
Vrije Universiteit Amsterdam

Bachelor Thesis

Designing a Protocol-Agnostic
Benchmark for MVEs

Author: Alexandr Costei (2771504)

1st supervisor: Jesse Donkervliet
daily supervisor: Jesse Donkervliet
2nd reader: dr. Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 24, 2025

ii

Abstract

Modifiable Virtual Environments (MVEs), such as Minecraft, are widely used

for entertainment, education, and research, however their performance level

remains difficult to compare across different engines. Existing benchmarks

are dependent on specific protocols or implementations, which hinders their

ability to provide fair evaluations between these various systems. Therefore,

this thesis investigates how to design, implement, and evaluate a protocol-

agnostic benchmark that enables reproducible performance analysis of MVEs,

with a focus on the voxel engine Luanti.

Luantick is an extension of the Yardstick benchmark, that translates high-

level player behaviors into engine-specific actions through lightweight protocol

adapters. The system orchestrates automated deployments of Luanti servers,

imitates hundreds of concurrent player bots, and collects application-level met-

rics, like tick duration and player counts, alongside system-level metrics, such as

CPU and memory utilization. Results are then processed through an integrated

analysis pipeline to generate standardized visualizations and comparisons.

The findings demonstrate that Luantick can reliably execute controlled experi-

ments on Luanti without modifying the engine, while also maintaining protocol

independence. Moreover, the benchmark exposes how responsiveness, through-

put, and scalability are affected under increasing load, and therefore establishes

a basis for comparing MVEs that rely on different network protocols. This work

done to achieve this, contributes to a practical and extensible toolchain for fu-

ture research on performance variability and scalability in MVEs.

iv

Contents

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 2

1.3 Research Questions . 3

1.4 Research Methodology . 4

1.5 Thesis Contributions . 5

1.6 Plagiarism Declaration . 6

2 Background 7

2.1 Modifiable Virtual Environments (MVEs) 7

2.2 MVE Networking Stack . 10

3 Design of Luantick: A Benchmark for Protocol-Agnostic MVE’s 13

3.1 System Requirements . 13

3.2 Design Overview . 15

3.3 Player Emulation . 17

3.4 Server Orchestration . 19

3.5 Network and Metrics Analysis . 20

4 Implementation Overview 23

4.1 Luantick Framework Overview . 23

4.2 Metrics Collection System Implementation 25

4.3 Rust Bot Implementation and Authentication 26

4.4 Deployment Automation and Integration . 27

5 Evaluation 29

5.1 Main Findings . 29

5.2 Experimental Setup . 30

i

CONTENTS

5.3 Maximum concurrent players (MF1, MF2) 32

5.4 Movement pattern & Spawn Radius matters (MF3, MF4) 34

5.5 Placing blocks costs more than walking (MF5) 36

6 Related Work 39

7 Conclusion 41

7.1 Answering Research Questions . 41

7.2 Limitations and Future Work . 42

7.3 Closing Remarks . 43

References 45

ii

1

Introduction

Online gaming has quickly evolved into a significant global industry (1). In 2024, the

global games market generated approximately $187.7 billion in revenue, therefore reflect-

ing a 2.1% year-on-year growth (1). This is driven by numerous players coming together

and engaging on different platforms such as desktops, mobile devices, and consoles, to play

games. However, this is not limited to entertainment as online gaming serves as a platform

for social interaction and educational purposes. Specifically, the game “Minecraft" has

been utilized in educational contexts, mainly "Math Essentials with Minecraft Education"

which provides lessons on geometry and algebra, engaging students through interactive

gameplay (2). However, the effectiveness of games mixed with education has been a de-

batable topic for many years. Therefore, a study was conducted to understand the impact

of Minecraft in math class. The findings showed that students enjoyed learning math with

Minecraft which simultaneously increased confidence in their math abilities (3).

Furthermore, Modifiable Virtual Environments (MVEs) are a subset of online games

that give users the ability to alter the game world by modifying terrain, adding content, or

scripting new behaviors in real-time (4). This ability enables MVEs to be powerful tools

for education, collaborative design, and simulations. This is evident in a virtual STEM

tool called the Urban Ecology Kit which allowed students to modify simulated city envi-

ronments to explore concepts like population density, green space planning, and wildlife

conservation (5). This enabled the students to engage in real-world problem-solving situa-

tions, enhancing critical thinking and active learning (5). However, MVEs do present some

challenges concerning scalability and performance because as user modifications increase,

it becomes harder to maintain the systems performance which also hinders the overall

consistency (6).

1

1. INTRODUCTION

A method that assesses and compares the performance of systems in order to ensure

desired standards are met under controlled conditions is benchmarking (7). But in re-

gard to effective benchmarking with MVEs it is important to address their operational

demands which involves simulating realistic player behaviors and measuring a spectrum

of performance metrics, from low-level packet transmission timings to high-level tick-time

distributions. For example, the state-of-the-art benchmark, Yardstick, simulates lifelike

player behavior in representative virtual environments, monitoring various systems, ap-

plications, and service-level metrics to analyze the scalability of Minecraft-like network

protocol implementations (8). Nevertheless, this comprehensive benchmarking is crucial

to ensure that MVEs maintain consistent performance, even as users dynamically alter the

environment.

1.1 Context

Building on the introduction above, this thesis focuses on how to study performance in

MVEs while worlds are actively being edited. The main challenge with this focus is how to

measure responsiveness and capacity in a way that reflects real play and can be compared

across different systems. Although current research on the topic exists, researchers either

focus on a specific MVE or use a custom set up. Because they use different player scripts,

track different metrics, and follow different test steps, their results are hard to generalize

and fairly compare (4). I see a missing component in this research which is a neutral,

repeatable method that drives every MVE with the same types of player actions and reads

out the same core metrics, regardless of how the system is built (9).

A solution to this is the benchmarking approach this thesis employes which (i) uses stan-

dardized, realistic workloads to create comparable pressure on each system, (ii) relies on

non-intrusive metrics that track user-visible responsiveness and capacity, and (iii) follows

an automated, documented process so experiments can be reproduced and extended. Con-

sidering the aforementioned solution, the aim of this thesis is to produce fair comparisons

and actionable insights about how MVEs behave under change, without privileging any

single engine.

1.2 Problem Statement

Despite the increasing use of MVEs, there is no benchmark with the ability to consistently

evaluate MVEs with different engine and networking designs, while also keeping workloads,

2

1.3 Research Questions

measurements, and reporting comparable. Traditional MVE benchmarks often connect the

test scenario with how a given engine communicates. To avoid this, we first decouple the

workload from the engine’s communication style (P1). To do this, there must be a defined

workload model regarding what players do (e.g., move, look, interact, place), how quickly

they act (e.g.,pacing and jitter), and where those actions occur, meaning spatial locality

and contention zones. By keeping the actions the same across engines, we avoid favoring a

specific system, allowing us to examine differences solely from the engines instead of how

the test was conducted.

Additionally, we must have a non-intrusive, end-to-end measurement (P2). The bench-

mark should reveal what users feel and what the system sustains without rewriting the

system under the test at hand. Therefore observing signals at the system, application, and

service layers, emphasizes action-to-effect latency, steady-state throughput, and coarse re-

source use on servers and drivers. By collecting these metrics externally where possible,

we reduce the risk that measurement itself distorts the behavior we aim to capture.

Lastly, an automated and reproducible deployment is required (P3). Thus, the experi-

ments should start on standard clusters with little manual effort, scale from pilot runs to

heavy loads, and emit artifacts that others can replay. This process involves setting up

worlds from a clean seed, running scenarios at multiple scales with controlled warm-up and

cool-down phases, and exporting traces, configurations, and reports in a standard format.

Built-in safeguards, such as health checks and clean teardowns, ensures that a failed run

doesn’t affect the next one, so results stay comparable.

1.3 Research Questions

Our work explores how the design of network protocols shapes the performance of mod-

ifiable virtual environments (MVEs). To keep the study focused and reproducible, we

translate the broad problem statement into three concrete research questions. Each ques-

tion focuses on a different layer of the benchmarking pipeline: concept design, practical

implementation, and empirical evaluation, so that their combined answers will form a

coherent foundation for future research and engineering. The questions are:

RQ1 How can we design a network-protocol-agnostic benchmark for MVEs?

There is no benchmark that can fairly compare different MVEs without assuming the

way one engine works. A neutral design will make it easy to extend the benchmark

to additional games.

3

1. INTRODUCTION

To do this, clear requirements, a defined workload model in high-level player actions,

a specific layered architecture with a thin connector boundary, standardized metrics,

and simple defaults are all required. This will yield the high-level architecture of the

benchmark and the required metrics.

RQ2 How can we implement this benchmark in practice?

The only way this design will be impactful and effective is if it becomes a tool people

can run, extend, and trust. Without an implementation that handles multiple MVEs,

we cannot compare systems in a meaningful way.

To do this, I extend an existing benchmark and add per-game translation libraries

that mimic the same high-level actions to each MVE’s expected inputs. By com-

bining automation, documentation, and non-intrusive measurement newcomers can

run experiments out of the box and contributors can add new engines with minimal

changes. Therefore creating a working toolchain that researchers can deploy without

modifying the target engine.

RQ3 How can we evaluate MVEs that rely on different network protocols?

Fair and repeatable evidence about responsiveness and scale are important to under-

stand which designs perform better and handle more players.

Shared metrics, namely time from action to visible effect, sustained throughput, and

high-level resource use, are established to then run controlled tests at multiple load

levels with repeated trials. This should establish a procedure for collecting, analyzing,

and comparing results across various platforms.

1.4 Research Methodology

To answer these RQs, we will design and implement a benchmark and use it to conduct

real-world experiments.

To address RQ1, I employed a AtLarge Design Process (10), which consists of an it-

eration through (i) collecting requirements, (ii) sketching a design, (iii) implementation,

and (iv) testing and validating. This process will be repeated until the design fits the

requirements well. I must combine what MVEs need from a benchmark, mainly workload

realism, neutrality to engine/networking choices, and ease of measurement. Additionally,

a practical element is needed. For this, one part of the design will generate player actions,

4

1.5 Thesis Contributions

another translates them for the system under test, a third records measurements, and the

final part turns the data into clear reports.

For RQ2, a working prototype called Luantick was built by extending an existing MVE

benchmark with a connector that can drive a second family of engines in addition to the

original. The prototype maintains the workload and metrics modules with the only aspect

changing being the connector. When implementing this, there is an emphasis on clarity,

specifically small configuration files, non-intrusive measurement, and a quick start which

allows newcomers to run it without struggling.

In regards to RQ3, metrics are clearly defined in three ways. First, is the response

time, where the action to visible effect. Throughput, is the second, with completed actions

per unit time. Third being resource use, such as CPU, memory, and network I/O at a

coarse level. Then there are tests that cover different numbers of simulated players and

the different ways they interact with the world. Each test is repeated to rule out flukes,

and all scripts alongside raw data are shared so anyone can reproduce the results.

1.5 Thesis Contributions

This thesis makes three complementary contributions that advance the state of experimen-

tal research on modifiable virtual environments. First, it offers a design (Section 3) for

a network protocol-agnostic benchmark that isolates the effects of the protocol from the

internals of the engine. The design specifies a layered architecture with workload gener-

ation, protocol adapter, metric externaliser, and analysis modules that can be redirected

to any MVE provided its wire format is known. Design decisions are grounded in the

requirements analysis from Chapter 3 and distilled into a set of reusable patterns that

researchers can adopt when studying emerging engines or proprietary platforms. To the

best of our knowledge, this is the first benchmark blueprint that treats protocol diversity

as a first-class concern rather than an afterthought.

Second, the thesis delivers a working prototype (Section 4) called Luantick, an extension

of Yardstick that supports the Luanti server and its network protocol in addition to the

original Minecraft implementation. Luantick implements a pluggable packet codec layer,

a language-agnostic control channel, and an automated deployment script suitable for

local clusters and public clouds. The entire toolchain is released under an open source

license, accompanied by unit tests, continuous integration recipes, and a quick-start guide.

By sharing both source code and packaging artefacts, the prototype reduces the barrier

5

1. INTRODUCTION

for other researchers to reproduce our results, port the benchmark to further engines, or

integrate new workload models.

Thirdly, the thesis describes and evaluates (Section 5) an extensive experimental cam-

paign using Luantick. The experiments were executed across tens of runs and multiple

load levels on shared-cluster hardware. Using the same networking-agnostic workloads

and a common measurement pipeline, I quantified user-visible response time, steady-state

throughput, and server resource use for multiple MVEs. These repeated trials meant that

any differences were a direct result of engine design instead of the test harness. This will

then help identify when and why engines separate in performance and when they behave

similarly, and those patterns are translated into practical guidance for scaling and design

choices.

The GitHub repository link containing the implementation code: https://github.com/

energet1k/luantick.

1.6 Plagiarism Declaration

I confirm that this thesis is entirely my own work, and has not been submitted elsewhere

for evaluation. However, artificial intelligence (AI) played as a supportive role to help

me, understand unfamiliar topics, such as how Luanti was built along with their server

functionality. This was the prompt I would use "I do not understand X topic, can you

explain and give examples to help me understand it."

6

https://github.com/energet1k/luantick
https://github.com/energet1k/luantick

2

Background

This chapter introduces the key concepts and system models that underpin a protocol-agnostic

benchmark for Modifiable Virtual Environments (MVEs). Figure 2.1 presents a high-level

deployment model, while Figure 2.2 details the internal flow of a representative MVE server

(Minecraft Java Edition).

2.1 Modifiable Virtual Environments (MVEs)

An MVE is an interactive, multiuser virtual world in which participants can alter the

environment in real time by (i) adding/removing terrain, (ii) scripting new behaviors

or (iii) installing custom modifications. Unlike fixed-content games, MVEs must handle

arbitrary user input while maintaining a consistent shared world state. Representative

examples include Minecraft, Luanti (formerly Minetest), and Roblox. MVEs are typically

deployed as continuous online services with different client devices and variable network

conditions. Their main challenge is to remain responsive under simultaneous edits while

preserving world consistency and scalability. Every MVE deployment comprises three

logical layers (illustrated in Figure 2.1):

1. Client Layer: Runs on the player’s Device and includes the MVE Client. It renders

graphics, captures user input, and transmits input packets labeled “Player actions”

toward the Router; it also receives “State updates” from the Router. The client

performs local prediction (e.g., movement smoothing), manages an on-disk cache of

world assets, and subscribes to the player’s area of interest to render only relevant

chunks/entities. Key pitfalls include GPU/CPU contention on the device, clock

drift affecting latency measurements, and the cost of reconciling predicted state with

authoritative updates received from the server.

7

2. BACKGROUND

Internet Service
Provider

User
InputFrames

State Updates
Player actions

Router

 Player
Home

Game ServiceInternet

Packets

Game Server
Cluster

MVE
Server

MVE
Server

MVE
Server

Distributing
Requests

Device MVE Client
Load

Balancer

Figure 2.1: System model of an MVE deployment. A player uses their device to run
MVE client that connects over custom Protocol through the Internet Service Provided to
a load-balanced game-server cluster.

2. Network Layer: Spans the Router, the ISP, and the public Internet path to the

Game Service. It transports Packets between client and server using either TCP (e.g.,

PaperMC/Minecraft stacks) or a UDP-based protocol with selective reliability (e.g.,

Luanti). This layer is where head-of-line blocking (TCP) or per-channel reliability

(UDP/RUDP) influences how latency, jitter, reordering, and loss manifest in the

observed action-to-effect timing. A protocol-agnostic benchmark must not assume

stream (TCP) or datagram (UDP/RUDP) semantics; it should record RTT(duration

it takes for packets to go from the client to the MVE server and back), jitter, loss,

and reordering while keeping the workload independent of transport details.

3. Server Layer: Lives inside the Game Service component and starts at the Load

Balancer, which accepts incoming connections and distributes requests to the Game

Server Cluster. Each Minecraft Server instance maintains an authoritative world

state, processes player actions, enforces game rules, and advances the simulation

in a deterministic, tick-based loop. Minecraft-like servers typically target 20 ticks

per second (about 50 ms per tick) under healthy load; exceeding the tick budget

causes visible slowdowns and degraded responsiveness. The figure highlights that a

given player is pinned to exactly one backend instance (the dark-green, solid-border

server); the other dashed, pale instances represent additional available servers for

other players or future scale-out.

A well-designed benchmark must observe the metrics in all three layers at the same

time. At the system level, it watches the CPU and memory (RAM) usage, disk I/O for

8

2.2 MVE Networking Stack

Start / Stop Timestamps

Network
Manager

Tick Latency
Monitor

Minecraft Server

Client
Authentication

Players

Players NPC Terrain

Main Game Loop

World & Entity
Update

Terrain & NPC
Generation

Chunk I/O

State Storage

50ms

Server Updates

Packets

Server Plugin

API

Input
Queue

Output
Queue

Figure 2.2: Internal flow of the Minecraft server. Packets from clients enter via the Client
Authentication check and Network/Session handler, propagate through the Main Game Loop,
and are eventually dispatched back to clients.

world saves, and the network throughput rates along with losses and retransmits. At the

application level, it times how long each tick takes and how that time is split across major

phases like world updates and plugin/mod loads. And at the service level, it checks the big-

picture capacity: how many players actions per second the server can complete, how many

concurrent clients it can sustain before the latency grows, and how stable the connection

stays when the server experiences multiple join/leave or other synchronized edits.

In the reference deployment, the Load Balancer distributes player connections across the

Game Server Cluster, while each client maintains a single active session to exactly one

server instance (as depicted by the dark-green server). Automated testbeds emulate tens

to hundreds of clients and replay realistic workloads (mixed actions, pacing/jitter, spatial

locality, contention zones).

It’s important to understand that unlike static game worlds, MVEs must deal with many

players changing the space at the same time, which demands low-latency synchronization,

persistent state storage, and dynamic capacity. Even with a load balancer and a cluster

of server instances, players are pinned to a single backend, so hotspots and uneven load

remain a challenge. As player counts and edit actions increase, maintaining responsiveness

and consistency becomes increasingly difficult unless the system is carefully measured,

tuned, and scaled out.

9

2. BACKGROUND

2.2 MVE Networking Stack

The game server is the authoritative simulator for the virtual world. It runs the in-game

physics and rules, maintains the global state (players, entities (e.g. NPC), and terrain),

and transmits state updates to all connected clients. In Minecraft-like stacks the simulation

advances in discrete steps called ticks, where the target is 20 ticks per second (about 50 ms

each). When the tick rate drops, players experience stutter and increased game latency. In

Figure 2.2, we have a representation of one of the most popular MVE games - Minecraft.

Incoming traffic first hits the Client Authentication and Network Manager. Together,

they accept protocol packets like TCP handshakes (or UDP/RUDP sessions), decrypt,

verify identity and permissions, and turn raw player packets into structured player actions.

Those actions land in the Input Queue so that the simulation can consume them cleanly

at the next tick.

The “Main Game Loop” is the heart of the server. Each iteration records a start times-

tamp, processes queued player actions, fires a tick event, and then captures a stop times-

tamp so the latency monitor can compute per-tick duration and its distribution. If load or

slow I/O pushes a tick past 50 ms, the server becomes overloaded, and players see jitter

and rollbacks as the authoritative state arrives behind their local predictions. With each

tick, the server generates terrain and entities, updates them, and stores them in the State

Storage. The World & Entity Update moves players and NPCs, resolves collisions, applies

game rules, and runs plugin/mod hooks. Terrain and NPC Generation kicks in as players

explore or edit new regions. Once changes are decided, they’re saved into to storage.

On the way out, the Output Queue prepares updates for each subscribed client it serializes

the relevant world differences (placements, breaks, entity movement), and hands them to

the networking layer for delivery. This keeps the tick thread free while the network side

handles batching, congestion, and retransmissions.

Although many MVEs follow this general shape, real servers differ in ways that can

affect performance. Minecraft-like servers, share a similar architecture and rely on Netty

for networking, but their internals vary. For example, PaperMC introduces asynchronous,

worker-threaded chunk loading to reduce tick stalls during exploration (11). Community

stacks such as Bukkit/Spigot/PaperMC and Glowstone expose plugin systems (APIs) that

can add functionality and with that, overhead at runtime (12). The world-generation code

paths also differ across implementations. For instance, Glowstone is a from scratch server

whose ecosystem includes plugins specifically to provide vanilla-style world gen on non-

10

2.2 MVE Networking Stack

official servers (13). Under the same workload, these choices generate various performance

profiles.

Yardstick ’s comparative experiments on vanilla, Spigot, and Glowstone report different

scalability limits and show Glowstone performing worst among those tested, while vanilla

performs the best (8). Measurement at identified instrumentation points allows evaluation

of protocol-agnostic performance, independent of the underlying game engine. This thesis

underlines the importance of benchmarking: by testing different engines with the same

actions and reading out the same cross-layer metrics, we can report real-world capacity

and user-visible responsiveness instead of relying on assumptions.

11

2. BACKGROUND

12

3

Design of Luantick: A Benchmark
for Protocol-Agnostic MVE’s

This chapter describes the design of Luantick, a benchmark specifically developed to ad-

dress "How can we design a network-protocol-agnostic benchmark for MVEs?" (RQ1).

First, it outlines and elaborates on the functional and non-functional requirements that

guide the development of the benchmark itself, highlighting key design criteria like protocol

independence, scalability, and modularity (Section 3.1). Then, it providse a comprehensive

design overview, describing the overall process, workloads, and metrics, and how these ele-

ments fit together (Section 3.2). Next, outlines player emulation by explaining how realistic

play patterns are modeled and arranged (Section 3.3). This is followed by server orches-

tration which serves as the component that automatically sets up, arranges, and manages

game servers across multiple machines, this involves building and installing the Luanti

server, applying settings, and starting/stopping servers remotely (Section 3.4). Finally,

where tests are monitored and measured for me to collect system metrics (e.g., CPU and

memory usage) and application metrics (e.g., server ticks, player count, and server respon-

siveness) (Section 3.5). This structure ensures that Luantick accurately reflects authentic

player interactions and provides protocol-specific performance metrics.

3.1 System Requirements

For this research, functional requirements refer to the features that Luantick must sup-

port, whereas non-functional ones are regarding the quality attributes needed to ensure

robustness and usability. These requirements are combined leaving the following:

13

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

Requirements:

R1 Simulate player behavior across network protocols: To benchmark MVEs with

different networking architectures, the system must support simulated clients, that

are bots, who communicate over diverse application-level protocols (e.g., TCP-based,

UDP-based, or custom hybrids). Many MVEs define their own message formats and

state synchronization strategies, so that the bot logic must remain abstracted from

protocol details to enable compatibility.

R2 Ease of use: The benchmark should be able to run itself from start to finish. This

automation involves setting up a fair test world to start and configure the server,

check that it’s healthy, run the workload, watch progress, handle crashes or timeouts

by retrying and restarting cleanly, alongside shutting down and saving logs, traces,

and reports. These steps should also work the same way for different MVEs and

world formats, ensuring that runs are consistent and easy to repeat.

R3 Generate diverse and realistic player behavior: To reflect real gameplay and

examine how the game engine reacts, bots should be able to act like real players,

which involves them walking, idling, navigating toward a fixed coordinate, and block

placement. These actions put pressure on different parts of the server, like physics,

graphics, and world changes, which then helps in understanding how it performs

under different types of load.

R4 Provide protocol-aware logging and metrics collection: To evaluate network

behavior and detect bottlenecks, the system must capture relevant protocol-level

metrics, including packet counts, latencies, disconnections. In addition, monitoring

should be passive and non-intrusive, to avoid significant interference with gameplay

or simulation logic.

R5 Low Overhead: In order to test how MVEs behave under realistic pressure, the

system must support hundreds of concurrent bots. This requires efficient resource

management to avoid introducing overhead when collecting metrics.

R6 Modular and cross-platform core: The benchmark should allow you to swap or

add different aspects, like bot behaviors, server connectors, and metrics collectors,

without touching the rest. This should run reliably on common operating systems

such as Linux, macOS, Windows. Therefore, making it easy to extend to new MVEs

and easy to use in different labs and CI setups.

14

3.2 Design Overview

User

Benchmark
Configuration

Server Orchestration

Player Emulation

Player
Behavior
Selector

Protocol
Adapter

Player
Emulation

Network & Metrics
Monitoring

Metrics
Retrieval

World Selection Server Setup

MVE
Engine

Yardstick
Collector

Data Processing
and

Visualization

Legend
Data Configuration Results

Figure 3.1: Luantick Design Overview

R7 Clarity and Relevancy: The benchmark should select and present results in a way

that clearly explains performance. Metrics must be relevant to MVEs and describe

system performance and scalability as perceived by real players.

3.2 Design Overview

All benchmarks, including Luantick, define the following three elements (14): The first

element is defining a process to conduct the benchmark, while also considering how a

single benchmarking experiment should run, and how and what to monitor about the

system under test, which is described in Sections 3.4 and 3.5 of this thesis. The second

element involves defining the workload given as input to the system under test, outlined

in Section 3.3 of this thesis. Third, the metrics to assess the output of the system under

test are also defined, further elaborated in Section 3.5 of this thesis. Specifically, Luantick

extends these principles to accommodate the protocol diversity essential in MVEs, allowing

for a comprehensive performance evaluation across different networking architectures and

game engine implementations.

3.2.1 The Benchmarking Process. Luantick’s end-to-end workflow directly addresses R1,

R2, R4, R6, and R7 mentioned in Section 3.1 of this thesis. It evaluates MVE servers by

running experiments that combine protocol-agnostic parameters, such as world configura-

tion, player profiles, pacing, and load levels (R2). Each experiment embodies a virtual

15

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

world and a set of bots defined by these parameters. Since the world and players are

configurable, the benchmark supports a wide range of workloads that remain comparable

across MVE platforms (R1, R6). To ensure these runs are repeatable and efficient, the

benchmark uses non-intrusive measurement and automated setup and teardown methods

(R4, R7). The workload generated by these bots players is defined by selecting a built-in

player behavior pattern, such as random movement, circular navigation, or block place-

ment activities (R3). The Protocol Adapter component decouples these behaviors from

the network implementations, therefore allowing the same logical behaviors to run across

TCP-based, UDP-based, or hybrid protocol architectures (R1). The resulting workloads

produced from the configuration files, are independent of the specific MVE undergoing the

experiment(s) (R1). These scenarios are designed to cover a broad set of operating condi-

tions, like varying player densities, complex behavior mixes, and across world interaction

patterns (R3, R7). During each experiment, Luantick monitors the machine that hosts the

MVE server alongside the machines that runs the bots. Luantick measures these systems

using CPU, memory, network use and application level metrics such as server utilization

(R4). The monitoring setup is designed to avoid interfering with the system under test

while supporting hundreds of concurrent bot connections (R5). After each experiment,

Luantick stores both the raw data, such as time stamps and resource samples, and the

processed data, like tables and plots, which allows me to analyze server performance using

metrics that are relevant for MVEs (R2, R7).

3.2.2 The Benchmark Design. Figure 3.1 showcases the design of Luantick, which con-

sists of three main components that extends Yardstick ’s architecture to support protocol

diversity in MVE systems. The first is the Server Orchestration layer, which manages the

MVE service by starting and stopping the server, which exposes the APIs, applies the

current configuration, and loads the virtual world for the run. The World Selection mod-

ule enables standardized world configurations across different platforms, while the Server

Setup automation handles deployment, configuration, health monitoring, and cleanup pro-

cedures. This element is seamlessly integrated with the Yardstick Collector under the

second component, Player Emulation, to provide real-time performance monitoring with-

out manual intervention. Second, Player Emulation connects the bots to the system under

test via a Protocol Adapter component. The adapter enables Luantick’s protocol-agnostic

behavior (R1) by translating player action, such as moving, interacting, and communicat-

ing, into the protocol-specific network messages expected by each MVE, including Luanti’s

UDP protocol and Minecraft ’s TCP implementation. It is designed to maintain consistent

behavioral models across engines while accommodating protocol specifics (R1, R3). The

16

3.3 Player Emulation

Player Behavior Selector offers configurable profiles that reproduce realistic activity, from

basic movement patterns to complex ones, for instance building and exploration (R3).

Third, the Network & Metrics Monitoring layer observes the bots alongside the server

environment to collect and process measurements using a Yardstick Collector. The imple-

mentation of said Yardstick Collector is specific to the MVE under test. Luantick provides

collectors for Luanti and offers an extendable interface to add other platforms. These col-

lectors are then implemented as minimal changes to the server source code or as external

monitoring agents to keep implementation effort low (R2) while still providing player-

focused metrics, such as how quickly actions take effect (R7). The Collector standardizes

the measurements and forwards them to the results database for analysis. Moreover, the

modular architecture enables extension to new MVE platforms through pluggable Proto-

col Adapters and collectors (R6). The management of the experiment’s lifecycle ensures

consistent and repeatable benchmarks across different platforms. The collected metrics

provide clear insights into the performance characteristics that matter to real players and

server operators (R2, R7).

3.3 Player Emulation

The purpose behind Player Emulation is to reproduce the actions of real players with

simulated workloads, this can range from moving and looking around to interacting and

placing objects within the virtual environment. The goal of these workloads is not to mimic

a single session perfectly, but to generate repeatable behavior that is similar to everyday

play activities so that user experience is reflected through meaningful system responses.

That said, this section explains the design principles, modeling choices, and validation

steps that make these workloads realistic and comparable across different MVE platforms.

Luantick implements workloads for multiple MVE platforms, including Luanti and Minecraft

(via Yardstick ’s existing PaperMC support). Each platofrm has its own interaction model,

meaning the workloads are not identical. Despite their lack of similarity, they do share

a single high-level configuration interface which specifies the number of simulated players

alongside their behavioral profiles. Internally, each game uses a separate execution en-

vironment, which keeps player behavior faithful to each platform, to ensure that, at the

configuration level, users specify “what” happens rather than “how” any engine prefers to

receive it (R1).

At the design level, these workloads were written in a clear manner. The configuration

describes players in terms of high-level actions and the conditions in which those actions

17

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

occur. Then, the Protocol Adapter converts the scenario, of what the simulated players

do, how many there are, where they act, how fast they act, and for how long, into engine-

specific interactions. This allows me to describe what players do once, and the adapter

then handles how each game expects to receive it. This approach keeps the focus on player

intent rather than technical protocol details, thereby improving ease of use for benchmark

operators (R2).

In practice, extending Luantick in a manner to support another MVE means implement-

ing only the adapter, rather than rewriting the behavior model (R6). Similarly, most

experiments can run again on different platforms by changing the connector but keep-

ing the scenario unchanged, which aligns with the requirement for platform-independent

workload generation (R1).

Additionally, to enforce the requirement, that the defined behavior remains unchanged

across MVE platforms, Luantick defines invariants that every protocol implementation

must maintain regarding the order and timing of player actions. The following rules make

cross-engine results easier to interpret. First, is order, where it is required for actions

to happen in sequence, for instance “move from A to B, then place one block, and look

around.” After, the connector preserves that sequence within a reasonable time frame.

Second, is where the action (e.g., moving) triggers the corresponding in-game effect as

intended. In our example, a movement action must result in visible player displacement,

block placement must result in world modification, and camera orientation changes must

reflect the specified viewing direction.

Third, is where timing windows arises where it must be specified how often actions should

occur, and the connector should meet the given time frame.

However, this raises the question of why there isn’t a reliance on one universal script

for all games. Such scripts usually blur the differences in how engines handle movement,

interaction, and world updates. If the workload is too generic, then it can hinder the exact

effects that should be measured. This is why Luantick focuses on what the player is trying

to do and allows each game connector to express it in the way the engine expects. This

focus keeps things fair, because every engine is asked to do the same set of player actions

while allowing each MVE platform to behave in its natural way. Therefore, the benchmark

stays neutral to design choices yet still shows the performance impact of those choices(R1).

Furthermore, Luantick groups the actions of the players into two families that can be

combined to form rich behavior (R3). First is movement, which covers waypoint walks,

simple random wandering, circular paths, and short idle periods with camera turns. The

second is block interaction, where bots create, modify, and remove blocks, from small

18

3.4 Server Orchestration

towers and walls to quick exploratory placements like house. Two parameters control both

families. One of which is pacing that sets how often actions happen. The other is locality,

which defines where they occur and how long players stay in a region.

Locality matters because real players cluster at points of interest such as spawn areas or

build zones. By shaping locality, the benchmark creates natural crowding and contention

that stresses scheduling, chunk input and output, and update propagation, revealing how

engines behave under spatial pressure (R3). At this point, the engine reveals differences

regarding how they schedule work and spread world updates.

Each experiment follows a simple phase based schedule with a fixed workload so results

are comparable across runs and platforms: warm up to reach steady state, measure to

collect data, and cool down for clean tear down. This consistency enables side-by-side

comparisons and large automated campaigns (R2, R7).

In addition, each experiment runs in phases to make results comparable. Movement

validation confirms that paths produce the expected position updates, and interaction

validation confirms that placements and edits are acknowledged by the server. Moreover,

runs that fail these checks are excluded from this thesis, in order to avoid bias results so

findings reflect real system behavior rather than experiment faults (R7).

3.4 Server Orchestration

As mentioned in Section 3.2.2 of this thesis, the first layer of Luantick is Server Orches-

tration that addresses the complexity of managing different MVE platforms through a

protocol-agnostic interface. This component addresses requirements R1, R2, and R6 by

providing automated deployment, configuration, and experiment management capabilities

that effectively work across different MVE implementations.

Regarding protocol-agnostic server management, Luantick implements a unified Server

Management API that provides consistent deployment and control interfaces across differ-

ent MVE platforms. This defines the following four operations: ’deploy()’, ’start()’, ’stop()’

and ’cleanup()’. These operations are implemented by protocol-specific server classes, such

as "LuantiServer" for Luanti’s UDP-based architecture, with the possibility to extend it to

Minecraft servers and other MVE platforms (R1, R6). Furthermore, the automated de-

ployment pipeline handles the servers lifecycle without manual intervention (R2). Building

on this API, infrastructure provisioning allocates cluster nodes on demand and prepares

the runtime environment by installing required dependencies and configuring networking.

The configuration abstraction provides standardized server configuration forms that adapt

19

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

to different MVE engines. This system keeps the benchmark consistent, by generating

protocol specific configuration files, so that the experiments are comparable across plat-

forms. Then, binary distribution builds or retrieves the target MVE server and distributes

the same build to all nodes, which ensures consistent versions and stable build settings for

the benchmark. Combing these steps, each experiment consist of identical starting points

which reduces the chance of configuration drift.

Additionally, world configuration is a crucial part of benchmark reproducibility and

cross-platform comparison. Luantick implements standardized world generation mecha-

nisms to create consistent testing environments across different MVE platforms. Therefore,

the system is able to support multiple world types, including flat worlds for performance

tests, procedurally generated worlds for realistic scenarios, and pre-built worlds for spe-

cific benchmark scenarios. Moreover, deterministic world generation using fixed seeds

and standardized parameters ensures identical world states across experiment runs. This

is important for statistical analysis and performance comparison, because it eliminates

world-generation variations as factors in performance measurements. During deployment,

monitoring is automatically integrated, so that the system configures protocol specific

measurement components, allowing the relevant metrics to be captured without manual

intervention.

3.5 Network and Metrics Analysis

As discussed in Section 3.2.2 of this thesis, the Network and Metrics Analysis layer of

Luantick implements a comprehensive monitoring and measurement ability (R4, R5, and

R7). This element provides protocol metrics collection, low-overhead monitoring infras-

tructure, and clear presentation of performance results relevant to MVE systems. During

experimentation within a protocol-agnostic monitoring framework, Luantick implements

a monitoring strategy that captures system level and protocol-specific metrics across dif-

ferent MVE platforms. Each machine runs a local monitoring agent that automatically

collects and stores system level metrics, such as CPU utilization, memory consumption,

and network throughput. These agents are then organized based on hierarchy with a

central monitoring node, called the primary coordinator, that gathers data on all sensor

agents across the distributed benchmark to collect their measurements. This method of

data collection with these experiments is non-intrusive and it is designed to reduce im-

pact on the system under test (R5). For each benchmark run, Luantick buffers samples

in memory and writes them to store in efficient formats, which consumes less than 2% of

20

3.5 Network and Metrics Analysis

CPU and memory even under high intensity scenarios with hundreds of concurrent connec-

tions. After the collection phase, Luantick performs cross protocol standardization, where

protocol-specific measurements are converted into a unified metric, allowing results to be

comparable directly across platforms (R7). For instance, message transmission is reported

as messages per second regardless of the underlying protocol, the connection stability then

uses a single success rate definition across all connection management designs. The anal-

ysis tool only operates on this normalized dataset, making figures and tables consistent

across experiments and systems.

3.5.1 Connection(s) and Network Behavior Analysis. Luantick captures detailed connec-

tion lifecycle metrics that provide insights into network behavior and protocol performance

characteristics. The system then records connection attempt timestamps, handshake du-

rations, and failure reasons, which allows for a detailed analysis of connection behavior

under varying conditions. The session lifecycle monitoring records player session duration,

disconnection patterns, and reconnection behavior. It maintains detailed logs of session

events, including voluntary exits, network timeouts, and connection failures detected by

the protocol layer. These measurements are important because they provide insight into

the stability characteristics of different MVE protocols and their behavior under stress

conditions, so we can identify patterns that create instability and compare how different

systems recover from such faults (R4, R7). Next, is the behavioral impact assessment

which links performance measurements to specific player behavior patterns (R3, R7) by

measuring how simple movement, mixed interaction, and intensive building affect server

responsiveness, network use, and resource consumption. Comparing these elements under

the same conditions offers insight as to which behaviors trigger contention, which settings

remain stable, and where configuration changes yield the greatest improvements. These

results are beneficial to developers and benchmark operators as they can now adjust the

performance for the behavior mixes they expect in production (R3, R7). Building on the

session and behavior analyses, Luantick derives service level metrics from the system level

and protocol-aware measurements it collects. From the message transmission data, it cal-

culates frequency distributions, average message sizes, transmission rates for each message,

and statistical summaries. The message sizes reflect application level payloads rather than

full network packet sizes, keeping the results independent yet suitable for cross protocol

comparison. From server update data, Luantick also estimates the update measure of

the game loop to show how efficiently resources are used for a given workload. Together,

these metrics provide clear indicators of server performance that align with what players

perceive in practice (R7). After each experiment, Luantick automatically runs a data

21

3. DESIGN OF LUANTICK: A BENCHMARK FOR
PROTOCOL-AGNOSTIC MVE’S

processing pipeline that takes the collected metrics and logs, checks their integrity, aligns

timestamps, and collected measurements into consistent time windows. Then, it calcu-

lates summary statistics later analysis, with the raw traces, supporting detailed inspection

and re-analysis, and the processed outputs, providing summaries for quick assessment and

comparison, saved (R2, R7). Building on the mentioned processed dataset, Luantick also

provides interactive charts and comparison views to examine the results. Such visualiza-

tions help reveal trends across load levels, identify outliers, and compare experimental

conditions side by side. After, Luantick generates a complete results report that docu-

ments the setup and configuration, defines the metrics, presents statistical summaries and

figures, and records versions, seeds, and any deviations from the plan. The report gives

operators and researchers a single product that can be reviewed, shared, and archived,

which supports fair comparison across MVEs and makes follow up experiments easier to

plan and execute.

22

4

Implementation Overview

This chapter describes the implementation of Luantick, which is a benchmark prototype

developed to answer How can we implement this benchmark in practice? (RQ2). The goal

is to translate the protocol-agnostic design from Chapter 3 into a working system that can

be executed, extended, and trusted for experiments.

First, there is an overview of the used implementation approach, explaining how the

existing Yardstick framework was extended and adapted to support the Luanti engine

(Section 4.1). Next, is the data analysis pipeline where collected metrics are processed

through Yardstick’s analysis scripts to generate standardized results and visualizations

(Section 4.2). This is followed by the bot implementation, where Rust-based clients are

built to mimic realistic player actions and interact with the Luanti server through its native

protocol (Section 4.3). Then, deployment automation is introduced, where the Luantick

Collector is enabled through server configuration templates and operates as an in-game

component that records application-level metrics such as tick duration and player activity,

exporting them in a structured format for analysis (Section 4.4).

4.1 Luantick Framework Overview

The primary goal of the implementation is to turn the design into an extensible toolchain

that remains protocol-agnostic while still handling the realities of benchmarking MVEs. To

do that, the framework combines server orchestration, player workloads, and metrics col-

lection. It reuses Yardstick’s core ideas for experiment definition and analysis, but extends

the implementation of a stack that fits the Luanti’s C++, Lua, and UDP foundations.

The implementation follows a modular approach so that each concern evolves without

affecting the rest of the benchmark, which is achieved by a high-level architecture con-

23

4. IMPLEMENTATION OVERVIEW

Orchestration Layer

Ansible
Playbooks

System Under Test (SUT)

Interact

Communicate

Luanti Server

Compile and Run

Deploy and Start

tick_metrics.tsv

Write

Write

Luantick
Collector

Mod

player_metrics.tsv

Data Analysis Pipeline

Results

Results
Collection

Generate
Yardstick Analysis

Scripts

Report and
Visualizations

Collect Data

Legend External Tools

Active
Processes

Internal
Component

Orchestrate

Rust Bot

Figure 4.1: Luantick Implementation Overview

sisting of three main elements. First, is an Ansible-based orchestrator that manages the

experiment lifecycle end to end. Secondly, a Luanti server instrumented with a lightweight

Lua collector. Third being a fleet of Rust based bots that generate player workloads.

This means that layers communicate together through explicit files, networks, or process

boundaries, which maintains clear and repeatable responsibilities.

These implementation aspects, shown in Figure 4.1 ensures stable relationships. Rect-

angles with sharp edges denote external tools and systems, such as Ansible playbooks,

TSV files, and result collection. Rounded rectangles mark active processes and services

like the Luanti server and the Rust bots. Diamond shapes indicate internal modules em-

bedded within larger systems, for example, the Luantick collector mod. The technological

choices reflect trade-offs between portability, overhead, and development speed. For in-

stance, Ansible is used because of its agentless model, which simplifies setup in shared

research clusters. Declarative YAML playbooks give a versioned and readable description

of provisioning, configuration, execution, and teardown. Therefore, supporting automated

and reproducible deployment while avoiding background operations.

For metrics collection, Lua is used because Luanti already exposes Lua hooks as APIs,

where a collector mod reads timing and player state via

minetest.register_globalstep() and minetest.get_connected_players(). This

direct access removes the need for sidecars or polling exporters to get data. The result

is precise tick and event timing with negligible added latency. That said, we keep the

collector minimal to respect non-intrusive monitoring goals.

For workload generation we lean on Rust and the texmodbot ecosystem (15). Rust

offers predictable performance and memory safety, plus asynchronous concurrency that

24

4.2 Metrics Collection System Implementation

scales to hundreds of simulated players. Here, helper libraries such as mt_auth, mt_net,

and mt_rudp summarize protocol details so the high-level behavior logic can focus on

realistic scenarios rather than packet details (16).

The monitored metrics are appended into TSV files. The reason why TSV was chosen

is because the format is simple and cheap to parse, which works well with the existing

Yardstick scripts. For example, TSV handles well partial writes and remains easy to

inspect during debugging. By contrast, JSON made debugging slower when something

went wrong.

Together, these choices implement the mentioned design requirements from Section 3

into practice. Specifically, modularity for easy extension (R6), low overhead so that the

benchmark does not disturb the system under test (R5), clear and relevant metrics for

interpretation (R7), and protocol neutrality from client to wire to server (R1).

4.2 Metrics Collection System Implementation

The server side metrics collection system is one of the most important parts of the frame-

work, because instead of relying solely on the Java plugin model, a Lua native Luantick

implementation is added. The goal behind this is to observe timing and activity patterns

such as tick duration, player actions, and interactions with the server without altering the

engine execution path or introducing blocking I/O. For example, timestamps are read, and

compact records are then written, but the tick thread never waits on the file system.

To implement this collection system, a Lua mod, called the Luantick Collector Mod,

integrates with the tick scheduler. The orchestration layer deploys the mod and the server

entirely, in a manner where no manual server edits are required to make this mod work.

Here, the collector attaches a single global step callback that performs minimal arith-

metic, where each tick is appended to the metrics file. As a result, measurement remains

predictable even when the world grows or many players connect.

The core loop presented in Listing 4.1 records three things. First, minetest.get_us_time()

is used to record in append mode per tick timing. This is done by each tick emitting one

formatted line for each to join, leave, or interact while also leaving visible small latency

spikes. However, if a process unexpectedly stops, the written lines are still valid, therefore

yielding durable logs with low overhead and simple inspection. If a mod fails, the test

continues to run as if the collector were absent. Second, player join and leave events,

which are registered from the engine callbacks, which then provide a timeline allowing the

correlation of player connections with tick variance. Third, block interactions such as place

25

4. IMPLEMENTATION OVERVIEW

and dig are recorded to later support action to effect analysis once client side timestamps

are available.

1 -- Define file paths
2 local metrics_file = minetest.get_worldpath () .. "/mod_storage/

tick_metrics.tsv"
3 local player_file = minetest.get_worldpath () .. "/mod_storage/

player_metrics.tsv"
4

5 -- Record tick performance
6 minetest.register_globalstep(function(dtime)
7 local now = minetest.get_us_time ()
8 local duration_us = now - last_time
9 last_time = now

10 tick_count = tick_count + 1
11

12 local timestamp_s = now / 1e6 -- seconds since epoch
13 local duration_ms = duration_us / 1000 -- milliseconds
14 local players_online = #minetest.get_connected_players ()
15

16 local file = io.open(metrics_file , "a")
17 if file then
18 file:write(string.format("%.3f\t%.3f\t%d\t%d\n",
19 timestamp_s , duration_ms , tick_count , players_online))
20 file:close ()
21 end
22

23 if duration_ms > 100 then
24 minetest.log("warning", string.format("YARDSTICK: High tick

duration: %.2 fms (players: %d)",
25 duration_ms , players_online))
26 end
27 end)

Listing 4.1: Example of the function that registers server ticks

4.3 Rust Bot Implementation and Authentication

Luantick runs the bots that drive the workload, which sign on to the server using the

expected handshake, where the client sends the server a message for the server to respond

to. For Luanti, there is an added adapter alongside the existing tools for Minecraft rather

than replacing them, so that both engines can run the same scenarios. However, some

network transports do not guarantee delivery or ordering. The bot implementation handles

re-sends and messages that arrive out of order, but this is done without affecting the

26

4.4 Deployment Automation and Integration

schedule of actions defined by the workload. For example, it will resend when required

and reorder only as needed while keeping the original timing for move, interact, and place

actions.

The mentioned authentication aspect is derived from the Secure Remote Password hand-

shake. Here, the mt_auth library involves verifier computation and proof exchange so that

higher layers only react to success or retry states. This flow is straightforward, as a bot

connects and sends an initial message with its username. The server, as aforementioned,

then replies with SRP parameters such as the server public key. After, the bot combines

the parameters with the user password to compute a proof of knowledge and sends that

proof back. Once the server validates the proof, access is then granted and normal game

play begins.

To keep the bot connection reliable and authentic, the library mt_auth changes in a man-

ner that allows bots to auto-register in the server. This is crucial as Luanti serves require

users to log in alongside having unique usernames, in order to play, creating challenges

when implementing bots. That said, bots now have distinct usernames which ensure that

they succesfully connect to server.

The behavioral realism system provides two bot classes, being Walkbot and Blockbot,

that target different subsystems. On one hand, Walkbot focuses on movement, while

offering four movement archetypes. First, the static mode provides a baseline with minimal

network interference. Second, the random mode involves simulating casual exploration by

randomly choosing directions and speeds. Third, the circular mode produces a predictable

yet consistent load by moving around a fixed center. Lastly, the follow mode drives bots

towards specific coordinates by using trigonometric functions to calculate the direction

of movement. On the other hand, Blockbot focuses on world mutation while emphasizing

mutation paths through structured build patterns such as tower, wall, platform, and spiral.

Finally, position management maintains the visibility and use of bots. To avoid falling

through terrain or getting stuck, the bots fix their vertical coordinates at Y equal to 8.5.

This places them above typical ground but below common build heights, which makes local

observation easy while keeping positions consistent for measurement.

4.4 Deployment Automation and Integration

The deployment system of the Luanti Server and Rust Bots handles machines, preserves

reproducibility, and reports failures clearly. With this, each trial is defined by declarative

27

4. IMPLEMENTATION OVERVIEW

playbooks that record the exact scripts and settings, so that one can trace any result back

to its inputs and replicate runs.

Additionally, orchestration also uses playbooks for each phase of the experiment life-

cycle, ranging from prepare and launch, to measure and teardown. Such a modular layout

allows us to test or debug one phase without touching the others, therefore keeping the

responsibilities separate. Another function of orchestration is that it handles the realities

of building Luanti from source on mixed cluster nodes, managing libraries, and keeping

build environments consistent. For example, luanti_deploy.yml provisions the server by

installing dependencies, compiling source, and generating configuration files.

Since building Luanti from source code requires multiple dependencies and is time con-

suming, the aforementioned playbook file that deploys said Luanti server copies the exe-

cutable file from the head node where it was complied in advance, which is evident in the

Figure Screenshot. It begins by preparing the environment with tool chains and libraries.

Next, it gathers and compiles the source to validate that the binary produced exists and

runs. If any step were to fail, the system reports the issue early, so nothing is launched

against a broken server.

Furthermore, when configuring the server the implementation uses Jinja2 1 templates to

produce server configures with experiment specific parameters. Here, the user sets network

options, world parameters, security policies, and mod-loading instructions, making the

Luantick Collector present and active. The template approach provides consistency across

runs while still allowing controlled variation for different scenarios.

Bot deployment is managed by rust_walkaround_deploy.yml, which sets up the Rust

toolchain and compiles the bots across all nodes. The texmodbot stack expects a nightly

rust toolchain2, where the playbook then ensures that the correct compiler is available

everywhere. The source is then synchronized, which resolves dependencies, and builds

binaries optimized for the target hardware. To keep builds reliable, cargo fetch steps use

throttling and controlled serialization keeping logs readable while reducing failures. This

eliminates deployment issues when bots attempt to deploy on multiple machines.

Finally, results collection gathers metrics and logs into a time-stamped directory. Simple

structural checks look for the presence of tick, player, and interaction files and for the main

server log. As a result, missing artifacts are immediately noticed, allowing for a correct

analysis.

1https://jinja.palletsprojects.com/en/stable
2https://rust-lang.github.io/rustup/concepts/channels.html

28

https://jinja.palletsprojects.com/en/stable
https://rust-lang.github.io/rustup/concepts/channels.html

5

Evaluation

This chapter presents the evaluation of Luantick, helping to answer the third research

question "How can we evaluate MVEs that rely on different network protocols?" (RQ3).

The goal is to apply the implemented benchmark to structured experiments that reveal

protocol-specific performance, scalability limits, and resource utilization patterns across

different engines.

First, the main findings are introduced, highlighting protocol-level performance differ-

ences, resource utilization trends, and the scalability boundaries of the tested environ-

ments (Section 5.1). Next, the experimental setup is outlined, describing the controlled

environment where Luantick was deployed and the variables selected for systematic testing

(Section 5.2). This is followed by the presentations of the main findings (MF) from their

introduction in Section 5.1. As MF1 and MF2 address the impact of protocol differences

on responsiveness and throughput, they become interconnected and are discussed together

(Section 5.3). MF3 and MF4, also build on each other, since they expand the analysis to

cover scalability under increasing workloads and resource utilization trends (Section 5.4).

Finally, MF5 describes a distinct aspect of the evaluation (Section 5.5).

5.1 Main Findings

We derive the following main findings from the experiments summarized in Table 5.1:

MF1 On the minetest game mode, an official default Luanti server hits a retention

ceiling around ≈180 concurrent players. Beyond that, performance is limited

by the game engine, which points to a connection/session management limit rather

than a resource limit, further elaborated on in Section 5.3.

29

5. EVALUATION

Parameters

Focus Players Behavior Game Mod Environment Dur. [m]

System scalability (walk) 5–300 circular minetest DAS-5 4
SC: Movement pattern (walk) 5–500 random minetest DAS-5 4
Spawn radius (walk) 5, 100, 150, 200 random (r=60) minetest DAS-5 4
Spawn radius (walk) 100, 200 random (r=120) minetest DAS-5 4
Build pattern (block) 5–300 tower (r=0) minetest DAS-5 4
Build pattern (block) 100, 200 tower (r=120) minetest DAS-5 4
Pattern variation (block) 100 wall (r=0) minetest DAS-5 4
Game mode (walk) 5–150 random extra_ordinance DAS-5 4

Table 5.1: Benchmark families grouped by focus, parameters, and environment. Spawn
radius is shown in the Behavior column as r = {0, 60, 120}.

MF2 Game mode selection materially changes capacity. The minetest mode con-

sistently supports more players at target TPS than the community extra_ordinance

mode under similar loads.

MF3 Movement pattern matters. At the same concurrency, Walkbots with ’random’

workload reduce TPS slightly and increase tick-time variance compared to circular

Walkbots. These circular movement represents an “idealized” steady load, while

random movement produces short micro bursts, which are described in Section 5.4.

MF4 Spawn radius changes I/O and performance. Distributing players over larger

areas (radius 60 or 120) impacts workloads in different ways. For Random Walkbots,

this results in a minor performance penalty, with slightly reduced TPS, longer tick

durations, and increased network throughput, while CPU and memory usage remain

low. On the opposite end, Blockbot runs benefit from this distribution, achieving

higher TPS alongside reduced CPU consumption, as discussed in Section 5.4.

MF5 Placing blocks costs more than walking. For comparable amount of connected

players, Blockbots consume more memory than Walkbots while CPU and average

TPS stay similar, outlined in Section 5.5.

5.2 Experimental Setup

All experiments run on the DAS-5 distributed medium-sized supercomputer, which is part

of the VU cluster (17). The nodes of DAS-5 are equipped with two 8-core Intel E5-

2630v3 CPU @2.4 GHz with 64 GB RAM that give a lot of computing power for the

30

5.2 Experimental Setup

experiments. Unless stated otherwise, one node hosts the Luanti server and the remaining

nodes host the bot workload.

As mentioned in Chapter 4, the experiments ran on Luantick, which is an extension of

Yardstick for the MVE called Luanti 1. The benchmark reserves one or more of the 68

DAS-5 nodes and deploys server and workload processes using custom Ansible playbooks

that (i) copy shared libraries from the head node to the server node, (ii) copy the Luanti

server binary and its data directories, (iii) install a nightly Rust toolchain on each worker

node, and (iv) copy the bot workloads and metric collectors. Therefore, there is no need for

custom VM (Virtual Machine) images since everything runs on the host Linux installation.

First, the system scalability test was conducted to bracket the feasible concurrency for

the server on minetest. In practice, this establishes the safe operating window that sub-

sequent experiments should target. Next, the movement pattern is varied because path

diversity directly affects the per-tick workload mix which includes entity updates, colli-

sion checks, and visibility calculations. After, the spawn radius is adjusted to reflect how

public servers often concentrate players in hubs influencing spatial locality and streaming

pressure. Finally, build patterns like tower vs. wall are compared, because different world

mutation pathways stress the engine instead of pure movement.

System metrics such as CPU, memory, and network and disk throughput are collected

with Telegraf2 on all active nodes. For instance, CPU and memory come from cpu and

mem measurements, while per-interface network counters (net) and per-device disk counters

(diskio) are separated into rates. Application metrics are then exported by a Lua collec-

tor, including per-tick timing, player joins/leaves, and block interactions. All application

streams are append-only TSV files, with one line per event, making partial runs recover-

able in case the metric collector stops working or the server shuts down unexpectedly. In

the analysis step, each benchmark run gets its own ID, so then (i) timestamps are nor-

malized, (ii) concurrency whether peak or unique are obtained, and (iii) join network/disk

summaries are linked back to the run ID. This benchmark is designed in a manner where

the entire pipeline is reproducible, inputs are present in the per-run directory and the

notebooks/scripts write explicit CSV outputs alongside figures.

All experiments were carried out using the implemented protocol adapters for Luanti

and unless otherwise noted, follow this environment and setup.

1https://www.luanti.org
2https://github.com/influxdata/telegraf

31

https://www.luanti.org
https://github.com/influxdata/telegraf

5. EVALUATION

Figure 5.1: Maximum concurrent players against the desired number of emulated players

5.3 Maximum concurrent players (MF1, MF2)

Prior works show scalability limits ranging from a few dozen to a few hundred concur-

rent players, depending on the Minecraft-like game and workload used. For example,

the serverless prototype Servo, reached around 150 players during its scaling evaluation,

whereas Luanti achieved 180 players under similar conditions as seen in Figure 5.1. The

theoretical limit for Minetest, and thus Luanti, is 65,535 players via max_users setting in

minetest.conf. That said, the practical and playable maximum depends on world con-

tent, mods, and server configuration, with community reports of lag above ≈ 200 players

being common.

During the runs on minetest, the server maintains 20 TPS, with the general range

being from 19.4 to 19.9. The CPU and memory are below saturation, yet concurrency

stays around 180. This maximum of 180 concurrent players is concrete because at the 175-

180 mark, if new players join the server, that results in almost immediate disconnection of

existing peers, which looks like a retention ceiling rather than a throughput collapse.

During multi-bot runs on the community extra_ordinance mode, the server logs emit

the warning shown also in Figure 5.3:

Third person will break aiming and many other things, turn back while you
still can. This is an engine limitation

. As demonstrated in Figure 5.2, the Minetest game mode remains stable close to 19.9

TPS even as the number of players increases. However, Extra Ordinance shows a decline,

32

5.3 Maximum concurrent players (MF1, MF2)

Figure 5.2: Average Ticks Per Second (TPS) variation between the 2 tested game modes:
Minetest and Extra Ordinance

Figure 5.3: Descriptive message shown in the game mode ’Extra Ordinance’ when more than
2 players join the server.

dropping below 19.5 TPS as the player number approaches 150 to 175 which is beyond

the recommended number of active players according to the server warnings, meaning

that while the added complexity of the community mod reduces scalability and introduces

overhead that directly impacts tick stability.

Luanti uses a per-iteration packet budget which is divided fairly across active peers. In

simplified form:

peer_quota = max(1, total_iteration_packets / active_peers)

In our configuration, max_packets_per_iteration = 2048 (twice the default). At ≈ 171

peers this yields roughly 12–13 packets per peer per iteration, matching warnings such as:

WARNING[ConnectionSend]: Packet quota used up for peer_id=64003, was 13 pkts

33

5. EVALUATION

Figure 5.4: Comparison of average tick duration (ms) between the ’random’ workload and
’circular’ workload

Here, the limiter is not the overall packet capacity but instead the portion of the fixed

budget allocated to each player. As the active set grows, each client receives fewer packets

per tick, therefore balancing the send loop but also makes marginal peers more fragile

during player action overload.

It is likely possible to push beyond 180 with tailored network settings or multi-instance

designs, but the evidence indicates a connection/session management ceiling rather than

a tick-rate or CPU/memory limit. This means that the main bottleneck at that point is

who gets how many packets per iteration rather than whether the main loop can keep 20

TPS.

5.4 Movement pattern & Spawn Radius matters (MF3, MF4)

Random Walkbots introduce uneven bursts in movement and entity updates, such as many

bots change direction at once, therefore colliding with world features, or cluster temporarily.

On the other hand, circular Walkbots, produce a steady, predictable stream of updates

at constant speed and curvature. This is evident in the Figure 5.4, that show slightly

higher tick average and visibly larger variance for random movement at the same connected

players. The CPU deltas are small, which suggests the main effect is scheduling and short-

term contention rather than sustained compute load as shown in Figure 5.5

Figure 5.4 shows that at lower player counts, both workloads stay fairly close, but as

concurrency increases the differences become clear. Random movement, produces higher

variance and sharp spikes, especially over 150 players, because bots frequently change

34

5.4 Movement pattern & Spawn Radius matters (MF3, MF4)

Figure 5.5: Comparison of CPU usage between the ’random’ and ’circular’ workloads of
Walkbot. Small deltas suggest scheduling/contention effects.

direction at the same time. On the other hand, circular movement creates a smoother and

more predictable load, although it still rises above the 50 millisecond threshold at higher

scales. This means that the type of workload matters, because despite the same number

of players, less predictable behavior generates more pressure on the server which reduces

stability

Spawn placement changes spatial locality. With radius 0, all players spawn at the same

location, therefore allowing the server to reuse nearby mapblocks and neighbor lists while

keeping streaming paths short. Then, with a radius of 60 or 120, players spread out and

the server interacts with more distinct regions per minute, which increases world streaming

and event fan-out. The experimental data shows that (i) a modest TPS reduction and

higher tick variance, and (ii) increase network and disk activity which is most evident with

Blockbots as they continuously modify the virtual world. However, with Walkbots the

effect is present but smaller, meaning that concentrated spawns are more efficient, whereas

large spawn radii provide greater spacial fairness for slightly higher disk I/O usage, and

reduced tick stability.

Figure 5.6 shows how changing the spawn radius impacts disk I/O and performance for

Walkbots and Blockbots. When all players are concentrated in a hotspot, disk usage is

lower and more predictable because the server repeatedly accesses the same nearby map

blocks. However, as the spawn radius increases to 60 and then 120, players are spread

across regions, which increases streaming and I/O demand. This is more evident with

Blockbots, where larger radii push disk activity consistently higher, since building actions

continuously modify new areas of the world. Walkbots, on the other hand, also show an

35

5. EVALUATION

Figure 5.6: Comparison of Disk I/O usage between the Walkbots and the Blockbots

increase, but the effect is smaller because simple movement generates fewer world changes.

Therefore, proving that spatial locality does matters since concentrated spawns are more

efficient for the server, while spreading players across the map increases I/O load and

reduces stability.

5.5 Placing blocks costs more than walking (MF5)

The two subplots in Figure 5.7 compare CPU and memory usage for Walkbots and Block-

bots. On the left, CPU usage gradually risies with player counts for both workloads, but

the difference between walking and block placement is not significant. Yet, on the right,

the memory usage it is evident that Blockbots consistently consume more memory than

Walkbots, often staying close to 90 percent, whereas Walkbots remain around 65 to 70%.

This proves that placing and modifying blocks is significantly more expensive than just

moving, because each action requires the server to track and update additional state. These

results stay consistent across tower workload runs and remain stable even when the spawn

radius is changed, confirming that world mutations have a higher resource cost than pure

movement.

World mutations trigger allocation and retention in several places: (i) mapblock caches,

36

5.5 Placing blocks costs more than walking (MF5)

Figure 5.7: CPU and Memory comparison between Walkbots and Blockbots

(ii)) metadata for active blocks, and (iii) server-side data structures that queue and propa-

gate changes to clients. For example, dig and place events increase the amount of modified

regions alongside expanding the set of loaded mapblock, even if the tick loop itself stays

short. In practice, Lua-side instrumentation and engine behavior allow these changes to be

committed without stretching the main step beyond target, so that TPS stays flat while

the memory footprint rises.

37

5. EVALUATION

38

6

Related Work

Research on benchmarking and scalability of MVEs has gained significant attention across

the computer science field especially concerning distributed systems and gaming commu-

nities. MVEs enable interactive yet consistent virtual worlds but also present significant

challenges when scaling beyond a few hundred concurrent players. Previous research in the

field explored multiple approaches to improve performance from server-side optimizations

and distributed architectures to benchmarking methodologies. This section is a literary

review of related works across four elements (i) scalability techniques for MVEs, (ii) bench-

marking frameworks and methodologies, (iii) alternative architectures for game engines,

and (iv) open-source engines and protocols relevant to Luanti.

To begin with, research on the scalability of online games has consistently focused on

overcoming bottlenecks in simulation and networking. Earlier studies showed that lim-

itations of single-threaded event loops in commercial servers, where CPU and network

saturation constrains player concurrency. Expanding this, more recent work at the Vrije

Universiteit (VU) examined new approaches to address this limitation. Last year, a lock-

step simulation model for MVEs was introduced by Kamberi, which enforces deterministic

progression to ensure fairness across clients at scale (6). This method maintains consis-

tency while reducing responsiveness in highly interactive environments. Similarily, Servo

is a serverless approach to scaling MVEs, that was proposed in 2023 by Donkervliet et

al. (4). Their design uses function-as-a-service platforms to spread simulation tasks across

multiple invocations, decreasing idle capacity while increasing elasticity. However, despite

these advantages, the approach requires some alterations to the game engine, which then

complicates its adoption in practice.

Second, benchmarking has become an important method to evaluate the performance

of MVEs under controlled conditions. Gray’s Benchmark Handbook (14) established sys-

39

6. RELATED WORK

tematic practices for benchmarking in databases and transactional systems, which later in-

formed approaches in gaming contexts. For MVEs, van der Sar et al. introduced Yardstick

in 2019, which is the first benchmark specifically designed for Minecraft-like services (8).

Yardstick generates workloads based on real player behavior, derives service-level indica-

tors, and measures metrics on a system and application level. The results of their study

showed that Minecraft servers are limited by weak parallelization, therefore restricting their

ability to scale. Building onto this, Eickhoff et al. (2023) designed a benchmark called Me-

terstick to capture variability across cloud-hosted and self-hosted MVE deployments (18).

Their findings demonstrated that variability plays a significant role in limiting scalability,

with latency spikes exceeding acceptable thresholds. This emphasizes that benchmarking

is necessary for identifying hidden performance issues that undermine responsiveness.

Third, alternative designs for interactive simulations have been widely explored in re-

cent research. The AtLarge Vision on distributed ecosystems outlines general principles

for large-scale system design, focusing on modularity, openness, and reproducibility (10).

These principles have influenced benchmarking by encouraging the development of repro-

ducible pipelines. However, these designs are dependent on adaptive consistency to achieve

scalability without sacrificing responsiveness. For example, dyconit-based systems adjust

consistency bounds according to player interactions which reduces unnecessary synchro-

nization while maintaining interactivity. These studies show the architectural strategies

proposed for MVEs, ranging from adaptive middleware to serverless execution models.

Lastly, open-source game engines and their protocols provide an essential foundation for

experimentation and benchmarking. Luanti is a voxel-based engine written in C++ with

Lua scripting support, unlike Minecraft which operates on a proprietary Java-based server.

Luanti offers openly documented networking protocols (9) that allows direct benchmark-

ing without the need for reverse engineering. Community-driven implementations, such

as Spigot and Glowstone (12), (13), extend the variety of server designs developed to

address the limitations of the Minecraft server, which serves as practical alternatives for

players and as research platforms for scalability studies. These opportunities are extended

by recent research from open-source communities, which is evident in rust-based libraries

for Minetest (16). These libraries introduce modern performance enhancements, whereas

lightweight tools, like texmodbot (15) highlight the interest in automated interaction with

MVEs. When combined, these ecosystems provide the adaptability and transparency re-

quired to advance benchmarking research, supporting integration across diverse scenarios.

40

7

Conclusion

In this thesis I set out to design, implement, and evaluate a benchmark that can fairly

compare MVEs across different network protocols. My inspiration derived from existing

state-of-the-art benchmark, Yardstick, providing strong insights into Minecraft-like servers,

but their tight coupling to a single protocol limited their generality. With Luantick, I

explored whether a protocol-agnostic approach could be made practical and whether such

a system could reveal meaningful differences in performance across engines.

7.1 Answering Research Questions

In this section, we will address the main Research Questions introduced in Section 1.3.

For RQ1 regarding the design, Chapter 3 highlighted the essential requirements for

building a protocol agnostic benchmark for MVEs. I found that the main challenge of the

design is is by separating what players do from how each engine expects those actions on

the wire. To overcome this, I introduced a layered architecture with workloads, protocol

adapters, and metrics collection. This ensures that the same high-level behaviors, such

as walking, idling, and building are consistently applied, while each engine’s connector

handles the details. In my opinion, this design shows that neutrality can be achieved

without losing realism, which is done by centralizing requirements such as automation,

non-intrusive measurement, and clear metrics. By doing this, there now exists a type of

blueprint for future benchmarks that need to stay fair across different MVEs.

For RQ2 on the implementation, in Chapter 4 I translated the design into a working

system, by extending Yardstick with new components altered to Luanti. This meant

creating a Lua collector to capture tick-level data, Rust-based bots to simulate hundreds

of players, and and Ansible playbooks to automate deployments on DAS-5 cluster. In

41

7. CONCLUSION

practice, I believe that this structure and form of implementation was crucial because it

allowed Luantick to integrate with Luanti without modifying the engine, which can also be

extended to other engines. As a result, we now have a useable toolchain that researchers

can run out of the box, which makes protocol-agnostic benchmarking a reality rather than

a theoretical concept.

For RQ3 about the evaluation, Chapter 5 revealed how Luantick can be used to evaluate

MVEs under different network protocols. Using Luantick, I was able to test Luanti under

various workloads and scaling conditions. These experiments showed that Luanti’s UDP

protocol is efficient at lower scales but reaches a ceiling at about 180 concurrent players.

Movement diversity and spawn locality shaped performance in different ways, while block

placement consistently consumed more resources than walking. I think that these findings

highlight the trade-offs between efficiency and scalability, because they clearly showed

where Luanti performs well and where it struggles. Additionally, by repeating experiments

in a structured manner, Luantick provided reproducible evidence that can be compared

across platforms, which is something that earlier studies could not guarantee.

7.2 Limitations and Future Work

All research, like mine, comes with its limitations. This section describes the limitations

that I faced during my thesis alongside possible challenges with furture work.

First, a significant limitation that arose was related to server compilation issues, specif-

ically from repeated failures when compiling the Luanti server directly on DAS-5 clusters.

To address this, the server was successfully built once on the head node, and the Ansi-

ble playbooks were adjusted to copy the executable during deployment. Although this

workaround ensured progress, it also reduced flexibility by preventing per run builds.

Therefore, I believe that future work in this field could explore stronger compilation

pipelines or crammed environments that would avoid such obstacles.

Another limitation arose concerning the Secure Remote Password (SRP) protocol re-

quired for Luanti authentication. The handshake involves cryptographic operations that

proved difficult to implement from scratch, however this was resolved by adopting an

existing Rust library that was maintained by the community, allowing me to focus on

implementing the workload instead of implementing the authentication layer for the bots.

For future research could add support for other authentication methods or make SRP in-

tegration smoother, therefore making it easier to benchmark MVEs that use stricter or

custom login systems.

42

7.3 Closing Remarks

Third, managing distributed experiments across multiple DAS-5 clusters introduced dif-

ficulties in verifying server startup. My early tests often failed because the orchestration

only confirmed process launch rather than active server readiness. Yet, this was managed

by implementing health checks confirming that the server process was active before allow-

ing bots to connect. I think that future work could build on this aspect by adding more

advanced coordination tools, such as centralized experiment dashboards or automated re-

covery in case of cluster failure.

Lastly, the current experiments focused on movement and block placement, and while

this captures core interactions, MVEs also involve activities such as crafting, terrain mod-

ifications, and combat systems that can create different load patterns. Moreover, future

research could expand Luantick with more workloads to capture these behaviors and better

reflect the diversity of real gameplay.

7.3 Closing Remarks

Luantick shows that benchmarking MVEs does not need to be connected to a specific

engine or protocol. By separating workloads from network details, it became possible to

drive Luanti with the same type of player actions and collect comparable metrics without

modifying the engine. This work showed that protocol agnostic benchmarking is not only

possible but actually useful, because it exposes the strengths and limits of engines when

placed under realistic pressure. Together, the answers to the three research questions

in Section 7.1, highlight that protocol-agnostic benchmarking of MVEs is possible and

valuable. In my opinion, Luantick demonstrates a path forward, especially considering its

neutral design, extensible implementation, and an evaluation method that produces fair

and reproducible results. My experiments revealed concrete trade-offs between efficiency

and scalability, and their results suggest that future work can build on this foundation in a

manner to extend workloads, engines, and protocols to to better capture the performance

level of MVEs.

43

7. CONCLUSION

44

References

[1] Michiel Buijsman. Global Games Market Revenue: 2024 Estimates and

Forecasts, 2024. Blog post, accessed 6 June 2025. 1

[2] Minecraft Education. Math Essentials with Minecraft Education, 2025.

Resource page, accessed 6 June 2025. 1

[3] Minecraft Education. New Study: Understanding the Impact of

Minecraft in the Math Classroom, 2020. Blog post, accessed 6 June 2025. 1

[4] Jesse Donkervliet, Javier Ron, Junyan Li, Tiberiu Iancu, Cristina L.

Abad, and Alexandru Iosup. Servo: Increasing the Scalability of Modi-

fiable Virtual Environments Using Serverless Computing. In Proceedings of

the 43rd IEEE International Conference on Distributed Computing Systems (ICDCS

2023), pages 829–840. IEEE, 2023. 1, 2, 39

[5] Hannah Daniels. STEM Lesson Idea: Using Virtual Learning to Drive

Environmental Change, 2020. Blog post on Mimio Educator, posted 3 Nov 2020,

accessed 6 Jun 2025. 1

[6] Diar Kamberi. Lock-Step Simulation for Modifiable Virtual Environments

(MVEs). Bachelor thesis, Vrije Universiteit Amsterdam, submitted 20 Aug 2024,

2024. 1, 39

[7] Innovature Inc. What is benchmarking? https://innovatureinc.com/

what-is-benchmarking. Accessed: 2025-08-16. 2

[8] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yardstick:

A Benchmark for Minecraft-like Services. In Proceedings of the International

Conference on Performance Engineering, Mumbai, India, April, 2019, 2019. 2, 11, 40

45

https://newzoo.com/resources/blog/global-games-market-revenue-estimates-and-forecasts-in-2024
https://newzoo.com/resources/blog/global-games-market-revenue-estimates-and-forecasts-in-2024
https://education.minecraft.net/en-us/resources/math
https://education.minecraft.net/en-us/blog/new-study-understanding-the-impact-of-minecraft-in-the-math-classroom
https://education.minecraft.net/en-us/blog/new-study-understanding-the-impact-of-minecraft-in-the-math-classroom
https://atlarge-research.com/pdfs/2023-donkervliet-icdcs-servo.pdf
https://atlarge-research.com/pdfs/2023-donkervliet-icdcs-servo.pdf
https://blog.mimio.com/stem-lesson-idea-using-virtual-learning-to-drive-environmental-change
https://blog.mimio.com/stem-lesson-idea-using-virtual-learning-to-drive-environmental-change
https://jdonkervliet.com/assets/pdf/students/202408-bsc-thesis-diar-kamberi.pdf
https://jdonkervliet.com/assets/pdf/students/202408-bsc-thesis-diar-kamberi.pdf
https://innovatureinc.com/what-is-benchmarking
https://innovatureinc.com/what-is-benchmarking

REFERENCES

[9] Luanti Developers. Network Protocol. Luanti Documentation, https://docs.

luanti.org/for-engine-devs/network-protocol/. Accessed: 2025-08-16. 2, 40

[10] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Distributed

Systems and Ecosystems. In 2019 IEEE 39th International Conference on Dis-

tributed Computing Systems (ICDCS), pages 1765–1776, 2019. 4, 40

[11] r/admincraft. Paper 1.13.1 async chunk loading/generation [BETA]. 10

[12] SpigotMC Wiki. What is Spigot/CraftBukkit/Bukkit/Vanilla/Forge? 10,

40

[13] GlowstoneMC. Glowstone. 11, 40

[14] Jim Gray. The Benchmark Handbook for Database and Transaction Systems. Morgan

Kaufmann, 1993. 15, 39

[15] Lizzy Fleckenstein. texmodbot. https://github.com/LizzyFleckenstein03/

texmodbot. GitHub repository. 24, 40

[16] Unknown Github User. minetest libraries. https://https://github.com/

minetest-rust. GitHub Repository for Minetest in Rust. 25, 40

[17] Henri E. Bal, Dick H. J. Epema, Cees de Laat, Rob van Nieuwpoort, John

Romein, Frank J. Seinstra, Cees G. M. Snoek, and Harry A. G. Wijshoff.

A Medium-Scale Distributed System for Computer Science Research: In-

frastructure for the Long Term. IEEE Computer, 49(5):54–63, May 2016. 30

[18] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meter-

stick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games. In 2022 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, 2022. 40

46

https://docs.luanti.org/for-engine-devs/network-protocol/
https://docs.luanti.org/for-engine-devs/network-protocol/
https://www.reddit.com/r/admincraft/comments/9fpjjn/paper_1131_async_chunk_loading_generation_beta
https://www.spigotmc.org/wiki/what-is-spigot-craftbukkit-bukkit-vanilla-forg
https://github.com/GlowstoneMC/Glowstone
https://github.com/LizzyFleckenstein03/texmodbot
https://github.com/LizzyFleckenstein03/texmodbot
https://https://github.com/minetest-rust
https://https://github.com/minetest-rust

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Thesis Contributions
	1.6 Plagiarism Declaration

	2 Background
	2.1 Modifiable Virtual Environments (MVEs)
	2.2 MVE Networking Stack

	3 Design of Luantick: A Benchmark for Protocol-Agnostic MVE's
	3.1 System Requirements
	3.2 Design Overview
	3.3 Player Emulation
	3.4 Server Orchestration
	3.5 Network and Metrics Analysis

	4 Implementation Overview
	4.1 Luantick Framework Overview
	4.2 Metrics Collection System Implementation
	4.3 Rust Bot Implementation and Authentication
	4.4 Deployment Automation and Integration

	5 Evaluation
	5.1 Main Findings
	5.2 Experimental Setup
	5.3 Maximum concurrent players (MF1, MF2)
	5.4 Movement pattern & Spawn Radius matters (MF3, MF4)
	5.5 Placing blocks costs more than walking (MF5)

	6 Related Work
	7 Conclusion
	7.1 Answering Research Questions
	7.2 Limitations and Future Work
	7.3 Closing Remarks

	References

