the main effect is scheduling and short-
term contention rather than sustained compute load as shown in Figure [5.5

Figure [5.4] shows that at lower player counts, both workloads stay fairly close, but as
concurrency increases the differences become clear. Random movement, produces higher

variance and sharp spikes, especially over 150 players, because bots frequently change

34

5.4 Movement pattern & Spawn Radius matters (MF3|, MF4)

CPU Usage Comparison Between Walkbot Movement Patterns)

Random Movement
30 Circular Movement

Average CPU Usage (%)

0 25 50 75 100 125 150 175
Actual Max Players Online

Figure 5.5: Comparison of CPU usage between the 'random’ and ’circular’ workloads of
Walkbot. Small deltas suggest scheduling/contention effects.

direction at the same time. On the other hand, circular movement creates a smoother and
more predictable load, although it still rises above the 50 millisecond threshold at higher
scales. This means that the type of workload matters, because despite the same number
of players, less predictable behavior generates more pressure on the server which reduces
stability

Spawn placement changes spatial locality. With radius 0, all players spawn at the same
location, therefore allowing the server to reuse nearby mapblocks and neighbor lists while
keeping streaming paths short. Then, with a radius of 60 or 120, players spread out and
the server interacts with more distinct regions per minute, which increases world streaming
and event fan-out. The experimental data shows that (i) a modest TPS reduction and
higher tick variance, and (ii) increase network and disk activity which is most evident with
Blockbots as they continuously modify the virtual world. However, with Walkbots the
effect is present but smaller, meaning that concentrated spawns are more efficient, whereas
large spawn radii provide greater spacial fairness for slightly higher disk 1/O usage, and
reduced tick stability.

Figure shows how changing the spawn radius impacts disk 1/O and performance for
Walkbots and Blockbots. When all players are concentrated in a hotspot, disk usage is
lower and more predictable because the server repeatedly accesses the same nearby map
blocks. However, as the spawn radius increases to 60 and then 120, players are spread
across regions, which increases streaming and I/O demand. This is more evident with
Blockbots, where larger radii push disk activity consistently higher, since building actions

continuously modify new areas of the world. Walkbots, on the other hand, also show an

35

5. EVALUATION

Spawn Radius Changes /O and Performance
1e6 (Disk 1/0 Impact)

Walkbot (Hotspot)
Walkbot (r=60)
Walkbot (r=120)
Blockbot (Hotspot)
84 —m~ Blockbot (r=60)
Blockbot (r=120)

8.6

KX

82 et e
T, s
s mrii===
= By ——
080 afasEEs
~
)
a @
878 .o °
2 ‘o PN e '
g SN AN AN é
< ROVAE \T NG

7.6 ".‘/‘,’ 3¢

PR -’
Yo 8
74 e EET
K ‘)‘)‘)'—_—
cents
_.-,","’
*
72 F
0 25 50 75 100 125 150 175

Actual Max Players Online

Figure 5.6: Comparison of Disk I/O usage between the Walkbots and the Blockbots

increase, but the effect is smaller because simple movement generates fewer world changes.
Therefore, proving that spatial locality does matters since concentrated spawns are more
efficient for the server, while spreading players across the map increases I/O load and

reduces stability.

5.5 Placing blocks costs more than walking (MF5))

The two subplots in Figure compare CPU and memory usage for Walkbots and Block-
bots. On the left, CPU usage gradually risies with player counts for both workloads, but
the difference between walking and block placement is not significant. Yet, on the right,
the memory usage it is evident that Blockbots consistently consume more memory than
Walkbots, often staying close to 90 percent, whereas Walkbots remain around 65 to 70%.
This proves that placing and modifying blocks is significantly more expensive than just
moving, because each action requires the server to track and update additional state. These
results stay consistent across tower workload runs and remain stable even when the spawn
radius is changed, confirming that world mutations have a higher resource cost than pure
movement.

World mutations trigger allocation and retention in several places: (i) mapblock caches,

36

5.5 Placing blocks costs more than walking (lMF5|)

CPU Usage Comparison Memory Usage Comparison

Walkbots 95

Walkbots
30 —®— Blockbots

~#— Blockbots

Average CPU Usage (%)
Average Memory Usage (%)

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Actual Max Players Online Actual Max Players Online

Figure 5.7: CPU and Memory comparison between Walkbots and Blockbots

(ii)) metadata for active blocks, and (iii) server-side data structures that queue and propa-
gate changes to clients. For example, dig and place events increase the amount of modified
regions alongside expanding the set of loaded mapblock, even if the tick loop itself stays
short. In practice, Lua-side instrumentation and engine behavior allow these changes to be
committed without stretching the main step beyond target, so that TPS stays flat while

the memory footprint rises.

37

5. EVALUATION

38

Related Work

Research on benchmarking and scalability of MVEs has gained significant attention across
the computer science field especially concerning distributed systems and gaming commu-
nities. MVEs enable interactive yet consistent virtual worlds but also present significant
challenges when scaling beyond a few hundred concurrent players. Previous research in the
field explored multiple approaches to improve performance from server-side optimizations
and distributed architectures to benchmarking methodologies. This section is a literary
review of related works across four elements (i) scalability techniques for MVEs, (ii) bench-
marking frameworks and methodologies, (iii) alternative architectures for game engines,
and (iv) open-source engines and protocols relevant to Luanti.

To begin with, research on the scalability of online games has consistently focused on
overcoming bottlenecks in simulation and networking. Earlier studies showed that lim-
itations of single-threaded event loops in commercial servers, where CPU and network
saturation constrains player concurrency. Expanding this, more recent work at the Vrije
Universiteit (VU) examined new approaches to address this limitation. Last year, a lock-
step simulation model for MVEs was introduced by Kamberi, which enforces deterministic
progression to ensure fairness across clients at scale (6). This method maintains consis-
tency while reducing responsiveness in highly interactive environments. Similarily, Servo
is a serverless approach to scaling MVEs, that was proposed in 2023 by Donkervliet et
al. (4). Their design uses function-as-a-service platforms to spread simulation tasks across
multiple invocations, decreasing idle capacity while increasing elasticity. However, despite
these advantages, the approach requires some alterations to the game engine, which then
complicates its adoption in practice.

Second, benchmarking has become an important method to evaluate the performance

of MVEs under controlled conditions. Gray’s Benchmark Handbook (14) established sys-

39

6. RELATED WORK

tematic practices for benchmarking in databases and transactional systems, which later in-
formed approaches in gaming contexts. For MVEs, van der Sar et al. introduced Yardstick
in 2019, which is the first benchmark specifically designed for Minecraft-like services ().
Yardstick generates workloads based on real player behavior, derives service-level indica-
tors, and measures metrics on a system and application level. The results of their study
showed that Minecraft servers are limited by weak parallelization, therefore restricting their
ability to scale. Building onto this, Eickhoff et al. (2023) designed a benchmark called Me-
terstick to capture variability across cloud-hosted and self-hosted MVE deployments (18).
Their findings demonstrated that variability plays a significant role in limiting scalability,
with latency spikes exceeding acceptable thresholds. This emphasizes that benchmarking
is necessary for identifying hidden performance issues that undermine responsiveness.
Third, alternative designs for interactive simulations have been widely explored in re-
cent research. The AtLarge Vision on distributed ecosystems outlines general principles
for large-scale system design, focusing on modularity, openness, and reproducibility (10).
These principles have influenced benchmarking by encouraging the development of repro-
ducible pipelines. However, these designs are dependent on adaptive consistency to achieve
scalability without sacrificing responsiveness. For example, dyconit-based systems adjust
consistency bounds according to player interactions which reduces unnecessary synchro-
nization while maintaining interactivity. These studies show the architectural strategies
proposed for MVEs, ranging from adaptive middleware to serverless execution models.
Lastly, open-source game engines and their protocols provide an essential foundation for
experimentation and benchmarking. Luanti is a voxel-based engine written in C++ with
Lua scripting support, unlike Minecraft which operates on a proprietary Java-based server.
Luanti offers openly documented networking protocols (9) that allows direct benchmark-
ing without the need for reverse engineering. Community-driven implementations, such
as Spigot and Glowstone (12)), (13), extend the variety of server designs developed to
address the limitations of the Minecraft server, which serves as practical alternatives for
players and as research platforms for scalability studies. These opportunities are extended
by recent research from open-source communities, which is evident in rust-based libraries
for Minetest (16]). These libraries introduce modern performance enhancements, whereas
lightweight tools, like texmodbot (I5) highlight the interest in automated interaction with
MVEs. When combined, these ecosystems provide the adaptability and transparency re-

quired to advance benchmarking research, supporting integration across diverse scenarios.

40

Conclusion

In this thesis I set out to design, implement, and evaluate a benchmark that can fairly
compare MVEs across different network protocols. My inspiration derived from existing
state-of-the-art benchmark, Yardstick, providing strong insights into Minecraft-like servers,
but their tight coupling to a single protocol limited their generality. With Luantick, I
explored whether a protocol-agnostic approach could be made practical and whether such

a system could reveal meaningful differences in performance across engines.

7.1 Answering Research Questions

In this section, we will address the main Research Questions introduced in Section [1.3]

For regarding the design, Chapter |3| highlighted the essential requirements for
building a protocol agnostic benchmark for MVEs. I found that the main challenge of the
design is is by separating what players do from how each engine expects those actions on
the wire. To overcome this, I introduced a layered architecture with workloads, protocol
adapters, and metrics collection. This ensures that the same high-level behaviors, such
as walking, idling, and building are consistently applied, while each engine’s connector
handles the details. In my opinion, this design shows that neutrality can be achieved
without losing realism, which is done by centralizing requirements such as automation,
non-intrusive measurement, and clear metrics. By doing this, there now exists a type of
blueprint for future benchmarks that need to stay fair across different MVEs.

For on the implementation, in Chapter [4] I translated the design into a working
system, by extending Yardstick with new components altered to Luanti. This meant
creating a Lua collector to capture tick-level data, Rust-based bots to simulate hundreds

of players, and and Ansible playbooks to automate deployments on DAS-5 cluster. In

41

7. CONCLUSION

practice, I believe that this structure and form of implementation was crucial because it
allowed Luantick to integrate with Luanti without modifying the engine, which can also be
extended to other engines. As a result, we now have a useable toolchain that researchers
can run out of the box, which makes protocol-agnostic benchmarking a reality rather than
a theoretical concept.

For about the evaluation, Chapter [revealed how Luantick can be used to evaluate
MVEs under different network protocols. Using Luantick, I was able to test Luanti under
various workloads and scaling conditions. These experiments showed that Luanti’s UDP
protocol is efficient at lower scales but reaches a ceiling at about 180 concurrent players.
Movement diversity and spawn locality shaped performance in different ways, while block
placement consistently consumed more resources than walking. I think that these findings
highlight the trade-offs between efficiency and scalability, because they clearly showed
where Luanti performs well and where it struggles. Additionally, by repeating experiments
in a structured manner, Luantick provided reproducible evidence that can be compared

across platforms, which is something that earlier studies could not guarantee.

7.2 Limitations and Future Work

All research, like mine, comes with its limitations. This section describes the limitations
that I faced during my thesis alongside possible challenges with furture work.

First, a significant limitation that arose was related to server compilation issues, specif-
ically from repeated failures when compiling the Luanti server directly on DAS-5 clusters.
To address this, the server was successfully built once on the head node, and the Ansi-
ble playbooks were adjusted to copy the executable during deployment. Although this
workaround ensured progress, it also reduced flexibility by preventing per run builds.
Therefore, I believe that future work in this field could explore stronger compilation
pipelines or crammed environments that would avoid such obstacles.

Another limitation arose concerning the Secure Remote Password (SRP) protocol re-
quired for Luanti authentication. The handshake involves cryptographic operations that
proved difficult to implement from scratch, however this was resolved by adopting an
existing Rust library that was maintained by the community, allowing me to focus on
implementing the workload instead of implementing the authentication layer for the bots.
For future research could add support for other authentication methods or make SRP in-
tegration smoother, therefore making it easier to benchmark MVEs that use stricter or

custom login systems.

42

7.3 Closing Remarks

Third, managing distributed experiments across multiple DAS-5 clusters introduced dif-
ficulties in verifying server startup. My early tests often failed because the orchestration
only confirmed process launch rather than active server readiness. Yet, this was managed
by implementing health checks confirming that the server process was active before allow-
ing bots to connect. I think that future work could build on this aspect by adding more
advanced coordination tools, such as centralized experiment dashboards or automated re-
covery in case of cluster failure.

Lastly, the current experiments focused on movement and block placement, and while
this captures core interactions, MVEs also involve activities such as crafting, terrain mod-
ifications, and combat systems that can create different load patterns. Moreover, future
research could expand Luantick with more workloads to capture these behaviors and better

reflect the diversity of real gameplay.

7.3 Closing Remarks

Luantick shows that benchmarking MVEs does not need to be connected to a specific
engine or protocol. By separating workloads from network details, it became possible to
drive Luanti with the same type of player actions and collect comparable metrics without
modifying the engine. This work showed that protocol agnostic benchmarking is not only
possible but actually useful, because it exposes the strengths and limits of engines when
placed under realistic pressure. Together, the answers to the three research questions
in Section [7.1] highlight that protocol-agnostic benchmarking of MVEs is possible and
valuable. In my opinion, Luantick demonstrates a path forward, especially considering its
neutral design, extensible implementation, and an evaluation method that produces fair
and reproducible results. My experiments revealed concrete trade-offs between efficiency
and scalability, and their results suggest that future work can build on this foundation in a
manner to extend workloads, engines, and protocols to to better capture the performance

level of MVEs.

43

7. CONCLUSION

44

References

1]

2]

3]

4]

[5]

(6]

7]

18]

MIicHIEL BuU1JSMAN. Global Games Market Revenue: 2024 Estimates and
Forecasts, 2024. Blog post, accessed 6 June 2025.

MINECRAFT EDUCATION. Math Essentials with Minecraft Education), 2025.

Resource page, accessed 6 June 2025.

MINECRAFT EbDucCATION. |New Study: Understanding the Impact of
Minecraft in the Math Classroom, 2020. Blog post, accessed 6 June 2025.

JESSE DONKERVLIET, JAVIER RON, JUNYAN LI, TIBERIU IaNcuU, CRISTINA L.
ABAD, AND ALEXANDRU losup. [Servo: Increasing the Scalability of Modi-
fiable Virtual Environments Using Serverless Computing. In Proceedings of
the 43rd IEEE International Conference on Distributed Computing Systems (ICDCS
2023), pages 829-840. IEEE, 2023. [1] [2

HanNNAH DaANIELS. STEM Lesson Idea: Using Virtual Learning to Drive
Environmental Change, 2020. Blog post on Mimio Educator, posted 3 Nov 2020,
accessed 6 Jun 2025. [1I

Diar KAMBERI. Lock-Step Simulation for Modifiable Virtual Environments

(MVEs). Bachelor thesis, Vrije Universiteit Amsterdam, submitted 20 Aug 2024,
2024. [1} 39

INNOVATURE INC. What is benchmarking? https://innovatureinc.com/

what-is-benchmarking. Accessed: 2025-08-16.

JEROM VAN DER SAR, JESSE DONKERVLIET, AND ALEXANDRU losuP. Yardstick:
A Benchmark for Minecraft-like Services. In Proceedings of the International

Conference on Performance Engineering, Mumbai, India, April, 2019, 2019.

45

https://newzoo.com/resources/blog/global-games-market-revenue-estimates-and-forecasts-in-2024
https://newzoo.com/resources/blog/global-games-market-revenue-estimates-and-forecasts-in-2024
https://education.minecraft.net/en-us/resources/math
https://education.minecraft.net/en-us/blog/new-study-understanding-the-impact-of-minecraft-in-the-math-classroom
https://education.minecraft.net/en-us/blog/new-study-understanding-the-impact-of-minecraft-in-the-math-classroom
https://atlarge-research.com/pdfs/2023-donkervliet-icdcs-servo.pdf
https://atlarge-research.com/pdfs/2023-donkervliet-icdcs-servo.pdf
https://blog.mimio.com/stem-lesson-idea-using-virtual-learning-to-drive-environmental-change
https://blog.mimio.com/stem-lesson-idea-using-virtual-learning-to-drive-environmental-change
https://jdonkervliet.com/assets/pdf/students/202408-bsc-thesis-diar-kamberi.pdf
https://jdonkervliet.com/assets/pdf/students/202408-bsc-thesis-diar-kamberi.pdf
https://innovatureinc.com/what-is-benchmarking
https://innovatureinc.com/what-is-benchmarking

REFERENCES

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Luanti DEVELOPERS. Network Protocol. Luanti Documentation, https://docs.
luanti.org/for-engine-devs/network-protocol/. Accessed: 2025-08-16. 2]

ALEXANDRU losupr, LAURENS VERSLUIS, ANIMESH TRIVEDI, ERWIN VAN EYK,
LuciAN TOADER, VINCENT VAN BEEK, GIULIA FRASCARIA, AHMED MUSAAFIR,
AND SACHEENDRA TALLURI. The AtLarge Vision on the Design of Distributed
Systems and Ecosystems. In 2019 IEEE 39th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1765-1776, 2019.

R/ADMINCRAFT. Paper 1.13.1 async chunk loading/generation [BETA].

SpiIGoTMC WIkKI. What is Spigot/CraftBukkit/Bukkit/Vanilla/Forge?
(40l

GLOWSTONEMC. Glowstone.

JiM GRAY. The Benchmark Handbook for Database and Transaction Systems. Morgan

Kaufmann, 1993.

Lizzy FLECKENSTEIN. texmodbot. https://github.com/LizzyFleckenstein03/
texmodbot. GitHub repository. [40]

UNKNOWN GITHUB USER. minetest libraries. https://https://github.com/
minetest-rust. GitHub Repository for Minetest in Rust.

HeENRI E. BaL, Dick H. J. EPEMA, CEES DE LAAT, ROB VAN NIEUWPOORT, JOHN
ROMEIN, FRANK J. SEINSTRA, CEES G. M. SNOEK, AND HARRY A. G. WIJSHOFF.
A Medium-Scale Distributed System for Computer Science Research: In-

frastructure for the Long Term. [EEE Computer, 49(5):54-63, May 2016.

JERRIT EICKHOFF, JESSE DONKERVLIET, AND ALEXANDRU Iosup. Meter-
stick: Benchmarking Performance Variability in Cloud and Self-hosted
Minecraft-like Games. In 2022 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2022.

46

https://docs.luanti.org/for-engine-devs/network-protocol/
https://docs.luanti.org/for-engine-devs/network-protocol/
https://www.reddit.com/r/admincraft/comments/9fpjjn/paper_1131_async_chunk_loading_generation_beta
https://www.spigotmc.org/wiki/what-is-spigot-craftbukkit-bukkit-vanilla-forg
https://github.com/GlowstoneMC/Glowstone
https://github.com/LizzyFleckenstein03/texmodbot
https://github.com/LizzyFleckenstein03/texmodbot
https://https://github.com/minetest-rust
https://https://github.com/minetest-rust

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Thesis Contributions
	1.6 Plagiarism Declaration

	2 Background
	2.1 Modifiable Virtual Environments (MVEs)
	2.2 MVE Networking Stack

	3 Design of Luantick: A Benchmark for Protocol-Agnostic MVE's
	3.1 System Requirements
	3.2 Design Overview
	3.3 Player Emulation
	3.4 Server Orchestration
	3.5 Network and Metrics Analysis

	4 Implementation Overview
	4.1 Luantick Framework Overview
	4.2 Metrics Collection System Implementation
	4.3 Rust Bot Implementation and Authentication
	4.4 Deployment Automation and Integration

	5 Evaluation
	5.1 Main Findings
	5.2 Experimental Setup
	5.3 Maximum concurrent players (MF1, MF2)
	5.4 Movement pattern & Spawn Radius matters (MF3, MF4)
	5.5 Placing blocks costs more than walking (MF5)

	6 Related Work
	7 Conclusion
	7.1 Answering Research Questions
	7.2 Limitations and Future Work
	7.3 Closing Remarks

	References

