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Abstract

Dataceners are becoming of ingrasing importance in modern society, poering cloud services, AI
workloads, and large-scale data processing. For research and planning there is an increasing need
for accurate and comprehensive simulation tools. Networking within datacenters has been largely
overlooked in favor of compute analysis, despite networking contributing to a significant amount of
total datacenter energy expenditure, and the significant impact that compute-network interdepen-
dencies can have on system behavior. We introduce OpenDCN (ODCN), an extension of OpenDC
(ODC), a peer-reviewed, state-of-the-art datacenter compute simulator. ODCN adds support for
datacenter network simulation, designed to serve research, academic, and industry while enabling
integrated compute-network co-simulation for more accurate and comprehensive system analysis.
The framework supports a broad range of customizable network topologies, both trace-driven and
synthetic traffic-pattern-based workloads, modeling of network protocols and policies, and interac-
tive simulation features for educational use. OpenDCN adopts a high-level, flow-based abstraction
level, which aligns well the more coarse-grained nature of compute simulation. Through a series of
case studies, we demonstrate the utility of ODCN in analyzing performance trade-offs and ineffi-
ciency that a compute-only model is unable to detect.
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1
Introduction

The strain on network infrastructures is escalating due to a rapid increase in internet traffic, driven
by factors such as the rise of high-definition content, the proliferation of connected devices, and
the growth of data-intensive applications. Each day, over 400 exabytes of data are generated,
and in 2025, this number is projected to surge to almost 500 exabytes per day (≈23% increase)
[4, 51]. Nokia’s Global Network Traffic Report [3] predicts that global network traffic demand
will reach between 2,443 to 3,109 exabytes per month in 2030, with a compounded annual growth
rate (CAGR) up to 32%. Datacenters have become indispensable in order to support such an
increase in online traffic, being central to the operations of virtually every online service. Moreover,
the continuously accelerating demand for computing power has also driven significant expansion
of datacenter infrastructure [45]. Energy consumption and carbon footprint of such expanding
facilities have come under scrutiny [18, 42, 59]. This has led to increased focus on assessing their
environmental impact.

Simulation plays a key role in enabling analysis and comparison of datacenter technologies at
scale [44]. Importantly, simulation-based evaluation drastically reduces the environmental impact
compared to real-world experimentation. Recent studies estimate energy consumption savings on
the order of 1:116 billion [29]. Although many datacenter simulators are available, they frequently
omit the networking component, a critical factor contributing significantly to both energy consump-
tion [17] and overall system functionality. We argue that accurately modeling both compute and
network components, along with their complex interdependencies, is essential for producing more
reliable and precise simulation results. In this work, we develop OpenDCN, a state-of-the-art, flexi-
ble network simulator that supports both traditional workload-based simulations and an innovative
interactive simulation environment, distinguishing it from existing tools. We implement OpenDCN
as an extension of OpenDC [30, 44], a peer-reviewed datacenter compute simulator. We then per-
form experiments using combined compute-network simulation to assess differences compared to
conventional compute-only approaches.

1.1 Problem Statement

Despite accounting for about 20% of the total datacenter energy consumption [17], datacenter’s
networking is often overlooked in the field. Evaluation methods, such as benchmarking, require
substantial time and financial investment and offer limited scalability. Additionally, it is advanta-
geous to predict the performance and energy impact of a given configuration prior to its deployment,
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Chapter 1: Introduction

reducing the risk of non-optimal performance and ensuring that the system meets expectations. Dat-
acenter simulators have become essential tools in the design, scaling, and development of datacenter
infrastructures. Numerous simulation frameworks have been proposed and adopted to support these
objectives [14, 13, 30, 31, 47]. Simulation offers a cost-effective and scalable alternative to physical
experimentation, enabling stakeholders to evaluate ICT infrastructure performance, reliability, and
energy consumption under diverse scenarios. Mastenbroek et al. report an energy efficiency ratio of
approximately 1:116,000,000,000 when comparing simulation-based experimentation to equivalent
real-world deployments [29].

Numerous generic network-only simulators have been developed, each operating at varying levels
of abstraction. Some simulators, such as ns-3 [28] and Mininet [39], provide fine-grained, low-level
representations of network traffic. Others, like SimGrid [14], adopt a higher-level abstraction, focus-
ing on scalability and task scheduling. Public datacenter traces are often limited in scope and lack
essential data for comprehensive simulation. Researchers frequently require the ability to isolate
compute or network behavior. A unified simulation framework that supports both integrated and
decoupled modeling, while maintaining consistent abstraction, would significantly enhance flexibil-
ity and applicability. CloudSim [13] offers partial compute-network integration but models their
interactions in a highly abstract and loosely coupled manner. It also lacks support for standalone
network simulations, limiting its use for detailed or isolated network analyses. Therefore we raise
the following Problem Statement (PS):

PS1 Absence of a unified tool supporting decoupled simulation of compute and network workloads.

Beyond the need for decoupled modeling, some evaluations benefit from combined compute–network
modeling. Coarse bandwidth–delay abstractions can be inaccurate, and can bias energy attribu-
tion between compute and network. Existing frameworks attempt to address combined simula-
tion. CloudSim [13], ICanCloud [47], EdgeCloudSim [58] have coarse-grained compute–network
co-simulation. GreenCloud [37] integrates packet-level networking with compute and energy but
targets smaller scales. SimGrid [14] provides scalable communication abstractions without detailed
datacenter network semantics, while ns-3 [28] and OMNeT++ [61] have packet level network mod-
els without compute. Integrated, cross-layer co-simulation, while remaining practical at datacenter
scale, is still limited. This raises PS2:

PS2 Lack of integrated, cross-layer compute–network co-simulation frameworks at datacenter scale.

There is growing interest in interactive network simulation that supports live control of a running
experiment, such as topology editing, fault injection, traffic control, and state inspection) [40]. Such
capabilities benefit education [32], research (rapid prototyping and debugging), and development.

Existing network and datacenter simulators try to address these requirements but often provide
limited runtime interactivity or adopt an abstraction level not suitable studies at scale. For example,
ns-3 [2], packet-level modeled, has limited interactivity, requiring pre-scheduled events or custom
code. OMNeT++ [61] provides time control and state inspection, but has limited live editing
capabilities of topologies and traffic. Moreover, these tools operate at low levels of abstraction
(packet-level or emulation), which makes very large-scale or long-trace studies computationally
expensive. This motivates PS3:

PS3 Limited availability of open-source, mid-level-abstraction simulators with interactive capabil-
ities.
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1.2 Research Questions

The problem statements listed in Section 1.1 lead to the Main Research Question (MRQ) and we
break it into three subquestions (RQ1 to RQ3):

MRQ How should mid-to-high level network and compute–network co-simulation be modeled in
datacenters, and how does network modeling affect conclusions on performance, energy, and task-
level QoS relative to compute-only baselines?

RQ1 How to model network resources at a high-level-abstraction across datacenters and generic
network topologies, enabling trace-based, traffic-pattern-based and interactive network simu-
lation?

Our goal is to model network resources and behavior at a higher level of abstraction than
most existing simulators, so that large-scale systems can be simulated over prolonged periods
of time. Supporting trace-based, traffic-pattern, and interactive simulations within a single
tool enables complementary approaches and equally important applications to coexist under
one framework. Capturing fine-grained network interactions in a representative high-level
model poses challenges for both fidelity and scalability Chapter 3. Achieving this across
all three modes further necessitates a general-purpose, well-structured, and highly extensible
simulation architecture.

RQ2 How can a compute-centric simulator be extended with a network layer to support both joint
compute–network co-simulation and standalone network and compute studies?

Achieving compute-network integration allows for comprehensive evaluation of datacenter in-
frastructures, considering both computational and networking components (Section 4.7).One
of the main challenges is the incorporation of a network simulation module with a compute
module. The resulting framework should still support standalone network simulation, exper-
imentation, and evaluation.

RQ3 How does datacenter networking affect the performance and overall system behavior on dat-
acenter workloads?

This study aims to evaluate the benefits of considering network interactions in datacenter
simulation through a series of case studies (Section 5.4). Our aim is to assess changes in
scheduling latency, execution and completion times, and related system-level outcomes. The
findings have the potential to reshape current practices in datacenter simulation. We know
that networking can have significant impact on system performance, it is often simplified or
omitted in datacenter models, as mentioned in Section 1.1, and opportunities to perform such
combined analysis remain limited at the moment. A practical challenge is that most public
traces lack explicit networking/topology information. We therefore consider representative
topology/routing assumptions and discuss their implications for the results.

1.3 Contributions
To address the research questions outlined in Section 1.2, we present the following main contribu-
tions:

C1 We introduce a state-of-the-art simulator, to simulate event-driven large-scale datacenter net-
work workloads, designed to support the modeling and simulation of arbitrary network sce-
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narios.

The simulator, developed following modern engineering practices, offers advanced features,
such as support for various topologies, energy models, routing protocols and QoS policies.
Our tool supports different modes of network simulation, including trace-driven (Section 4.4),
traffic-pattern (Section 4.6), and interactive (Section 4.5) simulations. The tool is designed to
promote modularity and extensibility, facilitating addition, sharing, and reuse of components,
experiments, and policies. These design choices promote reproducibility of results, ease of
adoption, and applicability across a broad range of use cases, including research, teaching,
and practical experimentation.

C2 We introduce an innovative approach for simulating network scenarios via an interactive
REPL-based simulation environment (Section 4.5).

The simulator provides an interactive REPL-based interface that offers fine-grained control
over simulation events, enabling users to build, test, import, and export components, policies,
and scenarios dynamically. This environment is especially valuable for educational purposes
and for iterative testing and development of new components.

C3 We present OpenDC(N) as a pioneering datacenter simulator capable of compute-network
combined simulation.

Integrating OpenDCN (network) with OpenDC (compute), a widely adopted datacenter
compute simulator that has been actively developed and validated over more than seven
years [44, 30] we present a tool that is capable of more comprehensive datacenter simulations
that combine both compute and network components for higher results accuracy.

C4 We empirically demonstrate the impact of network modeling on datacenter performance, en-
ergy, and QoS, through a series of reproducible case studies.

We demonstrate the impact of modeling network dependencies through three experiment sets:
traffic-pattern validation against BookSim (Section 5.2), trace-driven topology/routing stud-
ies (Section 5.3), and compute–network co-simulation of datacenter workloads (Section 5.4).We
quantify effects on accepted rate and runtime scalability, energy attribution , and task-level
QoS (delays and slowdowns), showing that network-aware modeling can materially change
conclusions for comprehensive datacenter simulations, especially in the tail. To enable repli-
cation and extension, we provide experimental artifacts and configurations.
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2
Background

We now introduce concepts and terminology necessary to understand later sections. In Section 2.1,
we outline the architecture of a conventional data center network. In Section 2.2 we list widely
used network topologies, presenting their taxonomy. Section 2.3 provides an overview of routing,
including its possible categorizations and enlisting the most commonly used in practice. Section 2.4
discusses a set traffic patterns used in network simulation to assess routing performance under
different topologies and routing protocols. Finally, we enlist performace metrics relevant to later
experiments and specifically DCNs (Section 2.5).

2.1 Datacenter: Role and Traditional Architecture

A datacenter (DC) is a facility containing a network of computing and storage resources used to
support the delivery of digital services. These facilities are the backbone of modern information
and communication technologies (ICT), hosting websites, cloud applications etc. Datacenters con-
sist of interconnected servers, storage systems, and networking equipment, to ensure scalability,
performance and efficiency.

In recent years, the role of datacenters is of increasing importance due to the exponential growth
of internet traffic, mobile devices, and cloud computing platforms. Demand for digital services
continues to rise across sectors such as e-commerce, video streaming, finance, and scientific research,
datacenters have become essential for ensuring reliable access to computational power and data
storage. Both research and industry have increasing interest in optimizing performance and energy
efficiency of datacenters.
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Figure 2.1: Traditional Datacenter Design Overview.

Figure 2.1 illustrates a traditional three-tier datacenter architecture, commonly used to explain
the functional components and the data flow from end-user to hosted services. The user ( A )
performs service requests, which traverse the Internet ( B ) and eventually enter the datacenter
through edge routers.. Once within the datacenter boundary, traffic is often handled by the core
layer ( C ), which acts as the backbone of the datacenter network. This layer is optimized for
throughput, fault tolerance, and minimal latency, and typically utilizes high-performance switches
operating at 10 Gigabit Ethernet or higher [27]. The aggregation layer ( D ) (also referred to as the
distribution layer) is under the core layer, and is important in managing east-west traffic [11] within
the datacenter and serves as a bridge between the access and core layers. In some designs, gateway
functionality is implemented at the aggregation layer. The access layer ( E ) is the point at which
the network physically connects to compute and storage. This layer is designed to connect network
and hosts ( F ), the physical machines that provide computing power. Each access switch usually
connects 10-20 different servers with 1GE ports [27, 46]. The hosts themselves are physical servers
with virtualization, enabling the creation of multiple isolated execution environment [8]. These
environments may consist of Virtual Machines (VMs), which are capable of running independent
applications or services [53].

It is important to note that this three-tier architecture represents a generalized and conventional
topology. In practice, completely different topologies are in use, with ongoing research focusing
on novel topologies that improve scalability, fault tolerance, and energy efficiency. Alternative
datacenter topologies and their characterization is presented in the following section.

2.2 Network Topologies and Classifications
DCNs topologies have evolved significantly to attempt to scale at the increasing demand. We
now highlight the importance of a DCN simulator capable of building and simulating arbitrary
topologies, enabling researchers and practitioners to conduct evaluation and optimization of both
established and emerging architectures.
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Name(s) Abbrv. Description

Nodes (Vertices) V Total number of nodes in the (datacenter) network.

Hosts (Terminals) N Number of host machines in the (datacenter) network.

Switches (Routers) R Number of switches that forward traffic in the (datacenter) network.

Links (Edges) E Number of links interconnecting the nodes.

Table 2.1: Terminology and abbreviations of DCN parameters used throughout this work.

2.2.1 Topology Terminology and Abbreviations

We define a set of abbreviations representing the main characteristics of DCN topologies. Table 2.1
enlists these abbreviations, which are the same in all topologies. In theoretical models, the entities
of a network are described as vertices, edges, with vertices subclassing in routers and terminals. In
computer practice, the same notions are referred to as nodes (including switches and hosts) and
links. To avoid ambiguity, we present both conventions side by side. Additional abbreviations for
parameters specific to particular topologies will be introduced in later sections.

2.2.2 Structural Pattern Classification

Modern DCN topologies can be broadly categorized by their structural patterns. This section sur-
veys the major classes of topologies found in contemporary and experimental datacenter networks.

DCell
4

DCell
1

DCell
2

DCell
3

DCell
5

Internet

Core Switch

Switch

Host

Inter-DC FLow

Intra-DC FLow

Link

Legend 

Figure 2.2: DCell Topology.

Recursive-defined. Recursive defined topologies (DCell [25] (shown in Figure 2.2), BCube [24],
FiConn [41], introduce partially server-centric use recursive rules in order to build scalable and
modular networks. These kinds of topologies are usually hybrid topologies, introducing server-
centricity, where servers act as both computation endpoints and intermediate forwarding nodes.

Flattened. Flattened topologies such as Dragonfly [36], Slimfly [12], PolarFly [38], Flattened
Butterfly [35], focus on minimizing hierarchy, reducing network diameter.They are typically switch-
centric and rely on complicated group connections strategies to balance throughput, cost, and path
diversity.
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Figure 2.3: FatTree with n=4.

Random. Random topologies, such as Jellyfish [57], build networks using random or expander
graph principles. Their non-deterministic nature enables incremental scalability, but often suffer
from high performance variability.

Grid-like. Grid-like topologies, such as 2D/3D Mesh and Torus [16], HyperCube [48], connect
nodes in regular, multi-dimensional geometric patterns. These topologies are often used in environ-
ments due to their low-latency characteristics for local traffic.

Hierarchical. Hierarchical topologies (VL2 [23], two-tier leaf-spine topology [7]) are widely used
in practice, with the servers as leaf nodes and switches as intermediate nodes. Fat-Tree is one of
the most famous examples, illustrated in Figure 2.3 and introduced by Al-Fares et al. [6]. Fat-Tree
employs multiple roots enhancing fault tolerance and bisection bandwidth. These are all examples
of switch-centric architectures.

2.2.3 Functional Classification

DCN topologies can also be classified by which components, handle routing and packet transmission.

Switch-centric. Routing and packet forwarding responsibilities are delegated entirely to network
switches. Common examples include traditional hierarchical and flatten topologies.

Server-centric. Server-centric architectures, also called direct networks,leverage servers for rout-
ing. In these designs, servers are connected directly to each other, which can reduce deployment
costs by reducing number of switches. This adds computational and energy overhead on the hosts,
as servers must remain active. These architectures can complicate power management strategies
and often exhibit a less predictable worst-case latencies. Examples include CamCube [5] and No-
vaCube [62].

Hybrid. Hybrid architectures combine elements of both models: servers and switches collabora-
tively forward packets.

2.3 Routing in Data Center Network
Routing protocols determine how traffic is directed across the network. These protocols can have a
significant impact on throughput, load balance and tail latency. Some determine paths statically,
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other use node-local or global state information (e.g., SDN controller). We categorize protocols by
the decision scope in Section 2.3.1, and enumerating the most used protocols in Section 2.3.2.

2.3.1 Categorization

In this Section, we present a high level categorization of routing strategies based on where and how
routing decisions are made within the network.

Static routing. Routing paths are determined statically and do not depend on any state informa-
tion. These paths remain fixed, without adapting to live changes, presenting minimal overhead but
lacking flexibility to respond to diverse traffic patterns.

Locally adaptive routing. Locally adaptive routing dynamically adjusts routing decisions based
on real-time information available on the node, such as queue occupancy or link utilization. These
protocols operate in a distributed manner and aim to reduce congestion by rerouting flows at
individual switches. However, since decisions are made without global visibility, local adaptations
can lead to suboptimal global outcomes.

Globally adaptive routing. Globally adaptive routing makes decision based on network global
state, including end-to-end traffic demand, topology information, or link-level congestion. This
approach is characteristic of centralized control planes in Software-Defined Networking (SDN). While
it enables better load balancing and congestion mitigation, it may also introduce control plane
complexity and reduced responsiveness.

2.3.2 Common Routing Protocols in Research and Practice

In this section, we present an overview of widely used routing protocols in both research and practice,
and will be used in Chapter 5. The protocols are described using abstract router notation, without
distinguishing between hosts and switches, in line with common practices in theoretical network
research. Throughout this discussion, we use Rs to denote the source router and Rd to denote the
destination router.

Open Shortest Path First (OSPF or MIN). OSPF, also called minimal static routing (MIN)
is a static routing protocol that routs a packet from Rs over the minimal path to its destination
router Rd.

Equal Cost Multi Path (ECMP or RAND MIN). ECMP is a routing strategy that com-
bines MIN with randomization (RAND MIN ) or deterministic of multiple minimal equal cost paths.
Specifically, router Rs selects one of the minimal-hop paths to Rd. Common selection implementa-
tions use hash-based selection on packet headers, round-robin, or uniform random choice to achieve
static load balancing across the paths.

Valiant Routing (VAL). VAL, proposed by Valiant et al. [60], introduces randomized path
diversity to reduce network congestion. For each packet, a random intermediate router Ri is selected,
such that Ri 6= Rs and Ri 6= Rd. MIN routing is then used to rout the packet from Rs to Ri, and
subsequently from Ri to Rd. VAL helps to avoid potential hotspots in the network, but may reduce
the effective bandwidth and increase latency due to the longer paths that are used.

Universal Globally-Adaptive Load-balanced (UGAL). UGAL, introduced by Kim et al. [36]
in the context of Dragonfly topology, is designed to balance traffic across global channels, those
connecting different groups of nodes. For each packet, the protocol chooses between MIN and VAL
paths to load-balance the network. UGAL is separated in a local version UGAL-L, which uses local
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queue information at the current router node, and UGAL-G, which uses queue information for all
the global channels.

While the protocols discussed here are widely used, many other exist, including topology-specific
variants of ones mentioned above.

2.4 Traffic Patterns
For network evaluation, evaluating how it responds under a variety of traffic patterns is required.
Researchers commonly use a set of canonical traffic patterns that abstract different real-world
scenarios while stressing various aspects of the network. These patterns are designed to expose
bottlenecks, test load balancing, and evaluate routing strategies under both benign and adversarial
conditions. In this section, we describe several widely adopted traffic patterns, that will be used in
5.2.

Uniform Random. In this pattern, each packet’s source selects a destination uniformly at random
among all other nodes.

Random Permutation. A permutation of source destination mapping is selected uniformly at
random from the set of all possible permutations. Each node sends traffic to exactly one destination
and receives from exactly one source (one-to-one mapping).

Bit-Permutation. Bit-permutation patterns map each source address to a destination by applying
a deterministic transformation to its binary representation. Common examples are bit-complement,
bit-reversal, bit-transpose and bit-shuffle. We define these in Equations (2.1) to (2.4).

di = si, for i = 0, . . . , n− 1 (bit-complement) (2.1)
di = sn−1−i, for i = 0, . . . , n− 1 (bit-reversal) (2.2)
d = (sn

2
−1, . . . , s0, sn−1, . . . , sn

2
) (bit-transpose) (2.3)

di = s(2i) mod n, for i = 0, . . . , n− 1 (bit-shuffle) (2.4)

where s and d denote binary representations of the source and destination addresses respectively, and si and
di refer to the i-th bit of s and d.

Tornado. In the Tornado pattern [56], each router i sends traffic to router (i+ N
2 ) mod N , where

N is the total number of routers. This often results in traffic being directed halfway across the
network, especially in grid-like topologies,. Tornado is useful for exposing bottlenecks and testing
the network’s ability to handle structured, high-stress patterns.

Adversarial. Adversarial traffic patterns are intentionally designed to stress the network and reveal
worst-case performance scenarios. They are topology specific and are often defined alongside new
topology designs in research to highlight limitations.

2.5 Relevant Datacenter Evaluation Metrics
This Section outlines key metrics used to evaluate datacenter and network performance. These
include energy efficiency indicators, network-specific throughput and power metrics, demand satis-
faction measures and carbon emission.
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2.5.1 Energy Effectiveness

Power Usage Effectiveness (PUE). A variety of metrics are currently employed to evaluate
datacenters, but one particular metric has emerged as a predominant industry standard. PUE,
introduced in 2006 [43], has become the most widely utilized measure for assessing datacenters
energy efficiency [15, 34]. The PUE, defined in Equation (2.5), quantifies the proportion of energy
utilized specifically by IT equipment relative to the total energy consumption of a datacenter.

PUE =
PT

PIT
(2.5)

where PT denotes the total power consumption of the datacenter, and PIT represents the power consumed by
the IT infrastructure.

Datacenter Performance Efficiency (DCPE). Derived from PUE, DCPE is a metric used to
measure the computational efficiency of datacenters. DCPE was introduced by Belady et al. [9] and
used to capture the fraction of energy used for computation.

DCPE =
UIT

PUE
=

UIT · PIT

PT
(2.6)

where UIT denotes the IT Equipment Utilization.

2.5.2 Network Specific Metrics

We proceed by presenting relevant network metrics that will be used throughout evaluation and
experimentation (Chapter 5).

Network Power Usage Effectiveness (NPUE). In this work we also use a variation of PUE,
namely Network Power Usage Effectiveness (NPUE), introduced by Popoola et al. [49]. This metric
represents the ratio of overall IT power to power utilized by the network modules, defined in
Equation (2.7).

NPUE =
PIT

PN
(2.7)

where PN denotes the power consumption of the network infrastructure.

Network Power Effectiveness (NPE). Despite very similar names, NPE and NPUE are very
different metrics. NPE, introduced by Shang et al. in 2015 [52], is defined as the ratio between the
aggregate network throughput and the total network power consumption (Equation (2.8)). This
metric quantifies the end-to-end efficiency of transmitting data. Consequently, NPE reflects the
tradeoff between power consumption and network throughput in datacenters.

T τ
agg =

∑
f∈F

T τ
f NPE =

T τ
aggr
P τ
N

(2.8)

where T τ
agg is the total aggregate throughput of all flows f ∈ F at time instant τ , T τ

f denotes the throughput
of flow f at time τ , and P τ

N represents the power consumed by the network at that same instant.

Communication Network Energy Efficiency (CNEE). CNEE, is effectively the inverse of NPE
and quantifies the efficiency with which the network converts electrical energy into information
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transmission [21]. This metric measures how effectively the network performs the task of data
delivery. Equation (2.9) defines CNEE for time instant τ :

CNEE =
P τ
N

T τ
aggr

(2.9)

Network Latency. In the context of data center network evaluation, network latency is defined
from the application’s perspective, as articulated by Guo et al. [26]. Specifically, network latency
refers to the elapsed time interval from the moment an application A on one server transmits a
message until it is received by an application B on a peer server. While we recognize the importance
of latency for network performance, our primary focus in this study is directed towards the analysis
of network throughput, the assessment of demand satisfaction, the detection of congestion events,
and the evaluation of energy consumption within the networking infrastructure. Additionally, we
investigate how task dependencies on network resources might impact their completion times and
overall system efficiency.

Demand Satisfaction Ratio (DSR). DSR quantifies the extent to which the bandwidth require-
ments of a network flow are fulfilled by the underlying infrastructure. It is defined as the ratio
between the actual allocated throughput and the requested (demanded) throughput for a given
flow. Formally, for a flow f , the DSR is given by:

DSRf =
T alloc,τ
f

T req,τ
f

(2.10)

where T req,τ
f is the network demand of flow f at time instant τ , and T alloc,τ

f is the actual throughput obtained
by f at that same instant.

This definition can be extended to assess satisfaction over a time interval [τ0, τ1], accounting for
variations in throughput and demand:

DSR[τ0,τ1]
f =

∫ τ1
τ0

T alloc
f (τ) dτ∫ τ1

τ0
T req
f (τ) dτ

(2.11)

where T alloc
f (τ) and T req

f (τ) represent the allocated and requested throughput of flow f as functions of time.

To capture an overall view of network performance, we define the average DSR across all flows F
over the interval [τ0, τ1] as:

DSR[τ0,τ1]
=

1

|F|
∑
f∈F

DSR[τ0,τ1]
f =

1

|F|
∑
f∈F

∫ τ1
τ0

T alloc
f (τ) dτ∫ τ1

τ0
T req
f (τ) dτ

(2.12)

where F denotes the set of all active flows during the interval [τ0, τ1], and |F| is the cardinality of that
set.
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3
Design of a Flow-Based Network Simulator

This chapter presents the design of OpenDCN. The goal is to identify design requirements in
Section 3.1 and translate them into an architecture whose overview of its modular components is
detailed in Section 3.2. We introduce the flow-level abstraction used to model network traffic in
Section 3.3. Section 3.4 discusses the mechanisms for managing policies such as routing, energy
efficiency, and QoS. Finally in Section 3.5 we present a taxonomy of alternative abstraction levels
used in network simulation.

3.1 Requirements
In this section, we determine requirements that our datacenter network simulator should address.

R1 Combine compute and network simulations in a single instrument. To enable holis-
tic analysis of datacenter behavior, the simulator must capture the interdependencies between
computational workloads and networking infrastructure. This necessitates designing the net-
work simulation with a level of abstraction and granularity that aligns with those of compute
simulation. This integration improves the fidelity of simulation studies but introduces tech-
nical challenges, particularly in integrating our network simulator with the existing OpenDC
platform. An overview of the integration architecture is presented in Section 4.7.

R2 Support the most well-known as well as user-defined topologies. To facilitate re-
search and experimentation in the field, as well as educational purposes, the system should
be designed to be generic, capable of supporting arbitrary network topology, this includes
fine-grained user-defined configurations as well as convenient abstractions for building com-
mon topologies using a small set of parameters. While this flexibility enables a broad range
of experimentation, it also introduces significant design and implementation complexity.

R3 Enable reuse and sharing of designs of topologies and single components. To re-
duce the complexity of datacenter network design and lower the barrier to entry, the simulator
should support modular reuse and sharing of both complete topologies and individual com-
ponents. This feature also facilitates repeatability and reproducibility of results [1], enabling
consistent evaluation across shared scenarios. However, this introduces the challenge of defin-
ing a non-volatile representation for a wide range of network components, ensuring that they
can be easily loaded, exported and composed within the simulator environment.
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R4 Support easy addition and modification of policies and protocols. The system should
offer pre-defined routing protocols, as well as QoS and energy-saving policies, reducing the
barrier to entry. These policies should be applicable on the network, node and job level, to
enable Software Defined Networking (SDN) and network aware strategies. The system must
allow users to define, implement, and evaluate custom policies with minimal effort. This
flexibility introduces complexity, necessitating tooling for testing and debugging user-defined
protocols and strategies.

R5 Support educational purposes with interactive simulation interface. The simulator
should provide an interactive mode tailored for educational and training purposes, enabling
users to conduct guided, small-scale experiments. This mode provides fine-grained control over
simulation behavior, allowing the user to dictate every event, including advancement of virtual
time, enhancing observability. Such capabilities offer a significantly deeper understanding of
network behavior compared to traditional simulation. Supporting this interactive functionality
requires a distinct set of features and expands the overall scope and complexity of the system.

R6 Permissive trace format and synthetic traffic patterns. Item R6 addresses the need
to accommodate a broad range of publicly available traffic traces, many of which are non-
standardized or contain missing values. However, this permissive format adds complexity to
the system, as it must be capable of converting diverse formats into valid network workloads
that can be interpreted and executed by the simulator. In addition, the simulator should
support the generation and evaluation of synthetic traffic patterns (as described in Section 2.4),
a common practice in networking research [33]. Many existing simulators offer synthetic traffic
as their primary or sole mode of operation, making its inclusion essential for comparative and
exploratory studies.

R7 Provide comprehensive output metrics with adjustable granularity. The system
should offer a comprehensive range of output metrics, covering both QoS and energy con-
sumption. Users must be able to selectively specify which metrics to export and define the
desired export interval. This flexibility reduces unnecessary output, minimizes file sizes, and
streamlines post-simulation analysis.

R8 Adhere to modern software development standards. The system should be designed
with long-term evolution and extensibility in mind, enabling future research contributions
and further development. To achieve this, it must follow professional software engineering
practices, including modularity, clear documentation, and automated testing. Item R8 ensures
maintainability, scalability, and reliability of OpenDCN over time.

R9 Ensure high performance and scalability of the simulator. The system must handle
large-scale simulations with limited performance overhead, with chosen level of abstraction
that balances accuracy and efficiency Section 3.3. Specifically, it should support the simula-
tion of millions of network events across thousands of nodes within seconds to a few minutes.
Achieving this level of performance is particularly challenging given the computational and
memory demands of simulating complex datacenter networks, in conjunction with the flexi-
bility and extensibility that we aim for.

3.2 Design Overview
In this section, we discuss the high-level architecture of the simulator, as shown in Figure 3.1. At the
highest level, we identify four main components: an experiment runner for workload-based experi-
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Figure 3.1: An overview of the architecture of the DC Network Simulator.

ments; the REPL environment, which facilitates experimentation, the creation of new pre-fabricated
components, as well as testing and debugging; a set of structures responsible for controlling the net-
work’s discrete event simulation and providing snapshots of the system’s state; and, finally, the
datacenter network model itself. Additionally, the figure illustrates, at a high level, how a compute
simulator module could interact with our simulator. The policy management aspects will be dis-
cussed in Section 3.4. We now proceed to discuss each of these components and their respective
subcomponents.

REPL (addresses requirements R4, R5): The Command Line Interface ( A ) is beneficial for
users as it allows efficiently set up, configure, and reproduce experiments. It is also through the CLI
that users can benefit from the REPL Environment. The Sandbox Environment ( B ) (Section 4.5)
provides an interactive environment for event-driven simulations as well as for building and modify-
ing components and topologies. It allows users to rapidly test newly defined policies and protocols
in a more debugging-friendly environment, addressing R4. This feature is particularly valuable for
educational purposes and facilitates plug-and-play simulations, exploring network behaviors with
ease, addressing R5.

Experiment Runner (addresses requirements R2, R3, R6, R7): The Library of Components
( C ) offers built-in network components and topologies, simplifying the design process. The library
enables construction of complex datacenter networks without the need to design each element from
scratch, minimizing the barrier to entry. The library includes Fat-Tree, Spine-Leaf, Dragonfly,
Flattened Butterfly, and other widely used topologies and components. The library can be extended
by adding user-defined components and topologies, facilitating their reuse and sharing, addressing
R3. The Library of Traces ( D ) provides a set of built-in network traces. This feature allows to run
experiments without generating custom network traces, which may be time-consuming. Producing
specific traces may yield more representative results for specific environments. The Network Scenario
( E ) serves as an aggregator that encapsulates all the necessary information required for a given
simulation, including monitor granularity and selection of output metrics, partly addressing R7.
The network scenario functions as the final input format for the simulator (Section 4.4). The
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Workload Loader ( F ) converts a wide range of publicly available input traces into a standardized
workload executable by the simulator (Section 4.4.2), addressing R6. The Network Builder ( G )
converts network components and topologies, that may be defined recursively, or manually, from
raw JSON files to their runtime representation, partly addressing R2 The Exporter ( H ) (Section
4.3) handles exporting tracked metrics to output files, according to configurations provided by the
network scenario. It allows to selectively choose which metrics are to be exported among the many
available and with which granularity, enhancing the control the user has over the output.

Control (addresses requirement R1, R7, R9): The network logic is controlled by this module,
which handles the simulation and the monitoring of resources, while ensuing scalability and minimal
performance degradation, addressing R9. The Network Controller ( I ) serves as the interface that
triggers every event within the network, including connection and disconnection of components,
while supplying real-time monitoring data to higher-level components. This component also sup-
ports integration with an external compute simulator, delegating control over network behavior and
providing real time feedback for possible workload dependencies between the two modules, address-
ing R1. The Monitoring Service ( J ) provides real-time monitoring of a wide range of network
QoS and energy consumption metrics (Section 4.3), at the level of individual flows, nodes, and the
entire network, addressing R7. The Event Handler ( K ) handles network events ensuring their
order of execution and consistency with the simulation virtual time (Section 3.3.3). The Network
Interface Controller ( L ) serves as an abstraction provided by certain network nodes that enables
to directly manage their network behavior, while providing real-time information about network
performances, allowing adjustment in response to changing conditions. It is especially used in
combined compute-network simulations, addressing R1.

Compute Simulator Logic (addresses requirement R8): Our design facilitates not only
independent network simulations but also the integration of networking and computing simulations.
This capability is illustrated in the figure by the Compute Simulator Logic ( P ), which can manage
network operations either through the Network Controller or via NICs. This approach enables a
detailed representation of the interactions between networking and computing components.

DC Network (addresses requirements R4, R8): The DC Network Q is built of all different
network components (e.g. switches, host-nodes, links), and accurately simulates their interactions.
These interactions are modeled in a highly generic manner, enabling the representation of virtually
any network topology, provided it is manually specified, addressing R2.

3.3 Simulating Network Traffic with Flow Abstraction
This section introduces our approach to modeling network traffic using a flow-based abstraction. In
Section 3.3.1 we present the base concepts of our model. Section 3.3.2 details how we represent traffic
congestion using flows rather than explicit packet queuing mechanisms. Finally, in Section 3.5, we
discuss alternative abstraction levels commonly in network simulation. A simple example illustrating
flow behavior is shown in Figure 3.2 and is used throughout this section to support the explanations
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Figure 3.2: Illustration used to explain flow-congestion modeling.

3.3.1 Model Overview

In this work, we adopt a flow-level abstraction. A network traffic flow has a source node, a des-
tination node, and an associated demand. The source and destination nodes may reside within
the datacenter, representing intra-datacenter (also called East-West) communication or connect
to external entities representing inter-datacenter (also called North-South) communication. It is
important to support intra-datacenter flows, as East-west traffic is steadily increasing [10]. Each
end-to-end flow may be decomposed into multiple sub-flows across different paths. The decomposed
flow can then be reassembled at the destination. This decomposition enables support protocols that
distribute traffic across multiple paths,.

An example of this behavior is depicted in Figure 3.2, where flow f , with Ns and Nd as source and
destination nodes respectively, is decomposed across links L1 and L2, and then recomposed at Nd.
Each sub-flow may experience different levels of congestion, and the end-to-end throughput of the
flow is determined by the aggregate rate at which its sub-flows successfully arrive at the destination.
A formal computation of end-to-end throughput and congestion for the example illustrated in
Figure 3.2, is provided in Section 3.3.2

3.3.2 Simulating Network Congestion

We proceed with a formally defining how end-to-end throughput is computed in the example shown
in Figure 3.2, focusing on how network congestion is simulated in our model. Consider a flow f
originating from node Ns and destined to node Nd. We compute the data rates that Ns attempts to
transmit over links L1 and L2. The protocol in use determines these attempted transmission rates.
To give an example that includes multipath routing, we assume a static multipath protocol, such
as ECMP, described in Section 2.3.2. We will first consider the path through N1. The equation in
Equation (3.1) define how the tentative output data rate for Ns on link L1 is computed.

outfNs,L1
= proto(d,Ns, Nd, L1) (3.1)

where outfNs,L1
us the output data rate for flow f on link L1 by node Ns; and proto(d,Ns, Nd, L1) is

the protocol function that based on sender node Ns, destination node Nd, output link L1, and demand d,
determines the resulting output data rate.

Since the routing protocol does not consider congestion, the output data rate computed above
represents the intended transmission rate rather than the actual achieved throughput. To simulate
congestion, each flow on a given link is assigned a throughput based on the following rule: if the
aggregate tentative data rate does not exceed the link’s capacity, each flow receives its full attempted
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data rate; otherwise, the link’s capacity is shared among flows proportionally to their attempted
transmission rates. This results in the following expression:

tputfL1
= min

 outfNs,L1∑
f ′∈FL1

outf
′

Ns,L1

· cL1 , outfNs,L1

 (congestion equation) (3.2)

where cL1
is the capacity of link L1; FL∞ is the set of flows passing through link L1; and tputfL1

is the actual
throughput through link L1.

As N1 receives flow f only through link L1, the total data rate received at N1 is given by the
throughput of f on L1, as follows:

infN1
= tputfL1

(3.3)

where inf
N1

is the incoming data rate of flow f to node N1.

We compute the tentative output rate of N1 on link L3, as well as the resulting throughput after
accounting for congestion, with the same logic as in the previous steps:

outfN1,L3
= proto(infN1

, N1, Nd, L3)

tputfL3
=min

 outfN1,L3∑
f ′∈FL3

outf
′

N1,L3

· cL3 , outfN1,L3

 (3.4)

We can repeat Equations (3.1) to (3.4) for the other path throgh N2, obtaining the throughput of f
through link L4. Finally, the end-to-end throughput of f is equal to the received data rate of f by
Nd which is equal to the aggregated throughputs of f on L1 and L2, as described in Equation (3.5).

tputf = infNd
= tputfL3

+ tputfL4
(3.5)

where tputf is the end-to-end throughput of flow f .
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event invalidation description

flowstart(ns, nd, d, t) 3
initiates a new flow from source node ns to destination node nd, with
demand d and target data transfer size t.

flowchange(f, d) 3 updates the demand of flow f to a new value d.
flowstop(f) 3 terminates flow f

linkmake(n1, n2, b) 3 adds a link connecting nodes n1 and n2.
linkremove/fail(l) 3 removes link l

nodemake(p, s) 7
adds a new node to the network, with number of ports p and maximum
port speed s.

noderemove/fail(n) 3 removes node n

nodeoff(n) 3
node n remains physically connected but no traffic can pass through
and power consumption is set to 0.

nodeon(n) 3 inverse of nodeoff.
3= may cause invalidation of network state and propagation of updates

Table 3.1: Set of network events in our model.

3.3.3 Network Stability and Events

Our model abstracts away network latency by assuming that all changes in the network state occur
instantaneously. As a result, simulation time advances only when the network reaches a stable state.

Network Stability. A network state is considered stable when all pending updates have been
completely propagated and applied across the system, such that, without any externally triggered
events, the system remains unchanged over time. Given that time advances only when the network
is in a stable state, under the assumption of deterministic policies, protocols, and failure mod-
els, the overall system behavior becomes theoretically fully deterministic.How this is ensured and
implementation is explained in Section 4.2.2.

flow 1

flow 2

time

Flow Start
Flow End
Flow Update
Discrete Sim. Event

Figure 3.3: Timeline Example of two Flows’ Events.

Despite the level of abstraction, we argue that the model mantains sufficient fidelity for the pur-
poses of our evaluation, specifically in the analysis of congestion dynamics, energy consumption,
bandwidth allocation, and QoS metrics, as will be demonstrated in Chapter 5. We proceed by
formalizing the class of network events that, within our model, may invalidate the network state
and trigger update propagation. The set of such events is summarized in Table 3.1, while Figure 3.3
shows the timeline of two flows and the update propagations that they trigger.

22



Chapter 3: Design of a Flow-Based Network Simulator

QoS Policies

Vm
PlacementExternally Managed Network

Controller

QoS Policies En. Saving
Policies

Routing
Protocols

QoS and Energy
Consumption
Management

DC NetworkTopology/Energy Aware

Node-Based Switch Host-Node

Job-Based NIC

QoS Policies

Routing
Protocols
En. Saving

Policies

Vm
Placement

QoS PoliciesRouting
Protocols
En. Saving

Policies

QoS Policies

Level of Abstraction Related Component Managables

A B C D

E

F

G

H

Figure 3.4: Overview of Policy Management. [TO BE ADAPTED]

3.4 Managing Routing, Energy Saving and QoS Strategies
We describe the various mechanisms through which the simulator enables users to implement cus-
tom strategies for routing, energy efficiency, and QoS management. An overview of the policy
management model is illustrated in Figure 3.4.

The VM Placement ( A ) is the process of selecting an appropriate host machine, based on resource
available on such machine, for executing a specific job/task. The QoS Policies ( B ) define how net-
work resources, typically bandwidth, are allocated to each flow or job, according to some algorithm.
The Energy Saving Policies ( C ) implement energy-efficient strategies, such as powering down or
adjusting maximum speeds of ports and switches, as well as rerouting network flows to reduce over-
all energy consumption. The Routing Protocols ( D ) determine how flows are routed through the
network. These protocols typically balance achieving high performance by distributing the workload
across multiple paths, with the need to exclude certain links to enable the energy-saving policies to
power down certain devices. As a result, routing protocols and energy-saving strategies are closely
correlated, often influencing each other’s behavior and effectiveness. We evaluate the impact of
different routing protocols in Section 5.3.1. Vm Allocation and QoS Policies can be Externally
Managed ( E ), and applied through the Network Controller interface. In particular, Vm Allocation
can both be pre-defined by certain trace formats or determined dynamically at runtime through a
provisioning process, managed by the compute simulator logic. The Network controller offers real-
time insights on the performance of each component of the network, enabling adjustments to data
rates based on these metrics. QoS Policies, Routing Protocols and Energy Saving Policies can be
managed on the Topology/Energy Aware level of abstraction ( F ). These policies are configurable
on the DC Network component and offer access to the entire network state, useful for optimizing
performance and energy efficiency across the system. The same three managements can be per-
formed on the Node Level ( G ). In this case, each node makes autonomous decisions based solely
on the information it possesses. QoS Policies can also be applied on the Job Level ( H ). Each
job running on a node possesses full information about the job’s connections and network flows,
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allowing it to manage and optimize its own network resources allocation independently.

3.5 Alternative Abstraction Levels: a Taxonomy
We present alternative abstraction level for network simulation. Different levels present tradeoffs
between computational overhead and result accuracy.

Bit-Level. Also known as link-level or physical-layer (PHY) simulation, bit-level models simulate
transmission of individual bits, including effects like modulation, interference, and noise. Due to its
high computational cost, it is uncommon in datacenter simulations and is mainly used in specialized
domains such as wireless or optical networks.

Flit-Level. A flit (flow control digit) is the smallest unit of data that can be transferred in a
single cycle within Network-on-Chip (NoC) architectures and cycle-accurate simulations. Flit-level
simulation is typically used for evaluating micro-architectural details, including buffer utilization,
flow control mechanisms, and arbitration. BookSim [33] is a prominent example of a flit-level
simulator, and will be used as a point of comparison in 5.2.

Packet-Level. Packet-level simulation models the behavior of individual network packets, captur-
ing aspects such as routing, queuing, congestion control, and packet-level loss. Popular simulators
at this level include ns-3 [28], OMNeT++[61]. Packet-level simulation can still be computationally
intensive at large scales.

Flow-Level. Flow-level simulation abstracts network traffic as flows, used mostly to evaluate
bandwidth sharing, QoS etc. This approach is well-suited for analyzing bandwidth sharing, QoS,
and traffic scheduling. Examples of flow-level simulators include SimGrid [14].

Message-Level Message-level simulation abstracts communication at the level of application mes-
sages. Delays and congestion are typically ignored, focusing on latency.
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4
Prototype Implementation and Integration of
OpenDCN

This chapter outlines the implementation of OpenDCN and its integration with OpenDC. Sec-
tion 4.1 explains how the simulator was developed to be highly parallel, to enable simulation at
scale. Section 4.2 explains the simulation scope, which encapsulate all components of the simula-
tion environment, detailing the most important ones, while showing its non-volatile representation.
Section 4.3 lists the most important network metrics that can be exported with each simulation.
High level explenation of the four simulation modes (trace-based, traffic-pattern-based, interactive,
and compute-network) are explained in Sections 4.4 to 4.7.

4.1 Implementing for Performance
This section introduces the parallelisation principles of OpenDCN. The system was designed to
scale effectively with large topologies and workloads. ODCN leverages Kotlin coroutines1, user-space
constructs for asynchronous programming. Introduced in Kotlin 1.1 and stabilized in version 1.3,
coroutines provide a more efficient and scalable alternative to traditional threads. During simulation,
each major component executes its logic within its own coroutine. For example, every network node
is assigned a dedicated coroutine, enabling concurrent and independent execution. Communication
between components is achieved through a system of flyweight objects [22]: messages and events.

Message (Msg). A Msg represents a directed communication sent to a specific component. It
typically contains a state update or a command to trigger an action.

Event (Evnt). An Evnt is a broadcast-style communication emitted by a component in response
to a specific condition or internal transition. Events may be received and processed by multiple
components independently.

We now explain how each parrallelized network component works. Each component has a message
channel ( A ) buffers incoming Msg objects directed to the component. These messages typically rep-
resent commands or state updates issued by other components or external control logic. A different
coroutine is initialized to run each component logic, receiving and handling Msgs and emitting Evnts
to be handled by other components. Emitted events are queued in the an event channel, where

1Kotlin Coroutines. Available at: https://kotlinlang.org/docs/coroutines-overview.html.
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Component Code Name Section Role/Objective
Network Network Section 4.2.1 Contains nodes, switches, hosts, links and flows.

Stability Barrier NetSimBarrier Section 4.2.2 Ensures network stability and consistency during sim-
ulation.

Flyweight Pool FWPool Section 4.2.3 Enables reuses of objects to cut allocations and GC
overhead.

Address Manager AddrMngr Section 4.2.4 Assigns and manages addresses/subnets

Configuration NetSimConfig Section 4.2.5 Container for simulation scope configurations and de-
faults.

Routing Policy RoutPolicy - Determines routing throughout the simulation.

Energy Recorder EnRecorder - Records power and energy consumption of all compo-
nents throughout the simulation.

Network Exporter NetExporter - Handles export of a user-selected set of metrics to par-
quet output.

Network Time Source NetSimTmSrc - Manages the network simulation virtual time, which
may be desync. from the compute one.

Table 4.1: Overview of main components in the network simulation scope (NetSimScope).

they remain available to registered listeners. Each listener processes events independently, enabling
modular and decoupled reactions to internal state changes. Once all listeners have completed their
handling of an event, the event object is returned to its flyweight pool (explained in Section 4.2.3)
for reuse. All messages and events buffered at a given simulation step are processed within the same
virtual time instant, as explained in Section 3.3.3. We proceed giving a new definition of network
stability, from the messages and events perspective.

Network Stability (revised). The network is considered stable if and only if all message and
event channels across all components are empty. Further discussion on stability and its enforcement
can be found in Section 4.2.2.

Our goals of modularity and extensibility are addressed by this parallelized approach, allowing new
features and behaviors to be integrated with little to no effort. Furthermore, it significantly improves
performance over the sequential implementation, as demonstrated in the experimental evaluation
in 5.3.2.

4.2 Network Simulation Scope

The Network Simulation Scope (NetSimScope) represents the core context for executing network
simulations in OpenDCN. It encapsulates all resources, configurations, and runtime state relevant
to a single simulation instance. It implements kotlin.coroutines.CoroutineScope, enabling con-
current execution independent of any external control logic. Structured concurrency is supported,
as subscopes can be initiated. Each scope, root or nested, can be individually cancelled at runtime.
Cancellation halts all coroutines within the scope and releases associated resources.

Table 4.1 illustrates the internal composition of the NetSimScope, which contains all entities tied to
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Topology Parameters Routers/Switches (R) Terminals/Hosts (N) Edges/Links (E)

FatTree[6] k (pods/router-radix) 5·k2

4
k3

4 3 ·N

Dragon-
fly[36]

a (routers per group),
g = a · h+ 1 (groups),
p = a/2 (terminals per router),
h = a/2 (intergroup links per router)

a · g a · p · g R · p+ R·(a−1)
2 + R·h

2

Flattened
Butterfly[35]

n (dimensions),
k (routers per dimension),
c = k (terminals per router)

k R · c (k−1)·n·R
2 + c ·R

Table 4.2: Overview of some of the built-in topologies provided in OpenDCN, with some size and
complexity indicators.

the simulation’s lifecycle and configuration. Sections 4.2.2 to 4.2.5 provide an overview of the scope
main components. Finally, Section 4.2.5 describes the non-volatile JSON-based representation of
the scope.

4.2.1 Network Construction in Practice

In this section, we describe the methods available for constructing network topologies. In Sec-
tion 4.2.1.1 we present our current selection of built-in topologies, widely used designs that can
be constructed with a small set of parameters, simplifying simulation setup. In Section 4.2.1.2 we
show how to build your own custom topology, enabling exploration of new architectures, including
switch-centric, server-centric or hybrid designs (explained in Section 2.2.3).

Additional configuration options available through NetSimConfig, such as defining default node
settings, are discussed in Section 4.2.5. These global properties simplify topology definitions and
make it easy to update the configuration of all nodes consistently.

4.2.1.1 Minimized Setup with Built-In Topologies

To facilitate simulation setup and lower the barrier to entry, we provide a built-in set of topologies,
widely used in research and practice, that can be constructed with as few as a single parameter.
An overview of some of the available topologies, their defining parameters, and indicative metrics
characterizing the resulting network size and complexity is presented in Table 4.2. In the following,
we describe the key characteristics of these topologies and outline the steps required to construct
them.� �

1 {
2 "type": "ftree",
3 "k": 4,
4 }
5
6
7 � �

(a) FatTree

� �
1 {
2 "type": "dragonfly",
3 "a": 4,
4 "g": 10,
5 "h": 4,
6 "p": 4
7 }� �

(b) Dragonfly

� �
1 {
2 "type": "flatfly",
3 "n": 2,
4 "k": 4,
5 "c": 4
6
7 }� �

(c) Flattened Butterfly

Figure 4.1: JSON representations of some of the built-in topologies.
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� �
1 {
2 "type": "custom",
3 "terminalSpecs": [
4 {
5 "nPorts": 10,
6 "portSpeed": "1Gbps",
7 // ip and its integer repre -
8 // -sentation are interchangable.
9 "ip": "0.0.0.2" // Or 2

10 },{
11 "nPorts": 10,
12 "portSpeed": "1Gbps",
13 "ip": 4 // Or "0.0.0.4"
14 }
15 ],
16 "switchSpecs": [
17 {
18 "nPorts": 10,
19 "portSpeed": "2Gbps",
20 "ip": "0.0.0.1",
21 // Global implies direct or
22 // indirect internet access.
23 // In some topologies these� �

� �
24 // are known as Core Switches.
25 "global": true
26 },{
27 "nPorts": 10,
28 "portSpeed": "1Gbps",
29 "ip": "0.0.0.3"
30 },{
31 "nPorts": 10,
32 "portSpeed": "1Gbps",
33 "ip": 5
34 }
35 ],
36 "links": [
37 [2, 1],
38 [3, 1],
39 [4, 2],
40 [5, 3]
41 ],
42 "subnets": [
43 "0.0.0.2/31",
44 "0.0.0.4/31"
45 ]
46 }� �

(a) JSON representation of a custom network topology in OpenDCN.

0.0.0.2 0.0.0.4

0.0.0.3 0.0.0.5

0.0.0.1

0.0.0.2/31 0.0.0.4/31

(b) The visual representation of the custom topology defined in Figure 4.2a.

Figure 4.2: Custom network topology in OpenDCN.

The non-volatile JSON representations of such topologies in OpenDCN are shown in Figure 4.1.
Node configurations can be set globally, through NetSimConfig, as explained in Section 4.2.5.

4.2.1.2 Design Without Limits: Build Your Own Topology

To support research and the exploration of novel designs, our simulator allows the construction of
arbitrary, user-defined topologies. Figure 4.2 illustrates the persistent (non-volatile) representation
of such topologies, which are defined by a set of terminals (or hosts), routers (or switches), edges
(or links) and subnets. Each node can be individually configured or inherit settings from globally
defined defaults specified via NetSimConfig.

Alternatively, users can construct custom topologies interactively using the REPL environment.
This approach allows for step-by-step definition of components with fine-grained control, and the
resulting topology can be exported to JSON for reuse. The most important commands available in
the REPL environment are explained in Section 4.5.
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Root Barrierstability methods

Invalidated Stable Unused Parent Invalidator Barrier Invalidation

A

B

D

E

C

D

Figure 4.3: Visual representation of the Network Stability Barrier.

4.2.2 Synchronization Mechanism: Stability Barrier

In Section 3.3.3, we introduced the concept of network stability and described how our model
revolves around it. A revised definition was provided in Section 4.1. In this section, we detail the
key component responsible for maintaining and enforcing network stability: the Network Stability
Barrier.

Network Stability Barrier (NetSimBarrier). The NetSimBarrier is a component of NetSimScope
that monitors and enforces network stability through a structured synchronization mechanism. Con-
ceptually, it functions as a hierarchical (tree-like) barrier, where components can reach the barrier,
for example indicating they have finished processing all messages, or unreach it, if new messages
arrive.

Network Stability Invalidator (NetSimInvalidator). Each barrier is associated with one or
more NetSimInvalidators. An invalidator can mark itself (and, by extension, the barrier it belongs
to) as unstable. This happens when a component, such as a node, receives new messages or events
that require processing.

Figure 4.3 shows a visual representation of a simple small barrier. The barrier is organized as a tree,
with sub-barriers as nodes. The Root Barrier ( A ), is linked to a single Invalidator ( B ), which
determines the global stability of the network. Each Child Barrier ( C ) is connected to a parent
invalidator, enabling it to propagate instability upwards in the tree. Sub-barriers are themselves
linked to multiple invalidators ( D ), one of which may be assigned to downstream sub-barriers.
The remaining invalidators are assigned to Invalidatable Components ( E ), such as nodes. These
components can independently mark themselves as unstable, for instance, when a node receives a
new message to process.

This hierarchical structure is designed to minimize contention on a central or global invalidation
counter. Because sub-barriers operate independently, invalidators across different parts of the tree
can be validated or invalidated concurrently. As a result, the system scales more effectively with
increasing network size and complexity. The barrier can dynamically grow at runtime to accom-
modate these changes. Now that we have explained what the network stability barrier is, we can
revise again the definition of network stability, from the stability barrier perspective.

Network Stability (final). The network is considered stable if and only if all NetSimInvalidators
associated with the NetSimBarrier are in a validated state (the components that own them are
stable). This, in turn, guarantees that the root invalidator is in a validated state.
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1 ○ 0.0.0.0/0 (41)

2 ├─○ 0.0.0.0/26 (40)

3 │ ├─○ 0.0.0.0/27 (36)

4 │ │ ├─○ 0.0.0.0/28 (18)

5 │ │ │ ├─● 0.0.0.0/29 (9) // Pod 1

6 │ │ │ │ ├─○ 0.0.0.0/30 (4) // Pod 1 switches

7 │ │ │ │ │ ├─○ 0.0.0.0/31 (2)

8 │ │ │ │ │ │ ├─● 0.0.0.0 (1)

9 │ │ │ │ │ │ └─● 0.0.0.1 (1)

10 │ │ │ │ │ └─○ 0.0.0.2/31 (2)

11 │ │ │ │ │ ├─● 0.0.0.2 (1)

12 │ │ │ │ │ └─● 0.0.0.3 (1)

13 │ │ │ │ └─○ 0.0.0.4/30 (4) // Pod 1 terminals

14 │ │ │ │ ├─○ 0.0.0.4/31 (2)

15 │ │ │ │ │ ├─● 0.0.0.4 (1)

16 │ │ │ │ │ └─● 0.0.0.5 (1)
17 // Some lines are omitted.

38 // Some lines were omitted

39 │ │ └─● 0.0.0.24/29 (9) // Pod 4

40 │ │ ├─○ 0.0.0.24/30 (4) // Pod 4 switches

41 │ │ │ ├─○ 0.0.0.24/31 (2)

42 │ │ │ │ ├─● 0.0.0.24 (1)

43 │ │ │ │ └─● 0.0.0.25 (1)

44 │ │ │ └─○ 0.0.0.26/31 (2)

45 │ │ │ ├─● 0.0.0.26 (1)

46 │ │ │ └─● 0.0.0.27 (1)

47 │ │ └─○ 0.0.0.28/30 (4) // Pod 4 terminals

48 │ │ ├─○ 0.0.0.28/31 (2)

49 │ │ │ ├─● 0.0.0.28 (1)

50 │ │ │ └─● 0.0.0.29 (1)

51 │ │ └─○ 0.0.0.30/31 (2)

52 │ │ ├─● 0.0.0.30 (1)

53 │ │ └─● 0.0.0.31 (1)
54 // Core switches are omitted.

•= created subnet or assigned ip, ◦= representation grouping

Figure 4.4: Prefix-trie of FatTree depicted in Figure 2.3, displayed through REPL environment.

4.2.3 Flyweight Pool

The FWPool, allows optimization through reuse of objects instead of initialization, according to
flyweight design pattern [22]. It is used primarily for Msg and Evnt objects, but also for some
internal implementation objects. The FWPool is organized into type-specific pools, each of which is
further divided into multiple sub-pools. This structure allows multiple coroutines to acquire objects
of the same type concurrently via separate sub-pools. Each coroutine is assigned a single sub-pool,
determined by computing the modulus of its id with the total number of sub-pools. Sub-pools are
implemented as kotlin.coroutines.Channel instances: acquiring a flyweight object corresponds
to receiving from the channel, while disposing of it corresponds to sending it back. FWPool sizes
and runtime checks can be configured in the simulation scope JSON representation, explained in
Section 4.2.5, although these specific implementation configurations are omitted.

4.2.4 Address Manager and Subnets

OpenDCN includes explicit support for the creation and management of IP subnets. This function-
ality serves multiple purposes: it enables structured topology definitions, facilitates experiments
involving subnet-dependent routing, and optimizes routing state storage for large-scale simulations.
In particular, when simulating protocols across tens of thousands of nodes, routing tables can grow
prohibitively large. By organizing nodes into subnets, the system can significantly reduce the size
of routing tables through hierarchical summarization of routing information. Routing data is popu-
lated dynamically at runtime using distance-vector protocols; therefore, any reduction in the number
of unique routing entries directly contributes to space efficiency.

Subnet management and IP address assignment are handled by the Address Manager (AddrMngr)
component. This module is responsible for maintaining the mapping between node identifiers and IP
addresses, managing subnet hierarchies, and dispensing IPs in a controlled manner. The AddrMngr
supports arbitrarily deep nesting of subnets, constrained only by the availability of address space.
This hierarchical approach enables efficient routing information sharing and enhances scalability.

Figure 4.4 illustrates the prefix-trie structure generated by the AddrMngr for the FatTree topology
depicted in Figure 2.3. This trie reflects the logical subdivision of the address space and supports
runtime visualization via the REPL interface and during experiment initialization.
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� �
1 {

2 // Section 4.2.1

3 "netPath": "network/path",

4 "config": {

5 "stabilityMode": "checked",

6 "routingPolicy": "ecmp",

7 "seed": 0,

8 "exportConfig": {

9 "networkExportColumns": [

10 // Section 4.3

11 ],

12 "nodeExportColumns": [

13 // Section 4.3

14 ],

15 "outputFolder": "path/to/file",

16 "exportInterval": "5min"

17 },

18 "nodeConfig": {� �

� �
18 "defaultPortSpeed": "100Mbps" ,

19 "defaultNPorts": null,

20 "defaultEnergyModel": null,

21 "terminalConfig": {

22 "defaultPortSpeed": null,

23 "defaultNPorts": null

24 },

25 "switchConfig": {

26 "defaultPortSpeed": null,

27 "defaultNPorts": null

28 }

29 },

30 "netSimDevConfig": {

31 // Omitted

32 // for brevity

33 }

34 }

35 }� �
Figure 4.5: JSON representation of a NetSimScope.

4.2.5 JSON Representation and Deserialization

Figure 4.5 illustrates the JSON representation of a NetSimScope. It contains main configuration
regarding export, including selection of export columns, of which the most important are explained
and listed in Section 4.3, and export interval. It allows to define default node, switch and terminal
(host) configurations, to be applied whenever not overridden. The routing protocol to be used
during the simulation is also included. Note that some configuration are omitted for brevity or
lesser importance, while other can be overriden by the compute module in case of a combined
network-compute simulation (Section 4.7).
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Name Unit Description

network.nodes.count - Number of nodes currently part of the network.
network.nodes.hosts[all] - Number of hosts currently part of the network
network.nodes.hosts[active] - Number of active hosts currently part of the network
network.flows.count - Number of active network flows.
network.flows.throughput[tot] Mbps The sum of the throughput of all active flows.
network.flows.throughput[%] % The total throughput percentage of all active flows.
network.flows.throughput[avg%] % The average flow throughput percentage.
node.flows.uptime[average] ms The average uptime of active flows in the network.
network.energy.power W The current power draw of the network.
network.energy.energy J The energy consumed by the network up until now.
node.flows[incoming] - Number of flows incoming from adjacent nodes.
node.flows[outgoing] - Number of flows outgoing to adjacent nodes.
node.flows[generating] - Number of flows being generated by this node.
node.flows[consuming] - Number of flows being consumed by this node.
node.flows.throughput[tot] Mbps The total throughput on the node.
node.flows.throughput[%] % Total throughput percentage in the node.
node.flows.throughput[avg%] % Average throughput percentage of flows traversing the node.
node.flows.throughput[min%] % Min throughput percentage among flows traversing the node.
node.flows.throughput[max%] % Max throughput percentage among flows traversing the node.
node.flows.uptime[avg] ms The average uptime of active flows traversing the node.
nodes.flows.energy.power W The current power draw of the node.
nodes.flows.energy.energy J The energy consumed by the node up until now.
job.flows[generating] - Number of flows being generated by this job.
job.flows[consuming] - Number of flows being consumed by this job.
job.flows.throughput[tot] Mbps The total throughput on the job network interface.
job.flows.throughput[%] % The total throughput percentage on the job network interface.
job.flows.throughput[min%] % Min throughput percentage among flows generated by the job.
job.flows.throughput[max%] % Max throughput percentage among flows generated by the job.
job.flows.uptime[average] ms The average uptime of active flows generated by the job.

Table 4.3: Metrics exposed by the OpenDCN Simulator.

4.3 Exportable Metrics
We expose telemetry data amounting to 30+ different metrics. The most relevant are highlighted
in Table 4.3, we list the representative [20, 50] metrics relevant for this work. These output metrics
are consistent among all OpenDCN simulation modes.

4.4 Simulating Network Workloads with OpenDCN
This section details both implementation and setup of trace-driven network workload simulation
in OpenDCN. In this simulation mode, a static network trace is converted into a sequence of
runtime network events that drive the simulation, enabling the collection of detailed performance
and behavioral metrics.

In Section 4.4.1 we present the OpenDCN trace format. This format is designed to support both
inter- and intra-datacenter traffic patterns, accommodate multiple flows between endpoints, and
provide flexibility through optional duration fields. Finally, in Section 4.4.2, we detail how to
configure a trace-based simulation experiment using a JSON specification.
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Field Type Meaning

timestamp int64 The milliseconds elapsed from epoch
transmitter_id* int64 The id of the transmitter node, if null assumed internet
destination_id* int64 The id of the destination node, if null assumed internet
net_tx double The data-rate of the flow in Kbps
flow_id† int64 The id of the flow, if null only 1 flow is possible between 2 nodes
duration* int64 Flow duration in ms; if null, flow does not change until another event affects it

* = nullable field, † = nullable column (all rows or none)

Table 4.4: OpenDCN network trace format.

4.4.1 Trace Format

The trace format shown in Table 4.4 has been designed to facilitate building network workloads from
any conceivable trace, supporting total control of the flow through updates, as well as through flow
durations. It enables inter- and intra-datacenter communications, allowing for two flows between
each host (one per direction) as well as multiple flows between two machines when a flow_id is
specified. This flexibility ensures the generation of precise network workloads from diverse non-
standardized input data. As additional constraints, transmitter_id and destination_id cannot
be equal (including null, and either the whole flow_id column is specified, or it is discarded.
Duration does not need to be fully defined for each row, however it is favorable to either convert
the non-standardized trace to a workload with the whole duration column defined or not.� �

1 {
2 "netSimScopeSpecPath": "path/to/json/file.json", // Section 4.2.5
3 "wlPath": "/path/to/parquet/trace/file.parquet", // Section 4.4.1
4 "virtualMapping": true
5 }� �

Figure 4.6: OpenDCN network trace simulation configuration.

4.4.2 Configuring a Network Workload Experiment in OpenDCN

The entry point for conducting network trace simulations in OpenDCN is a JSON experiment
configuration file, as illustrated in Figure 4.6. The netSimScopeSpecPath key should be assigned the
file path pointing to the network simulation scope specification, detailed in Section 4.2.5. Similarly,
the wlPath key must reference the Parquet trace file conforming to the OpenDCN network trace
specification, described in Section 4.4.1.

An additional field, virtualMapping, determines how node IPs from the trace are mapped to the
network topology. When set to true, the trace is not tied to a specific physical topology. In such
cases, each host IP in the trace is virtually mapped to a randomly selected terminal node IP within
the target topology. This feature is valuable for rapid evaluation scenario using the same trace
dataset. When the trace is associated with a known physical topology, virtualMapping should be
set to false to preserve accurate mapping.
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Command Arguments/Options Description

Scope Control
import - Imports a new NetSimScope/Network/config from the given path.

� scope <path> -
� network <path> -
� config <path>

export - Exports the current active NetSimScope/Network to JSON format.
� scope <path>
� network <path> -

Network Construction
node - -

� mk [--ip <ip>] [--ports <num>] [--speed <dr>] Builds a new node with the given parameters.
� switch - -
� gswitch - Builds a gateway switch.
� terminal - -

� rm <ip> Removal/failure of a node.
link - -

� mk <ip 1> <ip 2> [--badwidth <dr>] Connects nodes with ip 1 and ip 2 with optional link capacity.
� rm <ip 1> <ip 2> Removal/failure of link.

Simulation Control
avance-time <time> Advances the virtual simulation time by the given value.
flow - -

� mk [--demand <dr>] [--src <ip>]* [--dest <ip>]* Starts a new flow with the given parameters.
� rm <flow-id> Stops the flow with the given id.

� update <flow-id> [--demand <dr>]* Updates the demand of the flow with the given id with the given
data rate.

� pattern <pattern name> <injection rate> Section 4.6.
node - -

� off <ip> Turns off node with the given ip (no power draw).
� on <ip> Turns on node.

Monitoring and Export
energy-report - Logs formatted energy related metrics.
export metrics <folder-path> [--create] Export metrics to the given path in parquet format.
network - -

� info - -
� snapshot [--select <flag-array>]
� prefix-trie [--root <ip>]

node - -
� info <ip> Logs node configuration.
� snapshot [--select <flag-array>] Logs a snapshot of the given metrics.

flow - -
� snapshot [--id <flow-id>] Logs the metrics related to the flow with the given id.
* = required option; dr denotes a data rate (e.g., 1Gbps); ip denotes an IP address (e.g., 0.0.0.1 or its integer representation 1).

Table 4.5: Overview of OpenDCN REPL main commands with arguments, options, and usage.
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4.5 Interactive Simulation with OpenDCN REPL
This section introfuces interactive network simulation mode in OpenDCN. Interactive simulation
is enabled via a commandline REPL interface, through which users have full control over the
construction of network topologies and the manual injection of simulation events, as well as export
of components and metrics. The most essential commands available in the REPL environment are
summarized in Table 4.5.

The REPL interface is implemented using the Clikt library2, which provides a modular, extensible,
and structured command-line environment. The REPL is designed with user-friendliness in mind,
with documentation and error messages alike.

4.6 Traffic Pattern Simulation in OpenDCN

OpenDCN supports the simulation of synthetic traffic patterns (Section 2.4), through a dedicated
REPL command that allows users to inject and monitor traffic flows in a controlled and repeatable
environment. The core command for simulating traffic patterns is:� �

flow traffic-pattern <pattern name> <injection-rate>� �
This command triggers the injection of a large set of flows between nodes, based on the specified
traffic pattern and the configured injection rate, which can be specified both as a percentage (e.g.,
80%) and as a data rate (e.g., 100Mbps). In the latter case, the specified data rate will be injected
by each terminal in the network.

Name Argument
Name

Target
Topology Description

Uniform Random random All Each source selects a dest. uniformely at random. More in Section 2.4.
Random Permutation random-perm All Same as Uniform Random but with 1:1 mapping. More in Section 2.4.
Bit Complement bit-complement All Each source selects its bitwise complement as dest. More in Section 2.4.
Bit Reversal bit-reversal All Each source select its bitwise reversal as dest. More in Section 2.4
Bit Shuffle bit-shuffle All -
Bit Transpose bit-transpose All -
Tornado[56] tornado Mesh Source sends to a dest. ”half way” across network.
Pod Permutation ftree-adv FatTree 1:1 pod mapping.
Group Permutation df-adv DragonFly 1:1 group mapping.

Table 4.6: Traffic Pattern currently supported by OpenDCN.

Table 4.6 summarizes the supported traffic patterns in OpenDCN, while an example of output
following a synthetic traffic pattern simulation is shown below:� �

Executing Synthetic WL... 100% [===============] 1055/1055 (0:00:00 / 0:00:00)
| Synthetic workload executed successfully in 365.647098ms
==== Overview ====
| avg-tput [%] min-tput [%] max-tput [%] tot-demand tot-tput tot-tput [%] · · · //

↪→ output cut
| 47.225% 4.713% 100% 1055.000 Gbps 498.222 Gbps 47.225% · · · //

↪→ output cut� �
2Clikt: Command Line Interface for Kotlin. Available at: https://ajalt.github.io/clikt/.
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Figure 4.7: Representation of integration interaction between compute and network in OpenDC.

Since the simulation is run interactively, users can issue any REPL monitoring command to in-
spect network behavior and export all metrics listed in Table 4.3. The figure highlights a few key
performance metrics, with many columns omitted for brevity. The example includes metrics such
as avg-tput [%], which indicates the average throughput achieved across all flows involved in the
pattern. min-tput [%] shows the minimum throughput (i.e., worst-case flow), while max-tput [%]
indicates the best-case flow. The tot-tput [%] metric is computed as the total throughput divided
by the total demand. When all flows have the same demand, avg-tput [%] and tot-tput [%] are
equal. These throughput metrics can also be interpreted in terms of injection rate and acceptance
rate, widely used in cycle accurate simulations. The injection rate corresponds to the value passed
to the traffic command (when expressed as a percentage), while the acceptance rate is calculated
by multiplying the injection rate by tot-tput [%]. For instance, in the following command:� �

flow traffic-pattern <pattern-name> 100%� �
the injection rate is 100%, and the acceptance rate is equal to the measured tot-tput [%]. This
interpretation of results will be used extensively in Section 5.2, where we compare the accuracy of
our traffic pattern simulations against those of BookSim [33], a widely used cycle accurate network
simulator in research.

4.7 Combined Compute-Network Simulation in OpenDC
In this section we outline the principles behind the integration of ODCN in OpenDC. We start by
providing a visual representation of the interaction between network and compute modules during
simulations in Section 4.7.1. Then we explain how to configure a compute-network co-simulation
through JSON representation of a joint simulation experiment in Section 4.7.2.

4.7.1 Integration Overview

Network topology and machine network capacities are available for provisioning and scheduling
purposes allowing network aware scheduling. Figure 4.7 shows how the compute and network
modules interact during simulation of workloads. On the left there is a simplified representation
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� �
1 {
2 "runs": 5,
3 "outputFolder": "path/to/folder",
4 "topologies": [{
5 // Figure 4.8b
6 }],
7 "networkScopes": [{
8 // Section 4.2.5
9 }],

10 "workloads": [{
11 "pathToFile": "path/to/file",
12 "type": "ComputeNetworkWorkload",
13 "scalingPolicy": "Perfect"
14 }],
15 "allocationPolicies": [{
16 // Policies
17 }]
18 }� �

(a) Combined compute-network experiment
JSON representation.

� �
0 {
1 "clusters":
2 [{
3 "name": "C01",
4 "hosts" :
5 [{
6 "count": 49,
7 "cpu":
8 {
9 "coreCount": 8,

10 "coreSpeed": "3.2 Ghz"
11 },
12 "memory": {
13 "memorySize": "128e3 MiB",
14 "memorySpeed": "1 Mhz"
15 },
16 "powerModel": {
17 "modelType": "linear",
18 "power": "400 Watts",
19 "maxPower": "1 KW",
20 "idlePower": "0.4W"
21 }
22 }]
23 }]
24 }� �

(b) Compute topology JSON representation.

Figure 4.8: Defining a compute-network co-simulation experiment in OpenDC

of the compute state at runtime, with multiple VMs per host and multiple hosts. Each host is
mapped to a NIC that handles the interactions between the two modules. Each VM can perform
its network workload by using the NIC of the host it is running on. Compute and network portions
of the workloads are dependent one one another: the VM can adjust its network flows in response
to congestion or specific VM level policies.

4.7.2 Configuring a Compute-Network Co-Simulation in OpenDCN

Figure 4.8 shows how to define a combined compute-network co-simulation experiment in OpenDC,
through a JSON representation. Figure 4.8a defines the experiment, while Figure 4.8b defines the
compute cluster used during the simulation. Note that in this example specific ids for machines
in the compute topology are missing, therefore virtual mapping will be applied as discussed in
Section 4.2.5. The networkScopes in the experiment definition are the only contact point between
the 2 modules and are completely optional; if omitted compute-only simulation will be performed.
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5
Experiments

This chapter presents the experimental evaluation of OpenDCN. We assess simulator’s correctness,
scalability/performance, and practical utility following three guiding questions:

• Does OpenDCN reproduce expected network behavior under controlled inputs?

• How does OpenDCN perform as problem size and concurrency increase (scalability/runtime)?

• What system-level insights become visible when the network is modeled alongside compute
(vs. compute-only)?

We answer these questions through experiments with three different simulation modes: trace-based,
traffic-pattern-based, and network-compute co-simulation.
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Focus Section Sim.
Mode Description

Accuracy Section 5.2.1 Traffic
Pattern

Compare traffic pattern simulation accuracy against Book-
Sim [33], a peer-reviewed cycle-accurate network simulator.

Performance,
Scalability Section 5.2.2 Traffic

Pattern
Compare traffic pattern simulation performance against Book-
Sim.

Topology,
Routing,
Energy, QoS

Section 5.3.1 Trace
Based

Evaluating impact of topology and routing protocol on energy
efficiency and QoS.

Performance,
Scalability Section 5.3.2 Trace

Based
Evaluating performance and scalability of trace-based simula-
tion relative to topology and parallelism.

En. Attribution Section 5.4.1 Combined Example use case for evaluating energy impact of network rel-
ative to that of compute/ the rest of the IT infrastructure.

Task QoS,
Network Sensitivity Section 5.4.2 Combined Investigating task scheduling, execution, and completion per-

formance dependency on network.

Table 5.1: Overview of the experiments discussed in this section.

5.1 Experiments Overview

This section evaluates OpenDCN in all three main simulation modes (excluding interactive). The
experiments are summarized in Table 5.1. We validate traffic-pattern simulation against BookSim’s
baseline comparing runtime scalability with varying topology sizes and injection rates (Section 5.2).
We investigate how topology and routing protocols affect QoS and energy efficiency through trace-
based simulation in Section 5.3. Additionally, we also assess trace-based scalability for increasing
network topologies. In Section 5.4 we make use of the integrated OpenDC performing compute-
network co-simulation, attributing energy consumption to the two modules. Additionally, we per-
form task delay and slowdown analysis relative to a compute-only baseline.

5.2 Traffic-Pattern Simulation: Validation and Performance vs.
BookSim

In this experiment, we evaluate the ODCN traffic pattern simulator by comparing its performance
against Booksim [33], a widely adopted, peer-reviewed, cycle-accurate simulator frequently used
in network-on-chip research. In Section 5.2.1, we assess the accuracy of ODCN by comparing its
results to Booksim’s in terms of acceptance rate as a function of increasing offered load, across
two different network topologies. In Section 5.2.2, we evaluate the runtime performance of both
simulators as network complexity and injection rate increase.

5.2.1 Accuracy vs. BookSim (Accepted Rate under Offered Load)

To enable a meaningful comparison, we adopt the performance metrics reported by Booksim and
convert the corresponding ODCN outputs accordingly. Specifically, we align ODCN’s output with
Booksim’s average accepted flit rate by mapping it to ODCN’s average DSR, as defined in Equa-
tion (2.12), scaled by the injection rate.

Assuming all terminals in ODCN operate at the same nominal speed s and inject traffic at a demand

39



Chapter 5: Experiments

0.2 0.4 0.6 0.8 1.0
Attempted Injection Rate

0.2

0.4

0.6
A

cc
ep

ta
nc

e
R

at
e

Booksim
ODCN

(a) Flatfly(n=2,k=4,c=4)

0.2 0.4 0.6 0.8 1.0
Attempted Injection Rate

0.1

0.2

0.3

0.4

A
cc

ep
ta

nc
e

R
at

e

Booksim
ODCN

(b) Dragonfly(a=8,h=4,p=4,g=33)

Figure 5.1: Comparison of traffic pattern simulation results under incremental injection rates.
Throughput is maximized when the accepted rate matches the offered load.

level d = p · s, where p ∈ [0, 1] is the normalized offered load, the accepted rate (denoted acc) can
be expressed as:

acc = DSR · p (5.1)

The attempted injection rate in Booksim corresponds directly to p.

Experiment Setup: We evaluate performance on two different topologies: Flatfly and Dragonfly.
The Flatfly topology is configured with parameters n = 2, k = 4, and c = 4, resulting in a total of
80 nodes, of which 64 are terminals, and 112 links. The Dragonfly topology uses parameters a = 8,
p = 4, h = 4, and g = 33, yielding a significantly larger network with 1320 nodes (1056 terminal)
and 2508 links.

Due to simulation time limitations in Booksim when using Flatfly with randomized routing, the
Flatfly network configuration is kept smaller. Routing is configured as Random Minimal (RAND
MIN) for Flatfly and Deterministic Minimal (MIN) for Dragonfly, as described in Section 2.3. In
both cases, the injected traffic follows a random permutation pattern (Section 2.4).

Booksim is configured with 2 to 8 virtual channels, buffer sizes ranging from 32 to 256 flits, packet
sizes ranging from 1 to 32 flits, and the default 3000 cycles warm up phase. ODCN is configured
with subnets for each Flatfly dimension and Dragonfly group. Simulations are conducted using
injection rate intervals of 0.05, with 20 runs per injection rate for Flatfly and 5 runs for Dragonfly.
The reduced number of runs for Dragonfly is justified by its larger scale and the correspondingly
lower variance in results under random permutation traffic.

Experiment Results: The results are presented in Figure 5.1. Overall, the two simulators produce
comparable outcomes. Notably, ODCN shows a slightly higher acceptance rate in the Dragonfly
topology, reflected in a more pronounced curvature.

We attribute this deviation to the longer average path lengths in Dragonfly compared to Flatfly.
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Figure 5.2: Comparison of traffic pattern simulation runtimes with increasing network size and
injection rate.

These amplify the negative effects of simulated flow control in Booksim, resulting in decreased
throughput. An additional contributing factor may be Booksim’s modeling of virtual channels,
which introduces further overhead not accounted for in ODCN.

MF1 ODCN is capable of accurately simulating network traffic patterns while operating
at a significantly higher level of abstraction compared to many existing simulators

5.2.2 Runtime Scalability vs. BookSim (Topology Size and Injection Rate)

To showcase the advantages of higher-level network simulation, we compare the runtime performance
of ODCN and Booksim under varying network configurations. Specifically, we aim to highlight the
scalability of each simulator with respect to both increasing network size and increasing injection
rate.

Experiment Setup. We evaluate scalability using the Dragonfly topology. Booksim is configured
with 8 virtual channels, virtual channel buffer sizes of 256 flits, packet size of 32 flits, and the default
warm-up period of 3000 cycles. ODCN is configured using dedicated subnets for each Dragonfly
group.

In the first part of the experiment, we fix the injection rate at 100% and scale the network size.
Specifically, we evaluate Dragonfly configurations with a ∈ [4, 12] in steps of 2, corresponding to
node counts ranging from 108 to 6132 and link counts from 162 to 12702. Additionally, due to
its significantly faster execution, ODCN was also evaluated for larger configurations with a = 14
and a = 16, scaling up to 18,576 nodes and 40,248 links. For each configuration, we perform and
measure the runtime of 5 simulation runs.

In the second part of the experiment, we fix the topology to Dragonfly with a = 12 and evaluate
runtime performance under increasing injection rates from 0.05 to 1.0 in steps of 0.05.
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Top Abbrv. Params V N R E

FatTree FT k = 16 1344 1024 320 3072
Flattened ButterFly FF n = 2, k = 10, c = 10 1100 1000 100 1900
Dragonfly* DF a = 8, p = 4, h = 4, g = 33 1320 1056 264 2500

* = these parameters make it a balanced dragonfly.

Table 5.2: Summary of the topologies used in the experiment, and their main characteristics.

Experiment Results. As shown in Figure 5.2a, ODCN performs better than Booksim by several
orders of magnitude in all tested scenarios. At a = 12, Booksim requires nearly 1500 seconds to
complete the simulation, while ODCN completes the same task in approximately 2 seconds, with
a speedup factor of over 700×. Although both simulators exhibit increasing runtime as network
size scales, their growth patterns differ. In the main plot, Booksim’s exponential growth is clearly
visible, whereas ODCN’s runtime appears almost flat due to its much smaller scale. The inset
plot, with a refined y-axis, reveals that ODCN also scales exponentially but with a less pronounced
exponential curve, making it much more suitable for large-scale simulation.

Figure 5.2b illustrates the scalability of the two simulators as a function of the attempted injection
rate. Once again, the simulators operate on vastly different time scales, with ODCN’s runtime
appearing nearly constant in the main plot. The inset plot provides a clearer view of ODCN’s
behavior using an appropriately scaled y-axis, revealing that its runtime only increases slightly as
network congestion begins to manifest, before stabilizing at higher injection rates. Quantitatively,
as the injection rate increases from 5% to 100%, Booksim’s runtime rises by approximately 1153
seconds, representing a +425.9% increase. In contrast, ODCN’s runtime grows by only 0.627 seconds
over the same range, an increase of just +34.96%. This highlights a higher capability to scale on
higher injection rates of ODCN compared to Booksim.

MF2 OpenDCN’s higher level of abstraction enables it to simulate network traffic pat-
terns on increasingly large topologies with significantly lower runtimes than Booksim,
achieving speedup factors exceeding 700×.

MF3 OpenDCN’s flow-level modeling enables efficient simulation across injection rates
from 0.05% to 100%, with minimal runtime variation even on large-scale topologies.

5.3 Trace-Driven Evaluation of Datacenter Networks
In this section we perform trace-based network simulation in OpenDCN. Section 5.3.1 compares
QoS and energy efficiency of three different widely used topologies while Section 5.3.2 investigates
the simulator performance and scalability, compared to real world equivalent baseline.

5.3.1 Performance–Energy Trade-offs Across FatTree, Flattened Butterfly, and
Dragonfly with Different Routing Protocols

To demonstrate the applicability of OpenDCN trace simulation for evaluating network topologies,
we present a comparative study of three representative architectures: FatTree (FT), Flattened
Butterfly (FF), and Dragonfly (DF). We evaluate these topologies in two main metrics: DSR and
NPE (Section 2.5).
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Experiment Setup. We evaluate FatTree (FT), Flattened Butterfly (FF) and Dragonfly (DF)
topologies. These topologies are structurally distinct, yet they were configured to support a com-
parable number of terminals in order to ensure a fair evaluation. A summary of the chosen config-
uration parameters, along with the resulting number of vertices, terminals, and edges, is provided
in Table 5.2. The selected designs vary by at most 5.6% in N . For routing, we adopt the RAND-
MIN strategy, while all nodes, both switches and hosts, are configured with 1Gbps port speed. For
measuring energy consumption, we adopt the datacenter network energy model presented by Wang
et al. [63], which defines the power draw of the network as:.

R∑
i=1

P switch
i (5.2)

where P switch
i is the power draw of switch i and R is the total number of switches in the network.

P switch
i = P chassis

i + P cards
i +

p∑
j=1

(P ports
i,j + P portd

i,j ) (5.3)

where Pichassis is the static power consumption of switch i (not including ports), p is the number of ports
on switch i, and P ports

i,j and P portd
i,j are the static and dynamic power draw of port j on switch i respectively.

P portd
i,j = P

portf
i,j ∗ rxi,j + txi,j

bwlink
i,j

(5.4)

where rxi,j and txi,j are receiving and transmitting data rate of port j on switch i respectively, bwlink
i,j is the

max bandwidth of the link connected to port j on switch i, and P
portf
i,j is the dynamic power consumption the

port in full link capacity.

The workload trace employed in this study is derived from the Bitbrains dataset1 [55], which
consists of 1250 VMs over a two-month period. Since the Bitbrains dataset does not expose host-
VM mappings, we assume an average of 46 VMs per host, consistent with density distributions
reported in industry studies [19]. We then synthetically generate a two-month trace for a system of
1000 hosts, which matches the minimum host count across the evaluated topologies.

To assess the impact of routing, we repeat the same experiment using the deterministic MIN strategy,
which excludes multipath routing. Because results under MIN may vary depending on the specific
choice of shortest paths at each node, we execute five independent runs per topology and report the
averaged outcomes.

1GWA-T-12 BitBrains dataset. Available at: https://atlarge-research.com/gwa-t-12/.
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Figure 5.3: Performance comparison of different topologies under RANDMIN routing.

Experiment Results. Figure 5.3 reports the performance comparison of the three network topolo-
gies with RANDMIN.

Specifically, Figure 5.4a illustrates the complementary cumulative tail distribution of DSR. Under
high congestion, FT topology demonstrates better performance, achieving nearly a 7% average
DSR improvement compared to the other two topologies. In contrast, the FF and Dragonfly DF
have highly similar distributions, with DF marginally outperforming FF by an average of 1.7%.
Figure 5.4b presents the NPE of the three topologies measured at 5-minute intervals throughout
the simulation. In terms of energy efficiency, the FF topology clearly dominates, achieving higher
NPE values compared to both DF and FT. On average, FF provides a 108% improvement in mean
NPE relative to DF, and a 219% improvement relative to FT.

These results exemplifies the trade-off between energy efficiency and performance: while FT employs
over twice as many switches as FF, enabling it to sustain higher congestion levels, this design choice
substantially increases the overall energy consumption of the network. Note that the measured
power draw values are consistent with the topologies switch numbers and switch ports utilization,
which were also captured during simulation (Section 4.3).
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Figure 5.4: Performance comparison of different topologies under deterministic MIN routing.

Figure 5.4 reports results with deterministic MIN routing. As expected, MIN increases link con-
tention and reduces DSR. Compared to MIN, RANDMIN yields substantial average DSR gain:
148% for FT, 45% for FF, and 4.6% for DF, along with NPE gains of 207%, 42% and 3.1% respec-
tively. Despite reduced DSR, FF retains the highest NPE average due to its low switch count, while
DF approaches FF in efficiency under MIN due to its lower sensitivity to non-multipath routing.

MF4 FT sustains higher DSR under congestion, while FF achieves the highest energy
efficiency. DF offers a balanced middle ground.

MF5 RANDMIN substantially improves both DSR and NPE compared to MIN, with FT
benefiting the most from multipath routing and DF the least, showing that routing
strategy strongly impacts topology performance.

MF6 OpenDCN enables comparison of topologies with realistic traces, capturing how
topology and routing determine the trade-off between network performance and its
energy consumption.

5.3.2 Simulator Performance and Scalability with Increasing Topology Size (Par-
allel vs. Single-Threaded

In this experiment we are going to evaluate the scalability of ODCN under a trace workload.

Experiment Setup. We evaluate scalability patterns across three topologies: FT with k ∈
4, 6, . . . , 16, FF with n ∈ 2, 3 and k ∈ 2, 3, . . . , 11, and DF with a ∈ 4, 6, 8. The resulting properties
N , V , R, and E, can be derived from Table 4.2. For FF, we distinguish between the two-dimensional
and three-dimensional variants, denoted FF2D and FF3D, respectively. While ODCN supports ar-
bitrary dimensionality for FF, this study restricts evaluation to a maximum of three dimensions. To
further stress-test the simulator, we additionally include large-scale cases with FT with k = 32 and
DF with a = 14, yielding N = 8192 and 9702, and E = 24,576 and 23,562, respectively. Workload
traces are synthetically generated following the methodology of Section 5.3.1, producing two-month
traces at 5-minute granularity. Unlike the earlier experiments, however, the number of hosts varies
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Figure 5.5: Trace-based OpenDCN network simulation scalability analysis.

with each topology’s N , ranging from 8 to 1331, while the number of nodes V spans from 12 to 3060.
Each topology is evaluated both with simulation parallelism enabled and with it disabled, except
for the large-scale configurations, which are executed only with parallelism. We use E as the most
indicative measure of network complexity. For every configuration, we perform five independent
runs and report the average runtime.

Experiment Results. Figure 5.5 summarizes the performance results. Figure 5.5a presents the
case without parallelism, where runtime exhibits exponential growth with respect to the number of
edges, although with a relatively small exponent. Among the evaluated topologies, FF is the most
costly to simulate, likely due to its low diameter combined with high concentration. Figure 5.5b
shows results using parallelism. The results show a high overhead at low network sizes, while an
almost sublinear scaling. Moreover, large scale FT with k = 32 was simulated in under 16 minutes,
and DF with a = 14 in under 18 minutes. These results demonstrate that ODCN’s parallelism
capabilities improve scalability for large-scale topologies.

MF7 OpenDCN can simulate 2 months of workloads on topologies with ≈2000 nodes and
4000 links at 5 minute granularity in under 3 minutes, which corresponds to under
0.004% the real world equivalent.

MF8 OpenDCN can simulate 2 months of workloads on large scale topologies, with
≈10,000 nodes and 25,000 links at 5 minutes granularity in ≈17 minutes, which
corresponds to less than 0.02% the real world equivalent

MF9 OpenDCN’s parallelism capabilities enable scalability to large topologies, while the
option to disable parallelism offers improved efficiency for small-scale networks.
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Figure 5.6: Comparison of traffic pattern simulation results under incremental injection rates.
Throughput is maximized when the accepted rate matches the offered load.

5.4 Accounting for the Network: Energy Attribution and QoS un-
der Co-Simulation

In this section, we investigate combined network–compute simulations. We show additional infor-
mation and analysis that are enabled by integrating networkign in OpenDC, in addition to all those
things theat were already possible with OpenDC. Specifically, Section 5.4.1 presents a representative
use case that quantifies and analyzes the correlation between computational demand, network uti-
lization, and the associated energy consumption. Section 5.4.2 examines a scenario where network
dependencies directly influence task execution dynamics, thereby affecting completion times and
overall system performance. Together, these experiments provide insight into how tightly coupled
compute and network behaviors shape both efficiency and scalability in distributed environments.

5.4.1 Energy Attribution in Co-Simulation (Network vs. Compute)

We evaluate network energy consumption compared to compute

Experiment Setup. This study uses one month of the Materna trace2, which captures a cluster
consisting of 49 hosts with a total of 69 physical CPU cores. Since the trace does not provide
information about the underlying network topology, we model the infrastructure using a fat-tree
topology with k = 6, supporting up to 54 hosts. We employ RANMIN routing and record results
across five independent simulation runs, reporting the averages.

Experiment Results. Figure 5.6 summarizes the results. Figure 5.6a presents the temporal evo-
lution of power consumption, showing the relative contributions of compute and network resources.
As expected, compute power exhibits considerably higher variability, driven by workload dynamics,
while network power remains mostly static. This follows from the network energy model: in the
absence of energy-saving policies (e.g., switch power-down), switch power draw is dominated by

2GWA-T-13: https://atlarge-research.com/gwa-t-13/

47



Chapter 5: Experiments

Name Symbol Description

Submission time tsub Time when the task is submitted.

Schedule time (comp) tcomp
sch Schedule time with compute-only sim.

Schedule time (comp-net) tnetsch Schedule time with compute-network sim.

Finish time (comp) tcomp
fin Finish time with compute-only sim.

Finish time (comp-net) tnetfin Finish time with compute-network sim.

Scheduling dur. (comp) dcomp
sch tcomp

sch − tsch
Scheduling dur. (comp-net) dsch tnets ch− tsch
Execution dur. (comp) dcomp

exe tcomp
fin − tcomp

sch

Execution dur. (comp-net) dnetexe tnetfin − tnetsch

Completion dur. (comp) dcomp
tot tcomp

fin − tsub
Completion dur. (comp-net) dnettot tnetfin − tsub

Scheduling delay ∆dsch dnetsch − dcomp
sch

Execution delay ∆dexe dnetexe − dcomp
exe

Completion delay ∆dtot dnettot − dcomp
tot

Scheduling slowdown ssch dnetsch / d
comp
sch

Execution slowdown sexe dnetexe / d
comp
exe

Completion slowdown stot dnettot / d
comp
tot

t = timestamps, d = durations, ∆d = delay of net-comp vs comp-only, s = slowdown net-comp vs comp-only.

Table 5.3: Notation for task time variables and derived durations, delays, and slowdowns under
compute-only and compute-network scheduling.

static consumption, with utilization-dependent dynamic power contributing at most 5%.

Figure 5.6b illustrates the cumulative energy consumption. Here, compute dominates overall con-
sumption, although the persistent baseline of network power results in a non-negligible share of
total energy use. Across the simulated period, the average network NPUE was 3.07, indicating that
for every watt consumed by the network, roughly three watts were consumed by all IT resources.

MF10 In the Materna trace with a Fat-Tree topology (k = 6), compute power shows strong
temporal variability, while network power remains mostly static due to the absence
of energy-saving mechanisms.

MF11 In this scenario, compute dominates energy use, but the static baseline of network
power amounts to an average NPUE of 3.07, about three watts of IT power for every
watt consumed by the network.

5.4.2 Task QoS under Co-Simulation (Delays and Slowdowns)

In this experiment, we investigate the impact of jointly modeling compute and network resources on
task performance. We employ the integrated capabilities of OpenDCN and OpenDC to simulate
a scenario where task scheduling decisions are influenced not only by host-level compute constraints
but also by network-level contention. Our objective is to quantify how incorporating network effects
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Figure 5.7: Delays and slowdowns of tasks in compute–network simulation relative to
compute-only simulation

alters task scheduling latency, execution time, and overall completion time compared to a compute-
only baseline. Table 5.3 summarizes the notation used throughout this experiment.

Experiment Setup.

We evaluate our approach using the Bitbrains fat-storage workload, which consists of approximately
1,250 virtual machines (tasks) submitted over the course of one month. This workload is simulated
in OpenDC on a cluster of 128 hosts, under two conditions: (i) compute-only simulation, and (ii)
joint compute–network simulation. For the network-enabled experiments, we employ a Fat-Tree
topology with k = 10, resulting in N = 128 hosts. The network fabric is configured with 1Gbps
switches and minimal routing (MIN). We deliberately constrain the link speed to 1Gbps to match
the relatively low network demand of the Bitbrains workload (on average ≈ 40KB/s per task) [54],
enabling us to study a setting in which system performance may become network-constrained.
Stakeholders with access to more network-intensive traces can readily reproduce the experiments
with higher link speeds to study bandwidth-sensitive scenarios.

To evaluate the performance impact of incorporating network in the simulation model, we record
timestamps (t) relative to the start of the virtual simulation time, such as submission, scheduling,
and finish times, and derive durations (d) for scheduling, execution, and completion under both
compute-only (dcomp) and joint compute–network (dnet) simulation, as defined in Table 5.3. Based
on these durations, we compute relative performance metrics: delays (∆d), which quantify the
difference between compute-only and compute–network runs, and slowdowns (s), which express
their ratio, each for scheduling, execution, and completion.
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Figure 5.8: Delays distribution by task submission time.

Experiment Results. The results in Figures 5.7 and 5.8 show that incorporating network effects
can substantially influence task performance.

We observe that a subset of tasks experiences severe scheduling delays, with the top-10 delayed
tasks waiting over 150 hours before execution. When accounting for network contention, these tasks
also exhibit pronounced slowdowns in both execution and completion time, with some slowdowns
exceeding three orders of magnitude. The CCDF reveals that although most tasks are only slightly
affected, a non-negligible part suffers huge penalties once network constraints are modeled.

Figure 5.8 shows the temporal distribution of delays relative to submission time. The results indicate
bursts of congestion where tasks accumulate both scheduling and execution delays. Such bursts are
hidden in compute-only simulations, but become visible when network behavior is incorporated.

These findings highlight that neglecting network effects can lead to overly optimistic estimates
of task performance. In particular, while average behavior appears similar across compute-only
and compute–network simulations, the tail behavior (i.e., the worst-affected tasks) diverges. This
distinction is critical for datacenter operators and system designers: understanding tail performance
is essential for ensuring QoS and capacity planning.

MF12 In the Bitbrains fast-storage workload on a Fat-Tree topology (k = 10, 1Gbps),
network contention has execution and completion slowdowns compared to a compute-
only model by up to three orders of magnitude for a subset of tasks.

MF13 Under the same scenario, a small fraction of tasks experiences extreme scheduling
and completion delays (over 150 hours), which remain hidden in compute-only sim-
ulations.

MF14 Omitting network effects leads to overly optimistic performance estimates. While
averages appear similar, the extremes diverge, making network modeling essential to
capture tail behavior.
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6
Conclusions and Future Work

6.1 Conclusion
In this work we investigated how to model network resources at a mid-to-high level of abstraction,
enabling discrete event simulation of network and compute-network workloads with OpenDC(N),
while providing evidence of the importance of network in datacenter simulation through a series of
experiments (MRQ). In Chapter 1 we described the societal relevance of datacenter and the ability to
perform accurate simulations. We identified the lack of existing tools that fully incorporate network
models in datacenter simulation, while supporting independent simulation of both compute and
network, and the importance of interactivity in simulation. In Chapter 2 we provided relevant
background fro understanding the complexity of datacenter networks and how to evaluate them. In
Chapter 3 we illustrated the high level architecture of the simulator and how we modeled network
resources. In Chapter 4 we briefly explained the implementation of OpenDCN and all the supported
simulations. In Chapter 5 we conducted experiments, validating our network model and providing
a series of use cases and valuable insights on the importance of network simulation in datacenters.
We now answer each research question fully.

RQ1 How to model network resources at a mid-level-abstraction across datacenters and generic
network topologies, enabling trace-based, traffic-pattern-based and interactive network simu-
lation?

In Chapter 3 we derived design requirements (Section 3.1) which guided our design process.
We presented a high level architecture together with our flow-level network traffic model.
We specified how congestion is detected and handled during simulation and enumerated the
discrete events that drive the model, while introducing the concept of network stability for
possibly asynchronous injection of network events. We later described the implementation
and configuration of the three network simulation modes: trace-based, traffic-pattern, and
interactive.

RQ2 How can a compute-centric simulator be extended with a network layer to support both joint
compute–network co-simulation and standalone network and compute analysis?

In Chapter 4 we illustrate how OpenDCN is integrated in OpenDC, following state-of-the-
art software engineering practices, with well define touch points. This preserves the ability to
run independent simulation of both compute and network while enabling combined compute-
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Project Env. Stakeholders Compute Network Interactive Traffic
Pattern Co-Sim.

CloudSim [13] Cloud, Edge,
Fog Research 3 3(coarse) 7 7 3

SimGrid [14] Grid, Cloud,
P2P

Research,
Edu. 3 3(coarse) 7 7 7

DGSim [31] Grid Research 3 7 7 7 7

GreenCloud [37] Cloud, DCN Research 3 3 7 3 3

ICanCloud [47] Cloud Research,
Edu. 3 3(coarse) 7 7 7

Edge-
CloudSim [58] Edge, Cloud Research 3 3(coarse) 7 7 3

NS-3 [28] Network Research 7 3 7 3 7

OMNET++ [61] Network Research 7 3 3 3 7

OpenDC(N)
(this work)

Cloud, DCN,
Network

Research,
Edu. 3 3 3 3 3

Network column: 3= network simulation, including explicit topology, node, routing, and congestion modeling;
3(coarse) = analytical bandwidth–delay abstraction, no flows; 7= no network support.

Table 6.1: Comparison of selected datacenter and network simulators.

network simulation. We provided information on how to configure such combined experiments,
and later on shown some real world applications.

RQ3 How does datacenter networking affect the performance and overall system behavior on dat-
acenter workloads?

In Chapter 5 we investigate the benefits of including network in datacenter simulation. First
we validated our model against a peer reviewed network simulator. Then, we analyzed the
impact that topologies and routing protocols have on energy efficiency and QoS in datacenter
networks, confronting three widely used topologies under a realistic datacenter network work-
load. Finally, we performed compute-network co-simulation, demonstrating how the inclusion
of network in a more comprehensive scenario drastically changes system behavior, energy
consumption and QoS, especially in the tail relative to a compute only baseline.

We position OpenDC(N) within the existing landscape. Table 6.1 compares selected datacenter
and network simulator based on target environment, stakeholders, network support, interactivity,
traffic pattern capabilities and compute-network co-simulation. As summarized, existing tools tend
to be compute-centric with missing or coarse network support, network centric with missing compute
support, or lacking important network simulation capabilities. OpenDC(N) combines mid-to-high
level network modeling, interactivity, traffic pattern support, and integration with OpenDC for
co-simulation, thereby bridging this gap.
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6.2 Future Work
We envision 2 main areas of future research and development, building upon our contributions from
this work.

1. Expand the variety of built in components: We plan to expand OpenDCN’s catalog of built-in
components, adding additional DCN topologies (e.g., Clos variants, Leaf–Spine, BCube/DCell,
Dragonfly), routing families (UGAL, adaptive), traffic generators (permutations, hotspots,
incast), energy models (switch sleep states, rate adaptation, calibrated power curves), and
QoS policies (priority, rate limiting). Each addition would further enhance OpenDCN ease
of adoption, especially for datacenter operators and educational purposes.

2. Educational activities and workshops: The REPL environment of OpenDCN facilitates in-
teractive learning and exploration: live topology construction, fault/traffic injection, step-
through execution, and metric visualization (e.g., paths, link utilization). We envision OpenDCN
as a tool used in education environment with REPL-driven labs, assignment and instructor
demos.

53



Bibliography

[1] ACM artifact review and badging. https://www.acm.org/publications/policies/
artifact-review-and-badging-current.

[2] GNS3: Graphical Network Simulator-3. https://www.gns3.com/. Accessed: 2025-07-20.

[3] Nokia the global network traffic report. https://onestore.nokia.com/asset/21366.

[4] Statista volume of data/information created, captured, copied, and consumed worldwide from
2010 to 2020, with forecasts from 2021 to 2025. https://www.statista.com/statistics/
871513/worldwide-data-created.

[5] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly. Symbiotic routing in
future data centers. In Proceedings of the ACM SIGCOMM 2010 conference, pages 51–62,
2010.

[6] M. A. Al-Fares. A scalable, adaptive, and extensible data center network architecture. University
of California, San Diego, 2012.

[7] M. Alizadeh and T. Edsall. On the data path performance of leaf-spine datacenter fabrics. In
2013 IEEE 21st Annual Symposium on High-Performance Interconnects, pages 71–74, 2013.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM SIGOPS operating systems review,
37(5):164–177, 2003.

[9] C. L. Belady and C. G. Malone. Metrics and an infrastructure model to evaluate data center
efficiency. In International Electronic Packaging Technical Conference and Exhibition, volume
42770, pages 751–755, 2007.

[10] F. Benamrane, R. Benaini, et al. An east-west interface for distributed sdn control plane:
Implementation and evaluation. Computers & Electrical Engineering, 57:162–175, 2017.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic character-
istics. ACM SIGCOMM Computer Communication Review, 40(1):92–99, 2010.

[12] M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter network topology. In SC’14:
proceedings of the international conference for high performance computing, networking, storage
and analysis, pages 348–359. IEEE, 2014.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya. Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1):23–50, 2011.

54

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.gns3.com/
https://onestore.nokia.com/asset/21366
https://www.statista.com/statistics/871513/worldwide-data-created
https://www.statista.com/statistics/871513/worldwide-data-created


BIBLIOGRAPHY

[14] H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In Proceedings
First IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 430–437.
IEEE, 2001.

[15] T. Daim, J. Justice, M. Krampits, M. Letts, G. Subramanian, and M. Thirumalai. Data center
metrics: An energy efficiency model for information technology managers. Management of
Environmental Quality: An International Journal, 20(6):712–731, 2009.

[16] W. J. Dally and B. P. Towles. Principles and practices of interconnection networks. Elsevier,
2004.

[17] M. Dayarathna, Y. Wen, and R. Fan. Data center energy consumption modeling: A survey.
IEEE Communications Surveys Tutorials, 18(1):732–794, 2016.

[18] P. Dechamps. The iea world energy outlook 2022 – a brief analysis and implications. The
European Energy and Climate Journal, 11(3):100 – 103, 2023.

[19] F. Denneman. Insights into vm density. https://frankdenneman.nl/2016/02/15/
insights-into-vm-density/, 2016.

[20] C. Fiandrino, D. Kliazovich, P. Bouvry, and A. Y. Zomaya. Performance metrics for data center
communication systems. In 2015 IEEE 8th International Conference on Cloud Computing,
pages 98–105, 2015.

[21] C. Fiandrino, D. Kliazovich, P. Bouvry, and A. Y. Zomaya. Performance and energy efficiency
metrics for communication systems of cloud computing data centers. IEEE Transactions on
Cloud Computing, 5(4):738–750, 2017.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Pearson Deutschland GmbH, 1995.

[23] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and
S. Sengupta. Vl2: A scalable and flexible data center network. ACM SIGCOMM Computer
Communication Review, 39:51–62, 01 2011.

[24] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. Bcube: a high
performance, server-centric network architecture for modular data centers. In Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, pages 63–74, 2009.

[25] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable and fault-tolerant
network structure for data centers. In Proceedings of the ACM SIGCOMM 2008 conference on
Data communication, pages 75–86, 2008.

[26] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen,
et al. Pingmesh: A large-scale system for data center network latency measurement and
analysis. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 139–152, 2015.

[27] A. Hammadi and L. Mhamdi. A survey on architectures and energy efficiency in data center
networks. Computer Communications, 40:1–21, 2014.

[28] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena. Network simulations with
the ns-3 simulator. SIGCOMM demonstration, 14(14):527, 2008.

55

https://frankdenneman.nl/2016/02/15/insights-into-vm-density/
https://frankdenneman.nl/2016/02/15/insights-into-vm-density/


BIBLIOGRAPHY

[29] A. Iosup. Massivizing computer systems. Keynote Presentation, 2021. Available online at:
https://atlarge-research.com/pdfs/pres-20210204-aiosup-massivizing.pdf.

[30] A. Iosup, G. Andreadis, V. Van Beek, M. Bijman, E. Van Eyk, M. Neacsu, L. Overweel,
S. Talluri, L. Versluis, and M. Visser. The opendc vision: Towards collaborative datacenter
simulation and exploration for everybody. In 2017 16th International Symposium on Parallel
and Distributed Computing (ISPDC), pages 85–94. IEEE, 2017.

[31] A. Iosup, O. Sonmez, and D. Epema. Dgsim: Comparing grid resource management architec-
tures through trace-based simulation. In European Conference on Parallel Processing, pages
13–25. Springer, 2008.

[32] T. Y. James. Applying mininet for network education.

[33] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally. Booksim 2.0 user’s
guide. Standford University, page q1, 2010.

[34] K. Kant. Data center evolution: A tutorial on state of the art, issues, and challenges. Computer
Networks, 53(17):2939–2965, 2009.

[35] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient topology for high-radix
networks. In Proceedings of the 34th annual international symposium on Computer architecture,
pages 126–137, 2007.

[36] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable dragonfly
topology. ACM SIGARCH Computer Architecture News, 36(3):77–88, 2008.

[37] D. Kliazovich, P. Bouvry, and S. U. Khan. Greencloud: a packet-level simulator of energy-aware
cloud computing data centers. The Journal of Supercomputing, 62(3):1263–1283, 2012.

[38] K. Lakhotia, M. Besta, L. Monroe, K. Isham, P. Iff, T. Hoefler, and F. Petrini. Polarfly: a
cost-effective and flexible low-diameter topology. In SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE, 2022.

[39] B. Lantz, B. Heller, and N. McKeown. Mininet: An instant virtual network on your laptop.
In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, pages 1–6.
ACM, 2010.

[40] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for software-
defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, pages 1–6, 2010.

[41] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu. Ficonn: Using backup port for server
interconnection in data centers. In IEEE INFOCOM 2009, pages 2276–2285. IEEE, 2009.

[42] Y. Liu, X. Wei, J. Xiao, Z. Liu, Y. Xu, and Y. Tian. Energy consumption and emission
mitigation prediction based on data center traffic and pue for global data centers. Global
Energy Interconnection, 3(3):272–282, 2020.

[43] C. Malone and C. Belady. Metrics to characterize data center & it equipment energy use. In
Proceedings of the Digital Power Forum, Richardson, TX, volume 35, 2006.

[44] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai, J. Burley, J. Bosch, E. Van Eyk, L. Versluis,
V. Van Beek, and A. Iosup. Opendc 2.0: Convenient modeling and simulation of emerging tech-

56

https://atlarge-research.com/pdfs/pres-20210204-aiosup-massivizing.pdf


BIBLIOGRAPHY

nologies in cloud datacenters. In 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pages 455–464. IEEE, 2021.

[45] F. Mastenbroek, T. D. Matteis, V. van Beek, and A. Iosup. Radice: A risk analysis framework
for datacenters. IEEE Transactions on Cloud Computing, 2023.

[46] M. Noormohammadpour and C. S. Raghavendra. Datacenter traffic control: Understanding
techniques and tradeoffs. IEEE Communications Surveys & Tutorials, 20(2):1492–1525, 2017.

[47] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero, and I. M.
Llorente. icancloud: A flexible and scalable cloud infrastructure simulator. Journal of Grid
Computing, 10(1):185–209, 2012.

[48] G. Ostrouchov. Parallel computing on a hypercube: an overview of the architecture and some
applications. In Computer Science and Statistics, Proceedings of the 19th Symposium on the
Interface, pages 27–32, 1987.

[49] O. Popoola and B. Pranggono. On energy consumption of switch-centric data center networks.
J. Supercomput., 74(1):334–369, jan 2018.

[50] V. D. Reddy, B. Setz, G. S. V. R. K. Rao, G. R. Gangadharan, and M. Aiello. Metrics for
sustainable data centers. IEEE Transactions on Sustainable Computing, 2(3):290–303, 2017.

[51] D. Reinsel, J. Gantz, and J. Rydning. Data age 2025: The evolution of data to life-critical.
don’t focus on big data. 2, 2017.

[52] Y. Shang, D. Li, J. Zhu, and M. Xu. On the network power effectiveness of data center
architectures. IEEE Transactions on Computers, 64(11):3237–3248, 2015.

[53] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay. Containers and virtual machines at scale:
A comparative study. In Proceedings of the 17th international middleware conference, pages
1–13, 2016.

[54] S. Shen, V. van Beek, and A. Iosup. Workload characterization of cloud datacenter of bitbrains.
Technical report pds-2014-001, Delft University of Technology, Parallel and Distributed Sys-
tems Section, Delft, The Netherlands, Feb. 2014.

[55] S. Shen, V. Van Beek, and A. Iosup. Statistical characterization of business-critical workloads
hosted in cloud datacenters. In 2015 15th IEEE/ACM international symposium on cluster,
cloud and grid computing, pages 465–474. IEEE, 2015.

[56] A. Singh, W. J. Dally, B. Towles, and A. K. Gupta. Locality-preserving randomized oblivious
routing on torus networks. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 9–13, 2002.

[57] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data centers randomly.
In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),
pages 225–238, 2012.

[58] C. Sonmez, A. Ozgovde, and C. Ersoy. Edgecloudsim: An environment for performance evalua-
tion of edge computing systems. Transactions on Emerging Telecommunications Technologies,
29(11):e3493, 2018.

[59] Statista. Data center average annual pue worldwide, 2023. Accessed: 2023-10-01.

57



BIBLIOGRAPHY

[60] L. G. Valiant. A scheme for fast parallel communication. SIAM journal on computing,
11(2):350–361, 1982.

[61] A. Varga and R. Hornig. An overview of the omnet++ simulation environment. In Proceedings
of the 1st international conference on Simulation tools and techniques for communications,
networks and systems & workshops, pages 1–10, 2008.

[62] T. Wang, Z. Su, Y. Xia, B. Qin, and M. Hamdi. Novacube: A low latency torus-based net-
work architecture for data centers. In 2014 IEEE Global Communications Conference, pages
2252–2257. IEEE, 2014.

[63] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao. Carpo: Correlation-aware power optimization
in data center networks. In 2012 Proceedings IEEE INFOCOM, pages 1125–1133. IEEE, 2012.

58


	Introduction
	Problem Statement
	Research Questions
	Contributions

	Background
	Datacenter: Role and Traditional Architecture
	Network Topologies and Classifications
	Routing in Data Center Network
	Traffic Patterns
	Relevant Datacenter Evaluation Metrics

	Design of a Flow-Based Network Simulator
	Requirements
	Design Overview
	Simulating Network Traffic with Flow Abstraction
	Managing Routing, Energy Saving and QoS Strategies
	Alternative Abstraction Levels: a Taxonomy

	Prototype Implementation and Integration of OpenDCN
	Implementing for Performance
	Network Simulation Scope
	Exportable Metrics
	Simulating Network Workloads with OpenDCN
	Interactive Simulation with OpenDCN REPL
	Traffic Pattern Simulation in OpenDCN
	Combined Compute-Network Simulation in OpenDC

	Experiments
	Experiments Overview
	Traffic-Pattern Simulation: Validation and Performance vs. BookSim
	Trace-Driven Evaluation of Datacenter Networks
	Accounting for the Network: Energy Attribution and QoS under Co-Simulation

	Conclusions and Future Work
	Conclusion
	Future Work


