Vrije Universiteit Amsterdam

VRIJE
UNIVERSITEIT
AN° AMSTERDAM

Honours Programme, Research Thesis

Does Your Server Need SSD? Applying General Purpose
Minecraft-Like Games Benchmark Framework to Study Storage
Performance Implications

Author: Gleb Mishchenko (2766204)

g.mishchenko@student.vu.nl

1st supervisor: Jesse Donkervliet (VU Amsterdam)
2nd supervisor: Krijn Doekemeijer (VU Amsterdam)

A report submitted in fulfillment of the requirements for the Honours Programme,
which is an excellence annotation to the VU Bachelor of Science degree in
Computer Science/Artificial Intelligence/Information Sciences

November 19, 2024

Abstract

Due to popularity and strict performance requirements, online games are a workload of interest
for the performance engineering community. The gaming industry yields over $192 billion in
revenue and engages over 3.2 billion players [26]. Modifiable virtual enviroments (MVEs) games is
an emerging game sub-genre with persistence functional requirements. Most popular MVE game
- Minecraft - is played by over 140 million people monthly [9], and the Metaverse - a prominent
modifiable virtual environment application - market is expected to grow up to 507 billion dollars by
2030. While storage can and does affect gaming performance and is central for MVE’s persistent
information storage, there yet is no investigation in the way it is used by MVEs. There yet
is no available MVE storage traces, no information on how storage can impact MVEs user’s
Quality of Service (QoS), and there is yet no tool available to measure the impact. To measure
a new performance aspect, it, as well, requires in-depth modification of existing performance
measurement tools. Current work outlines a need for application-specific storage effect performance
investigation [27] for application-specific benchmark for storage performance effect investigation
[27] on a comprehensible set of application workloads. Current benchmarks such as [29] and [22]
do not focus on recording storage performance and provide limited statically-defined workloads.
This paper covers this gap. We start by defining TheStick - a framework for fully customized MLG
benchmark. Then we model user MLG storage interaction. After, we apply TheStick framework
to study storage effect onto user Quality of Service (QoS). Finally, from the results we derive a set
of actionable conclusions.

Contents

1

2

Introduction 5
Research Questions 6
Background 7
3.1 Storage Model 7
3.2 Minecraft-like Games Behavior Model 8
3.3 Minecraft-Specific Data Storage Implementation Details 8
3.3.1 Files Hierarchy 8
3.3.2 Region File Format and Terrain Structure 9
3.3.3 World Saving Mechanics L o 9
3.3.4 Point of Interest Data 9
3.4 Minecraft Player Preferential Attachment 10
Design of TheStick - A General Purpose MLG Benchmark Framework 11
4.1 Framework Use Cases o v i it it e 11
4.2 Framework Requirements 11
4.3 Defining Actions - A Tool to Represent Arbitrary Complex User Behavior 12
4.4 Framework Design e 12
4.4.1 Design Overview L o 12
4.4.2 Player Emulation Designo o oo 14
4.4.3 Metrics Collector Design o e 15
4.5 Customizing Storage-Stick for Your MLG Server 15
4.5.1 Describing Specific to Your MLG Behavior: Adding Your Own Action 15
4.5.2 From an Action to a Customized Workload: Composing Own Workload 15
4.5.3 Recording Relevant to You Metrics: Adding Your Own Metric 15
4.5.4 Adding Your Own MLG L 15
Modeling MLG User Storage Interaction 16
5.1 Defining What Data Minecraft-Like Games Store: Data Model 16
5.1.1 Terrain Data e 16
5.1.2 Non-Playable Character Data 17
5.1.3 Player Data L 17
5.2 Defining How Minecraft-like Games Store: Storage Process Model 17
5.3 Actions - Instrument for Modeling User Interactions 18
5.3.1 The Definition and Goals of MLG Actions 18
5.3.2 Action List Requirements to Target Workload Composability 18
5.3.3 Action Requirements for Modeling oL 19
5.4 From User Interaction to Storage: Modeling Storage Interaction Through Actions. . . . 19
5.4.1 Constructing a Model L 19
Applying TheStick Framework to Study Storage Impact on Quality of Service -
StorageStick Benchmark 21
6.1 Requirements e e e e 21
6.2 Metrics L e e 21
6.2.1 System-Level Metrics L 21
6.2.2 Application-Level Metrics L 22
6.2.3 Collection Methodology 23
6.3 Workloads L 23
6.3.1 Players Joining the World o oo 23
6.3.2 Fighting: Attacking NPCs 23
6.3.3 Fighting: Attacking Other Players 23
6.3.4 Modifying Terrain: Building Blocks 0. 23
6.3.5 Modifying Terrain: Removing Blocks 23
6.3.6 Modifying Terrain: Changing Redstone 23

6.3.7 Exploring The World 23

6.3.8 Workload 2 L 23

6.3.9 Workload 3 L 23
6.4 Systems e 23
Evaluation 24
7.1 Experiment Storage Systems L L 24
7.2 Main Findings e 24
7.3 Players Joining and Leaving the World oo 24
7.4 Findings for Players Joining the World 24
7.5 Players Exploring 24
7.6 Players Fighting 24
7.7 Finding 2 . . . oL e 24
7.8 Finding 3 24

1 Introduction

The gaming industry is the world’s largest entertainment industry - worldwide, games engage over 3.2
billion players [9] and yield over $192 billion in revenue [26]. In this work, we focus on modifiable virtual
environments (MVEs) — a game genre with a defining characteristic of persistent and modifiable
virtual environments. Players can change almost every part of the world including player’s and world’s
states by attacking players, removing blocks, building blocks, interacting with NPCs, etc, and the
changes are persistently stored. MVEs’ biggest representative Minecraft played by over 140 million
people around the globe [9] and the promiment class of MVEs application - Metaverse - is predicted
to grow to 507 billion dollar market by 2030.

MVEs are particularly interesting to study due to their large economical impact shown by their
current and expected market sizes, and social impact shown by their current use in recreation, edu-
cation where it already used in primary school education for teaching science and foreign languages
[30], and for employee training by companies such as KLM, KFC, and UPS. Moreover, by 2030 the
Metaverse is expected to engage over 2.6 billion people through the possibilities of enhanced remote
learning, working, social interaction, and more. MVEs have to support a fast-paced game with con-
stant modifications which, due to persistence requirement, have to be stored on a persistent storage
device. Shown by DirectStorage [8] - Microsoft API to optimize load time by increasing game assets
decoding speed storage is a point of interest for gaming performance engineering community and can
have impact on QoS.

However, despite storage being essential for MVE functionality and storage having a potential
impact on application QoS, there is still no investigation on storage MVE use and impact on MVE
performance or performance variability.

One of the storage performance engineering challenges is a nonlinear transition of performance im-
provements from a singular component to an end-to-end system. For example, a 10000 times latency
improvement from HDD to storage class memories [10] results in only 7 times performance improve-
ment for MySQL workloads [24]. The nonlinear performance improvement translation can be explained
by the storage stack consisting of multiple software layers, such as file system, I/O scheduler, and oth-
ers. Each of the software layers has own performance. Storage also interacts with multiple hardware
components such as CPU for scheduling or memory for file system caching making final end-to-end
performance translation unpredictable. Furthermore, whether a particular storage system change will
have an impact on performance of an end-to-end system depends on the application logic itself and fac-
tors such as use of blocking or non-blocking file system calls and use of background threads for storage
1/0 operations. As a result, there has been a case made for application-specific storage benchmarking
[27] and published storage application-specific benchmarks such as YCSB [21] or RockDB [20].

There has been work done on measuring Minecraft-like Games (MLGs) scalability and outlining
issues with low performance with a large number of players [29]. There has also been a work on
measuring impact of MLG workloads on instability ratio and outlining possible issues with regards to
QoS guarantees. However, despite storage I/O operations being essential to MVE persistent properties,
there has yet been no work done investigating MVE storage use and measuring storage impact on MVE
performance or performance variability.

In this paper we cover this gap. We start by modeling MVE storage interaction, and build a
benchmark - StorageStick - a storage benchmark for MVE. We analyze storage performance impact on
Minecraft and, by collecting storage traces during benchark execution, analyze Minecraft storage use.
Our paper shows that storage can have an impact on MVE QoS. We finish our paper with actionable
insights for game developers and game operators for MVEs.

2 Research Questions
We begin answering a problem by defining research questions:

e RQ1. What are MLG storage access patterns triggered via user actions?

¢ RQ2. How to design and implement a benchmark to evaluate MLG performance based on used
storage model?

e RQ3. How does MLGs user-level performance scale in terms of storage performance?

¢ RQ4. How do storage stacks compare in terms of MLG performance?

3 Background

In this section, we show Minecraft-Like Games and storage model used later in the paper, introduce and
important for storage workloads property of player’s preferential attachment and provide, necessary
for further reading, background information on Minecraft-specific features including its world saving
mechanics and file format.

3.1 Storage Model

In this section we introduce a storage model used throughput the paper for evaluating the impact of
storage on Minecraft user-level performance. The goal for our model is to be as simple as possible and
yet reflect important performance metrics and bottlenecks that can impact MLG quality of service.
Reflecting on storage implications of player preferential attachment introduced in Section 3.4, we model
storage as a two component system consisting of file system with read cache and write buffers, and
storage medium with limited throughput, latency, and operation queues. We model these components
as two separate as reads and writes from those incur orders of magnitude different latencies and
throughput. As well, under different player clustering, two components will compose performance
profile to a different extent - fast storage medium bears greater importance for servers with low player
preferential attachment.

File system cache and buffers have a limited size. We model those in terms of their size because
increasing cache or buffer size is a tradeoff between the memory consumption and a potential perfor-
mance benefit. The correlation between amount of memory allocated for cache and buffer and the
performance benefit depends on system workload and little memory addition can bring both high
performance benefit or none. We model storage medium in terms of its latency, throughput and op-
erational queues. We include latency and throughput as those are order of magnitude different to one
of memory. All latency, throughput, and number and depth of operational queues can be within an
order of magnitude difference [28] amongst comparable devices. Thus, we are interested to quantify
the impact of those metrics on MLG quality of service.

MLG, when reading from storage will first attempt to read from file system cache unless specified
otherwise via its open flags. If flags are indicating that the read should not be performed from cache,
we call it a direct read. Indirect read will first attempt to read from cache, and only if the file is
not present in cache, read will be performed from a storage medium. Direct reads will bypass cache
reading directly from storage medium. Indirect writes will first attempt to write to buffer and only
if the buffer is full, write would have to be performed directly to the storage. In case of direct write,
one will be performed onto storage medium bypassing write buffer. We separate direct and indirect
read and write operations as those, on average, will yield lower latency and provide higher bandwidth
although their worst case matched direct reads and writes.

. Storage Medium
) File System -
Direct Read Operation
. Data Queues
Cache Miss Read
Read Read cache .
Data Data - [Data | DYsical
———————] <" Storage
Direct Write L M,
Write Write buffer Buffer flush | | = 7
_______ IN >
(13O
Legend
Read —> Write — — > Write into memory !
i ——> Data from storage Read from memory :

Figure 1: Storage Model

Decide to leave
or kicked out

Receive
initial data

A

Join the world

E" ‘ Decide to join

w

Figure 2: Session Lifetime

3.2 Minecraft-like Games Behavior Model

This section defined MLG user behavior model. To construct the model, similarly MLG data model
(??), we use Minecraft, Terraria, and Roblox as references. To represent player behavior throughout
their whole session, we subdivide this section into two parts - analyzing what kind of user behavior
required ”around” the MLG play to accommodate for it, and analyzing which kind of user behavior
constitutes an MLG play.

We define the whole MLG player session to consist of three steps as summarized in fig. 2: @ player
joining the world, @ playing, and 0 player leaving the server. @ can solely be triggered via user’s
decision to join an MLG world. If joining is successful, the transition to @ happens automatically
upon user receiving some initial state after which they can render and start interacting with the world.
Finally, transition to 0 occurs when either a player, themselves, decide to leave, or when they are
kicked out of the game either due to server administration decision or due to internal game mechanics
- for example as a result of user’s poor internet connection. This three steps are evidently minimal
to support any multiplayer MLG session: without @ it would be impossible to start MLG session,
without @) there will be no session, and without @ there will no way to end the session.

When defining MLG player behavior that constitutes MLG play, to ensure coverage and relevance
of classified behavior, we refer to classification introduced by Miiller et al. in Heapcraft ?? - mining,
building, fighting, and exploring. Distinction between building and mining, where mining refers to
a process of getting underground resources, is Minecraft-specific arising from Minecraft-specific game
mechanics of gaining resources in survival mode. To make both building and mining applicable to a
larger set of MLGs, we collapse those two into a terrain modification that is in some form present in all
Minecraft, Terraria, and Roblox. Additionally, behavior allowing for terrain modification is dictated
via modifiability property of MLGs. Exploring refers to simply a position change which is present in all
Terraria, Roblox, and Minecraft and is a requirement of all ”walkable” virtual environments. Finally,
while possibility of fighting does not arise from any MLG requirements, we optionally include it in
our behavior model as it is a popular game mechanic available in all Minecraft, Roblox, and Terraria.
Fighting can be done either against NPCs or other players.

3.3 Minecraft-Specific Data Storage Implementation Details

This section applied only to Minecraft and describes necessary for further understanding of evaluation
for both actions storage use characterization Section 5 and benchmark evaluation.

3.3.1 Files Hierarchy

Persistent Minecraft world data is located under . /world directory. The further subfolders are organized
into folder saving terrain data ./world/region, non-playable-character (NPC) data in ./world/entities,
point of interest (POI) data in . /world/poi, and player data in ./world/playerdata. There are as well
folders responsible for other dimensions: ./world/DIM-1 for the Nether, and ./world/DIM-0 both
having the same substructure of NPC, region and POI subdirectories. All terrain, NPC, and POI
data is organized into files based on the region (region is further defined in ??) and follow a naming
structure of r.z.y.mca where x is region coordinate along x-axis and y is region coordinate along y
axis. Player data files stored under . /world/playerdata follow the naming structure of wuid.dat where
uuid is a unique player identifier derived from player’s nickname.

(a) The End (b) Nether (¢) Overworld

Figure 3: Minecraft Dimensions

Region Chunk Section Block

o - B | T es &
Ol - @ W W

Figure 4: Region File Structure

3.3.2 Region File Format and Terrain Structure

Minecraft terrain and NPC data is divided into 3 dimensions - overworld, nether, and the end. Over-
world (fig. 5) is a primary dimension where players initially spawn and spend the majority of the game.
The nether is a dimension which players can get into via a nether portal and is used to get resources
not available in the overworld. When player teleports to the nether, the coordinates of their spawn are
proportional to their overworld position. Finally end dimension is one players travel to kill the final
boss of the game - ender dragon. Players can reach it via the end portal and their spawn will always
be at a fixed position [7].

Dimensions are divided into regions with every region represented via .mca region file. Every
region is divided into 32 by 32 chunks [4]. Each chunk, in turn is an area of 16x256x16 blocks. To store
information about each chunk, Minecraft files are divided into header and data parts where header
contains information on chunk size and offset within the file and data contains per-chunk information
on either blocks or NPC present and their properties. For reader’s understanding, we summarize
terrain hierarchy in fig. 4.

Minecraft terrain’s minimal world unit is a block - all the terrain structures in Minecraft are made
out of blocks. The next unit is a section which is an area of 16x16x16 blocks

Minecraft terrain is stored under . /world/region directory and is divided into 3 dimensions - over-
world, nether, and the end. Overworld (fig. 5) is a primary dimension where players initially spawn
and spend the majority of the game. Overworld region files are stored under ./world/region direc-
tory. The nether is a dimension which players can get into via a nether portal and is used to get
resources not available in the overworld. Nether region files are stored under ./world/DIM-1/region
folder. When player teleports to the nether, the coordinates of their spawn are proportional to their
overworld position. Finally end dimension is one players travel to kill the final boss of the game - ender
dragon. Players can reach it via the end portal and their spawn will always be at [0, 0] region [7].

Every Minecraft region is represented by one .mca file and every region is subdivided into chunks:
every region is 32 by 32 chunks [4]. Every chunk is up to 16 sections [6]: the sections are vertically
stacked on top of each other. Ever section is area of 16x16x16 blocks. Finally, every block has its own
state. The hierarchy is summarized in fig. 4.

3.3.3 World Saving Mechanics
3.3.4 Point of Interest Data

For some structures like beehives, beenests, nether portal, etc, Minecraft saves those into the point of
interest files [3]. Every point of interest files contains a set of records and every record is a position

(a) 2b2t Global Distribution (b) Local Distribution

Figure 5: Player distribution

and a type of point of interest.

3.4 Minecraft Player Preferential Attachment

In this section, we introduce a notion of Minecraft player’s preferential attachment - a property de-
scribing how close players play to each other in Minecraft-like Games world. Different servers can have
different degrees of players preferential attachment and the resulting tool - StorageStick - and findings
are applicable to all. However, different degrees of player’s preferential attachment would result in
different storage bottlenecks for storage system modeled in Section 3.1.

Preferential attachment is a graph theory property applicable to a large number of real-world
networks. It states that, as networks evolve, when a new node is added, it is more likely to attach
itself to another node that already has a large number of connections [25]. We adapt this concept
for MLGs defining it as: when a player joins a Minecraft world, they are more likely to join areas
with other players already playing. For MLGs, we differentiate between local and global preferential
attachments. Global preferential attachment is summarized on 2b2t heatmap (fig. ba). 2b2t server - a
server over 780,000 unique players over the course of its history [19] - in the period from 2018 till 2021
during nocom hack [1]. The heatmap visualized player’s activity for blocks from -245K to 245K with
darker higher signifying the higher levels of activity. We explain higher levels of activity in the center
of the map as a result of players spawning in the center of the map and taking progressively longer
time to reach further map points. Local preferential attachment is visualized by Muller et al. fig. 5b
where every pixel is one Minecraft block. We explain it via the existence of points of interest such as
villages, mining shafts or others around which players concentrate their activity.

This is an important property for our work because, as summarized in Section 3.1, storage requests
can be served both from storage or cache serving storage requests from memory. If storage request is
served from cache, then it will incur lower latency. If a server has high degree of player’s preferential
attachment, the more requests will be served from cache, and the less storage medium will be a
performance bottleneck.

10

4 Design of TheStick - A General Purpose MLG Benchmark
Framework

In this section we present a design of TheStick - a general purpose framework for MLG benchmarking.
We designed this framework after an idea of every user being able to get results as relevant as possible
to their particular use case. This framework is later applied to StorageStick - a benchmark made on
top of TheStick architecture to measure impact of storage on QoS in Section 6. To achieve that, we
started by outlining two use cases for both i) server operators with already running server and i)
server operators who yet do not have a running server in Section 4.1. Based on use-cases, we derive
a set of framework requirements in Section 4.2 and based on requirements we present a design in
Section 4.4. The main novelty of our framework is full customization of executed workload through
actions - an instrument we define in Section 4.3. As part of design we, as well, provide instructions
on how server operator can customize j) their workload, jj) MLG benchmark is executed on, and jjj)
metrics recorded to best suit their application of TheStick framework.

4.1 Framework Use Cases

To comprise a list of requirements, we, first summarize the use cases under which we would like to see
TheStick benchmark used. TheStick benchmark is any benchmark implemented on top of TheStick
framework design summarized in Section 4.4. With framework design, we target primarily two user
groups: i) server operators that already have their MLG server and ii) server operators who do not
yet have their server. We want to design framework in such a way that i) can benefit from data
collected from their server in benchmarking their particular use-case benefiting from most-relevant to
them results. Meanwhile, i) should not be restricted from running the benchmark via lack of data
and user still should be able to get relevant to them performance results. From these two groups, we
define two primary benchmark use cases summarized in fig. 6. Case @ is a use case applicable to i)
where user first gets user activity trace and persistent world data and then uses it as input to TheStick
benchmark getting the results. Case @, on the other hand, is applicable to ii) where user directly
calls TheStick benchmark controlling it through some list of paramters and gets the results.

4.2 Framework Requirements

With our benchmark design we are trying to provide support to both users who i) have data and
resource for benchmark customization for their needs and i) ones who do not have data or resources
to customize benchmark for their needs. An example representative from) can be a large scale server
operator having a record of user activity of a particular server and wanting to test whether a particular

°Case A
User Activity Trace
_— _—>
\ @ / User .
Server TheStick Benchmark
Persistent World Data

eCase B

User TheStick Benchmark Results

Figure 6: Framework Use Cases

11

hardware upgrade would bring them a worthwhile performance benefit. An example representative of
it) can be a prospective server operator who does not yet have record of user activity and wanting to
figure out the initial hardware configuration based on anticipated player count and workload. While
serving the interest of both groups we still want framework to be applicable to any MLG and be
provide reproducible results. To satisfy all, we pose a list of framework requirements (FR):

FR1 Full Customization: framework should allow customization for a specific to server operator use-
case without any significant modifications to framework architecture.

FR2 No Mandatory Prerequisites: framework should provide a sufficient set of helper utilities to avoid
mandating user to have any data at hand for benchmark execution.

FR3 MLG Generalization: framework should be applicable to all MLGs and in its implementation
avoid favoring any system.

FR4 Reproducibility: the resulting modifications to the virtual world should be persistent on every
run.

4.3 Defining Actions - A Tool to Represent Arbitrary Complex User Be-
havior

To follow a requirement FR1 of customization and with a goal of allowing server operators to represent
an arbitrary complex user behavior replicating ones on their servers, we introduce a notion of action.
An action is an arbitrary user interaction that follows two framework action requirements (FAR):

FAR1 Sequential: the actions of an individual player can only be executed in sequential manner at
most one at a time.

FAR2 Deterministic: an action can be executed only in one way and lead to the same virtual world
modifications.

FAR3 Traceable: server operator should, in some way, be able to record an action on their server.

Our idea behind actions is that, since real-world players, similar to our modeling, can execute
only one actions at a time, a sum of sequential actions can represent an arbitrary complex real-world
workload. With actions, due to their traceability property, a server operator can replay a recorded user
activity getting the most relevant metrics for their particular use case. Due to deterministic property
the result of every replay will be consistent.

4.4 Framework Design

In this section, we present a design overview of framework. In particular, we focus on high level
picture to provide a reader with intuition of framework inner-workings in Section 4.4.1 and we focus
on player emulation component responsible for implementing a core framework concept - actions from
Section 4.3 - in Section 4.4.2.

4.4.1 Design Overview

To fulfill requirements posed in Section 4.2, we propose framework design summarized in fig. 7. This
framework supports two modes of operation: i) customized that allows server operators to supply
their own user activity and virtual environment data and i) synthetic that generates synthetic traces
and virtual world data to run benchmark on. The user can also use a combination of two operation
modes and for example supply their own trace of user activity but use one of utilities provided to
generate synthetic world data. Presence of both tools for customization and not mandating their use
by introducing utilities makes framework satisfy requirements FR1 and FR2.

To support a customization of workloads, the design revolves around the idea of @ trace file
that is a set of action records. Each action contains a timestamp for its execution, action name self,
and arguments the action shall be executed with. We give additional instructions, including trace
file format, on customization of trace file in a larger workload in Section 4.5.2. The trace file is

12

Timestamp | Action | Arguments
Timestamp | Action | Arguments

Timestamp | Your Action |
Arguments

User Pre-Defined Workloads N ser

Trace File

Configuration ‘ Players Joining Activity Record Or supply your
Parameters :

| Produce | trace

‘ Players Fighting
‘ Players Exploring
Read
- —
User
Player Emulation StorageStick Benchmark

Activity Record Action Loop
Execute action

L *

Your MLG Iterate per-action
Or supply your

persistent data

°User e Persistent Data Setup Running Instance °Storage
L
Parameters fs writ
Setup Persistent MLG Instance +——— MLG Data
fs read
Data
Your MLG J l

Metrics Collector

Metric --> Function handler ”ﬁ System-level Metrics ‘
Legend Metric --> Function handler
Your metric --> Function handler

‘ Application-level Metrics ‘

——> Data flow direction

Figure 7: Storage Stick Design Overview

read line by line by @ benchmark executor that is busy-looping for time to match the action record
timestamp when action is passed to the @ player emulation component. Player emulation contains,
for each MLG, a mapping from each action to a function handler that executes the action on @
MLG instance using appropriate to MLG protocol. As well, it ensures the atomicity of each action
executed. The inner-workings of player emulation component are further described in Section 4.4.2
and the instructions towards adding your own actions are presented in Section 4.5.1. To support
customization of modifiable virtual environment, we allow users to upload their virtual environment
data for use. The data is copied and placed onto @ storage for execution at the beginning of each
benchmark execution ensuring reproducibility (FR3). To support customization of collected metrics,
the metrics collector contains a mapping from the metric collected onto a function handler. The further
inner-workings of metrics collector components are presented in Section 4.4.3. Instructions towards
adding new metrics are summarized in Section 4.5.2.

To avoid mandating framework users to supply own user activity and virtual environment data,
TheStick introduces @ workload generator and @ persistent data setup utilities. Workload generator,
using a set of user-provided parameters, can generate a synthetic trace file that later can be used by
benchmark executor. Persistent data setup utilities performs a similar action but with a persistent
data - given user parameters it in some way interacts with MLG instance for example setting up player
spawn points or spawning entities necessary to run a particular workload.

13

Player Emulation oMLG—Bound Instance

Per-Player Queue

Global Queue Per-Instance
1 Queue Per-Player Queue
Per-Player Queue
I?ecct:igrr:j] : ePer-PIayer Queue b - T —
. rcton Action Executor Exgcute

: Consumer @ action
. Completion R

- Ll Fethon notification

completion or timeout

T =

Instance | Player | Action ‘PIayerlActlon ‘ Action ‘ > Data flow direction D] Blocking queue
D] Non-blocking queue

Figure 8: Player Emulation Design Overview

Metric Collector Results Folder Legend

. — Data flow direction
Async Function Handler ‘ Per-metric Result Folder
Collector Loop } Per-metric Result Folder ‘
|
nms

‘ Per-metric Result Folder

‘ Async Function Handler

Figure 9: Player Emulation Design Overview

4.4.2 Player Emulation Design

To ensure action requirement of atomicity (FAR1) and ensure benchmark requirement of general-
ization (FARS), we propose a player emulation component structure summarized in fig. 8. This is
the only component in benchmark execution path which introduces a separation for different MLG
modules. The separation is necessary as every MLG has its own set of allowed actions and their own
protocols to executing the action.

The internal complexity of different modules for different MLGs is hidden behind the abstraction
of @ global queue which producer is benchmark executor from previous section. Queue entries are
consumed and, based on information of which MLG the queue belongs to, messages are sent into @
MLG specific queues. As soon as it is received, they are redirected into @ per-player queues. Per-
player queues have a @ consumer attached that passes actions onto a particular @ action handler
responsible for executing the function. Upon receiving a completion notification, consumer fetches a
new action. In case of timeout defined individually per action, consumer stops actions and then fetches
a new one. This way, player emulator maintains requirement FAR1 of atomicity.

14

4.4.3 Metrics Collector Design
4.5 Customizing Storage-Stick for Your MLG Server
4.5.1 Describing Specific to Your MLG Behavior: Adding Your Own Action

To every action added

4.5.2 From an Action to a Customized Workload: Composing Own Workload

To add your own action you have to update mapping from action name onto action handler in action
handler files...

4.5.3 Recording Relevant to You Metrics: Adding Your Own Metric
4.5.4 Adding Your Own MLG

15

5 Modeling MLG User Storage Interaction

This section models MLG user-storage interaction answering RQ1. We start answering RQ1 by,
first, modeling the kind of data user can interact with in Section 5.1. Secondly, we model how MLG
translates user packets into storage requests including possible performance optimization techniques in
Section 5.2. Then, we model user behavior through minimal MLG user interactions - actions - that we
define in Section 5.3. Finally, we combine all in MLG user storage interaction model Section 5.4 which
includes both model construction in ?? and validation against Minecraft 1.2.0 - the latest version of
biggest MLG representative at the time of the beginning of the project - in 77.

5.1 Defining What Data Minecraft-Like Games Store: Data Model

This section models data required to be stored by MLG to maintain its persistence and modifiability
properties. When constructing a model, we primarily base ourselves upon implementations of three
biggest MLGs: Minecraft, Terraria, and Roblox. From those, we select common attributes and gen-
eralize them to exclude implementation-specific data attributes. We summarize the MLG model in
fig. 10.

5.1.1 Terrain Data

We model all terrain to be made of up of some minimal units that make up the virtual world. Players
can optionally interact with those minimal world units by placing, removing them, or changing their
properties. All three selected games - Minecraft, Terraria, and Roblox implement their own minimal
world units. In Minecraft’s and Terraria’s case it is called a block [6] [18], and Roblox’s it is called a
Part [13]. Following Minecraft’s convention, the paper further refers to a minimal world unit s to a
block. Each block is summarized to have at least i) properties that distinguish that block from other
blocks and i) position that describes where the world is located on the global map. i) Properties can be
as simple as block id in Minecraft’s and Terraria’s case or more versatile color, size, mass, etc in case of
Roblox’s Part. Properties can be both static and dynamic - they can stay either unchanged throughout
block’s lifetime or they can be modified via players interaction. An example of dynamic property, in
Minecraft’s case, can be activated or disactivated state of redstone blocks or, in Roblox’s case, any
property can be set up as dynamic by using scripts [13]. We argue that i) properties and i) position
is a minimal set of attributes required to describe a block in MLG. Without i) properties, block is
indistinguishable from one another and it become impossible to record results of user interaction with
the block violating persistency property of Minecraft world. Without i) position, it is impossible to
know where the block is located and thus it would be impossible to record any block placement or

__________________________ 4 m e e L L ___
|
| [.
i Player Data , | Terrain Data !
|
|
| - s Block |
| Player Item L (optional) Region properties :
' g properties I 1| (optional) position » |
! [position |
: position [|
e T
: state [e e el |
[.
| inventory [Entity Data :
! |
b e e e e - : Entity '
. . 1
| (optional) Region properties |
[(optional) position 1
| positition |
| |

Figure 10: Minecraft Data Model Summary

16

removal violating a persistence property. To account for the case where the world is too big to fit in
a memory at once - such as in Minecraft’s or Terraria’s case - we optionally group blocks in regions.
Regions are present both in Minecraft [4] and in Terraria under the name of biomes [14].

5.1.2 Non-Playable Character Data

Non-playable characters (NPCs) are characters whose behavior is not controlled by a player. NPCs are
present in all Roblox [12], Minecraft under the name entity [2], and Terraria under the name enemy
[15] or NPC [17]. NPCs are internally organized similarly to terrain and have an i) associated position
and i) properties that distinguish that NPC from others. Alike blocks, i) properties can be both static
and dynamic but, unlike for blocks, in NPC’s case, dynamic properties can be changed both via player
interaction with NPC or via internal game mechanics. We argue that properties and positions is a
minimal set of data attributes required for NPC as without i) properties there is no way to record
entity modification via player interaction or gaming mechanics and without i) position there is no
way there is no way to save the result of NPC movement. Absence of either would violate MLG’s
persistence property. Similarly to terrain data, to account for the case where the world is too big to
fit in memory at once, we group entities based on the region they are currently in - technique adopted
btoh in Minecraft and Terraria.

5.1.3 Player Data

We model every player having an associated player data entry describing their 4) id, i) position, iii)
state, and 4v) inventory. We define inventory as a set of items in player’s possession. Item can be
blocks that can be placed by a player or any other in-game items that can be used by a player to
interact with MLG. All Roblox, Minecraft, and Terraria have their version of inventory [5] [11] [16].
Each item in player’s inventory is distinguished from other items via their properties. We argue that
for inventory and player data presented set of data attributes is minimal: without ¢) there would be
no way to uniquely identify a player from others and uniquely link player’s inventory to a particular
player, without i) there would be no way to record a result of player position change, and without
i11) it would be impossible to record a result of in-game interactions with player character. Absence
of any violates MLG persistence property.

5.2 Defining How Minecraft-like Games Store: Storage Process Model

In this section we model how MLG translates user interactions into storage requests along with opti-
mization techniques MLGs can use to minimize storage performance impact on player’s QoS. Model is
summarized in fig. 11. After three biggest MLGs - Terraria, Minecraft, and Roblox - our model follows
a client-server networking architecture.

We start by defining a @ client and a @ server. Client is controlled via @ player via some
form of input which can be mouse, keyboard, touchscreen or any others and in turn it it outputs a
virtual world through some form of output that can be a screen or any other. Throughout the session,
client constantly sends packets containing information regarding player’s interaction. For example
packet can have a semantic meaning of player joining the world, player attacking another player,
player changing position or any other. Inside a server, there exists a main thread with @ game
loop. The game loop with period defined individually per MLG discretely updates world state based
on player’s packets and internal game logic [29] [22]. Whenever player’s packets processing requires
interaction with a storage I/O main thread offloads the read to a @ background thread to avoid
stalling the game loop. Inside the background thread read operations are attempted to be served from
game in-memory data contain active regions - regions with players currently playing - and game cache
- generic in-game cache contents of which can be defined individually per MLG. Whenever request
cannot be served from in-memory data - for example player spawns in non yet loaded region - the data
will be requested from @ file system. Serving some requests out of in-memory data allows to speed up
storage I/O execution by serving some of them out of memory and avoid system calls and associated
performance drop. The write operations are all written into @ update buffer which every n seconds
are flushed onto the storage. This allows to avoid a file system delay on each write operation and
batch system write calls lowering the performance impact associated. Every MLG can define multiple
update buffers with periods starting from 0 meaning that the data will be written straight into storage.

17

Minecraft-like Game Instance Background Threads
In-memory Data
o.. 1 9 T M -
Player Client Main Thread reads sys_read, File System
Player packets sys_pread6d...

ﬁ‘ Input
(% ‘ Game Loop Cache Cacne
Synchronisation | Flush
Game state packets, °
Virtual world Update Buffer

n seconds

sys_wiite,

World state sys_pwrite64.
updates
L 1

n seconds

ODoo D
ODoo O
ODoDo0 O
DooOD

Legend
—————> Wte operation —————— Data flow direction Read operation

Figure 11: Minecraft-Like Games Storage Process Model.

The flush frequency would depend on tolerable level of inconsitency between in-memory data and the
data persistently stored through the file system.

5.3 Actions - Instrument for Modeling User Interactions

This section defines models user interactions through MLG action - a core concept for user storage
interaction model Section 5.4. We later, as well, reuse this concept for StorageStick workload cus-
tomization ?7. We start by defining goals that we are trying to achieve with actions in Section 5.3.1.
Then, based on goals, we constitute what defines a good list of actions for our purposes in Section 5.3.2
and Section 5.3.3.

5.3.1 The Definition and Goals of MLG Actions

We define MLG action is an atomic user interaction. The idea behind MLG actions is to comprise a list
of building blocks that can be composed into arbitrary complex and fully customized workload. The
intuition is that, if we can model a user storage interaction for a list of the atomic actions, then any
arbitrary complex and customized workload can be modeled as a sum of the actions. This notion is
later reused in ?7 allowing MLG operators to asses storage impact on customized and suited for their
own server MLG workload. Thus, we design MLG actions with goals of them being i) compossible into
a larger workload and i) applicable to an arbitrary MLG user-storage interaction model. To address
i) for the final action list we introduce of set of workload compatibility requirements in Section 5.3.2.
To address) we introduce a list of action model requirements in Section 5.3.3.

5.3.2 Action List Requirements to Target Workload Composability

With these requirements we want to ensure that the final derived action list provides a sufficient
cover to construct a model of user storage interaction of an arbitrary workload. For that, using MLG
behavior model defined in, we construct two coverage requirements (CR):

CR1 Auziliary Interaction Coverage: we want to ensure coverage of player interactions both not only
during and but also around MLG play as defined in Section 3.2. For that, we require the final
actions list to contain auxiliary interactions - interactions not necessarily connected to MLG play
but essential for MLG functionality.

CR2 Player Behavior Coverage: we want to ensure a coverage various player behavior during MLG
play. For that, we require final list to contain user actions for all MLG behaviors described in
Section 3.2.

To answer requirement CR1, we model auxiliary interactions in 7?7. To answer requirement CR2,
we model interactions per each behavior defined in Section 5.4.1.

18

Table 1: Included and Excluded Actions

Action Interacts with Generalizable Player Trig- Included
data gered

Auxiliary Actions
Player join

Player leave

Player kicked out

Player disconnected
Building and Mining
Placing a block

Removing a block
Changing block properties
Fighting

Player by Player Attack
NPC by Player Attack
Player by NPC Attack X X
NPC by NPC Attack b 4 b 4
Exploring

Player position update

X X X

5.3.3 Action Requirements for Modeling

We construct this set of requirements to decide whether the action should by included in MLG user-
storage interaction model. Our three model requirements (MR) are:

MR1 Unbounded to Implementation Functionality: every action selected should be derived from MLG
behavior model Section 3.2 and thus not be a part of any MLG-specific functionality.

MR2 Generic Data Interaction: every action should be modeled to interact with fields presented in
MLG data model Section 5.1. Action cannot be modeled to interact with implementation-specific
data.

MR3 Player-Triggered: every action should be triggered directly by player as actions triggered by
internal game logic will be triggered under different conditions and thus will not generalizable

5.4 From User Interaction to Storage: Modeling Storage Interaction Through
Actions

This section, using definition of MLG actions from Section 5.3, models user storage interaction. The
section is structured based on the types of interactions defined in MLG behavior model Section 3.2.
The list of actions that were modeled is summarized in table 1.

5.4.1 Constructing a Model

We start model construction from auxillary actions answering a requirement CR1. In MLG behavior
model (Section 3.2), auxiliary interaction are defined to player joining and player leaving the server.
We model player joining through a singular action of player join triggered via player’s decision to
join the world. player leaving, on the other hand, can occur under circumstances of: voluntary leave,
leaving as a result of being kicked out by server administrators, or leaving as a result of internal
game logic. The latter can, for example, occur if MLG decides player’s network connection is not
satisfactory to continue the play. All the actions do not require require storage interaction with any
data defined in Section 5.1 in general case violating requirement MRS, and, thus, we do not model
them. Additionally player disconnected it clearly is not player-triggered violating action requirement
for generality GR3. Whenever @ player join occurs, we model MLG to read an associated 9 player
data and retrieve their spawnpoint. Spawnpoint can be contained both within state or position of

19

Joining A World Player data
Spawn region NPCs - -
Q-. . o Minecraft-like Game Instance o
‘Spawn region terrain
Minecraft-like Game Storage
Placing a block Removing item
from inventory o 0 [
N N N Terrain Data NPC Data Player Data
Adding block information E
b "
Block NPC Player
i Properties Position Properties Position
Removing a block 'd Position
Removing block State Inventory
z from terrain Block NPC Inventory,
Properties Position Properties Position Ttem
Player Properties
i Block NPC 1d Position
Changing a block Properties Position Properties ~ Position
State Inventory Item
' ’ i Changing block Block NPC Properties
Properties Position Properties ~Position Player L
1d Inventory
Player NPC Attack Item
:I Position Position State | Position Properties
Changing NPC
’ : .{’ 99 Block

properties

Properties Position Properties ~ Position

Player Player Attack

Block NPC
Changing player Properties Position Properties Position
state Player
B State Inventory
- Block NPC "
Position Change Id
Properties Position Properties Position

Neighboring blocks
Neighboring NPC data |

Updating position

Legend

—> Data Flow Direction ——> Read ~— > Write delete ——> Write update =~ ——> Write add I:l Operation scope

Figure 12: User Storage Interaction Model

player data (Section 5.1). Then, using the spawnpoint, MLG retrieves 0 terrain and @ NPC data
of region surrounding player’s spawn.

20

6 Applying TheStick Framework to Study Storage Impact on
Quality of Service - StorageStick Benchmark

This sections designs a StorageStick benchmark - an application of framework architecture defined in
Section 4 to study an impact of storage on user QoS. As a result of this section, we answer RQ2. We
begin a section by defining benchmark requirements in Section 6.1. Then, based on requirements, we
define metrics and workloads in Section 6.2 and Section 6.3 and implement those on top of TheStick
architecture.

6.1 Requirements

The final goal of StorageStick benchmark is to figure out an impact of storage onto Quality of Service.
Quality of Service includes both average performance and performance guarantees. The performance
guarantees are especially important for gaming workloads as lag spikes, a product of inconsistent
performance, can significantly affect player’s satisfaction. When analyzing how storage impacts both
we take into account that storage request can be processed via multiple components each having
orders of magnitude performance difference. This is why we want a benchmark to record both use
and performance of different storage system components defined in Section 3.1. As well, we want our
workloads to provide a comprehensive picture of storage impact onto QoS. To archive all, we define a
following benchmark requirement (BR) list:

BR1 Relevant Systems Metrics: the benchmark should collect metrics of usage and performance of
storage components defined via storage model in Section 3.1.

BR2 Reflect Quality of Service Through Application Metrics: application-level metrics collected via
benchmark should reflect both the average performance experienced by user and a performance
variability reflecting lag spikes that user can experience.

BR3 Behavior coverage: workloads should cover the whole range of behavior defined via behavior
model in Section 3.2.

BR4 Workload Parameter Coverage: workloads should cover cases where different components, defined
in Section 3.1, used to a different expect to reveal a comprehensive performance picture.

6.2 Metrics

This section defines system (Section 6.2.1) and application-level (Section 6.2.2) metrics that answer
requirements defined in Section 6.1. We summarize a list in table 2.

6.2.1 System-Level Metrics

This section defines metrics corresponding to use and performance of every component defined in
Section 3.1. We start by defining metrics for file system and then proceed to define metrics for storage
medium.

File System Use and Performance

Number of File System Requests: this metric indicates file system use. This metric will indicate
whether a workload is storage heavy or not. This is important when estimating whether workload
performance can potentially be affected by storage. To get the metric, we process storage traces
generated via Linux strace tool.

Read / Write Ratio: this metric indicates file system use. This metric will indicate whether a
workload is read or write heavy. This is important when deciding on the underlying storage stack to
use with regards to optimizing caching and reliability. To get the metric, we process storage traces
generated via Linux strace tool.

21

Table 2: Benchmark Metrics Overview.

Metric Level Captures Method
Number of file system requests S File system use strace
Read / write ratio S File system use strace
Indirect / direct requests ratio S File system use strace
Cache hit / cache miss ratio S File system performance perf
Median request latency S Storage medium performance iostat
P99 request latency S Storage medium performance iostat
Median queue depth S Storage medium use iostat
P99 queue depth S Storage medium use iostat
Median join latency A Average performance timer
P99 join latency A Lag-spike performance timer
Median tick time A Average performance jfr
P99 tick time A Lag-spike performance jfr

Indirect / Direct request ratio: this metric indicates file system use. This metric will indicate what
is the maximum that can be served either out of read cache or to write buffer. This is important
when deciding on file system caching policy and write size buffer. To get the metric, we process
storage traces generated via Linux strace tool.

Cache Hit / Cache Miss Ratio: indicates file system performance - the higher the better. This metric
will indicate how efficient is file system caching policy for a particular workload. Cache misses can
have performance implication as their latency can be orders of magnitude higher than cache hits.
To get the metric, we process data generated via perf tool.

Storage Medium Use and Performance

Median Request Latency: indicates storage medium performance - the lower the better. It is impor-
tant as it can affect average application performance. To get the metric, we process data generated
via iostat tool.

P99 Request Latency: indicates storage medium performance on its outlier - the lower the better.
It is important as it can affect the application performance on the outliers. To get the metric, we
process data generated via iostat tool.

Median Queue Depth: indicates storage medium use. It is important as it can be correlated with
a higher median request latency and can be optmizes via increased number of queues - NVMe
innovation. To get the metric, we process data generated via iostat tool.

P99 Queue Depth: indicates storage medium use. It is important as it can be correlated with a
higher p99 request latency and can be optimizes via increased number of queues - NVMe innovation.
To get the metric, we process data generated via iostat tool.

6.2.2 Application-Level Metrics

This section defined application metrics that showcase both average game performance and lag spikes.
We analyze both as both are important for fulfilling an QoS service level agreement.

Average Performance Indicators

Median Join Latency: indicates how much time starting from sending an initial join request it
takes to load up virtual environment data. This is an important metric as even slightly higher load
time can affect user satisfaction. For example, Google reported 20% drop in traffic [23] when load
time was increased by 0.5 seconds. To record this metric, we processed data generated via a timer
incorporated in player emulation component.

22

Median Tick Time: indicates how long it takes to send out game state updates to players. Measured
in both Yardstick and Meterstick [29] [22]. It is important as its value must not exceed a particular
value - which in Minecraft case is defined as 50 ms; otherwise a server is considered to be overloaded.
To record this metric, we process data generated via jfr.

Lag Spike Indicators

P99 Join Latency: indicates the amount of time to join a server in worst-case scenario. It is
important as it indicates what QoS guarantees a server operator can provide. To record this metric,
we processed data generated via a timer incorporated in player emulation component.

P99 Tick Time: indicates how long it takes to send out game state updates in a worst-case scenario.

To record this metric, we process data generated via jfr.

6.2.3 Collection Methodology

6.3 Workloads
This section presents a list of pre-defined workloads that fulfills requirements BR3 and BR4. We

start from verifying storage impact on performance for workload consisting of auxilary action: join the
world in Section 6.3.1. Then, we proceed to defining per-behavior workloads after behavior taxonomy
presented in Section 3.2 in Section 6.3.2, Section 6.3.3, Section 6.3.4, Section 6.3.5, Section 6.3.6,
Section 6.3.7.

6.3.1 Players Joining the World

6.3.2 Fighting: Attacking NPCs

6.3.3 Fighting: Attacking Other Players

6.3.4 Modifying Terrain: Building Blocks

6.3.5 Modifying Terrain: Removing Blocks

6.3.6 Modifying Terrain: Changing Redstone

6.3.7 Exploring The World

6.3.8 Workload 2

6.3.9 Workload 3

6.4 Systems

23

7 Evaluation

In this section, we apply a benchmark and pre-defined workloads defined in 7?7 on Minecraft 1.2.0 - the
latest version of MLG at the time of starting a report. We start by introducing the main findings in
Section 7.2 and then provide per-workloads findings in Section 7.3, Section 7.5. We provide experiment
summary in table 3.

7.1 Experiment Storage Systems

7.2 Main Findings
7.3 Players Joining and Leaving the World

When executing experiments for the workload, we tested a system against all the storage configurations
mentioned in Section 7.1. Then, we have defined parameters representing number of players joining,
burstiness and preferential attachment. Each we have treated independently and for each we have
defined three levels resulting in 27 conditions to test against. The workload total length for each was
60 seconds. For each condition we have collected 30 samples to tackle performance variability. We
have summarized the all the variables in table 5.

7.4 Findings for Players Joining the World
7.5 Players Exploring

7.6 Players Fighting

7.7 Finding 2

7.8 Finding 3

Table 3: Experiments for players joining the world.

Experiment Question

Players Joining and Leaving

How does storage latency affect time to join and tick time?

How does player preferential attachment defined in Section 3.4 affect time to join and tick time?
How does burstiness affect time to join and loop tick time?

How does number of joined players affect time to join and loop tick time?

ISR R

24

Table 4: Latencies Used to Report Results.

Latency Throughput Reference Storage Configuartion

0 ps 19.2 GB/s Baseline, ideal storage configuration

7 us 10 GB/s Storage-class Intel-Optane-like memory

50 us 5 GB/s NVMe SSD

250 ps 550 MB/s SATA SSD

1 ms 4 GB/s i02 Block Express, 102, gp3, gp2, st1 optimistic approximation

6 ms 140-160 MB/s HDD or i02 Block Express, i02, gp3, gp2, st1 pessimistic approximation

Table 5: Players Joining and Leaving the World.

Level Preferential Attachment Number of Player Joining Burstiness
Low Coefficient: 0.7 Stdev: 100 5 1
Medium Coefficient: 0.3 Stdev: 1000 10 2
High Coefficient: 0.0 Stdev: 10000 25 5

25

References

Nocom. URL https://2b2t .miraheze.org/wiki/Nocom.

Entity format, . URL https://minecraft.wiki/w/Entity_format.

Point of interest format, . URL https://minecraft.wiki/w/Point_of_Interest_format.
Region file format, . URL https://minecraft.fandom.com/wiki/Region_file_format.
Inventory — minecraft wiki, . URL https://minecraft.fandom.com/wiki/Inventory.

Chunk format — minecraft wiki, . URL https://minecraft.fandom.com/wiki/Chunk_format#.
Dimension — minecraft wiki, . URL https://minecraft.fandom.com/wiki/Dimension.

microsoft/DirectStorage, . URL https://github.com/microsoft/DirectStorage. original-date:
2022-02-01T17:59:527Z.

Newzoo global games market report 2022 | free version, . URL https://newzoo.com/resources/
trend-reports/newzoo-global-games-market-report-2022-free-version.

SCM - storage class memory, . URL https://forum.huawei.com/enterprise/en/
discuss-the-integration-of-virtualization-with-storage-solutions/thread/
746561636157767680-667213859733254144.

Inventory | roblox wiki | fandom, . URL https://roblox.fandom.com/wiki/Inventory.
NPC kit | documentation - roblox creator hub, . URL https://create.roblox.com/docs.
Part | documentation - roblox creator hub, . URL https://create.roblox.com/docs.
Biomes, . URL https://terraria.fandom.com/wiki/Biomes.

Enemies - terraria wiki, . URL https://terraria.fandom.com/wiki/Enemies.

Inventory, . URL https://terraria.fandom.com/wiki/Inventory.

NPCs - terraria wiki, . URL https://terraria.fandom.com/wiki/NPCs.

Blocks - terraria wiki, . URL https://terraria.fandom.com/wiki/Blocks.

2b2t. URL https://en.wikipedia.org/w/index.php?title=2b2t&01did=1183700518. Page
Version ID: 1183700518.

Zhichao Cao, Siying Dong, Sagar Vemuri, and David H C Du. Characterizing, modeling, and
benchmarking RocksDB key-value workloads at facebook.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 143-154. ACM. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152. URL
https://dl.acm.org/doi/10.1145/1807128.1807152.

Jerrit Eickhoff, Jesse Donkervliet, and Alexandru losup. Meterstick: Benchmarking perfor-
mance variability in cloud and self-hosted minecraft-like games. In Proceedings of the 2023
ACM/SPEC International Conference on Performance Engineering, pages 173-185. ACM. ISBN
9798400700682. doi: 10.1145/3578244.3583724. URL https://dl.acm.org/doi/10.1145/
3578244 .3583724.

Greg Linden. Geeking with greg: Marissa mayer at web 2.0. URL https://glinden.blogspot.
com/2006/11/marissa-mayer-at-web-20.html.

Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. Non-volatile storage:
Implications of the datacenter’s shifting center. 13(9):33-56. ISSN 1542-7730, 1542-7749. doi:
10.1145/2857274.2874238. URL https://dl.acm.org/doi/10.1145/2857274.2874238

26

https://2b2t.miraheze.org/wiki/Nocom
https://minecraft.wiki/w/Entity_format
https://minecraft.wiki/w/Point_of_Interest_format
https://minecraft.fandom.com/wiki/Region_file_format
https://minecraft.fandom.com/wiki/Inventory
https://minecraft.fandom.com/wiki/Chunk_format#
https://minecraft.fandom.com/wiki/Dimension
https://github.com/microsoft/DirectStorage
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2022-free-version
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2022-free-version
https://forum.huawei.com/enterprise/en/discuss-the-integration-of-virtualization-with-storage-solutions/thread/746561636157767680-667213859733254144
https://forum.huawei.com/enterprise/en/discuss-the-integration-of-virtualization-with-storage-solutions/thread/746561636157767680-667213859733254144
https://forum.huawei.com/enterprise/en/discuss-the-integration-of-virtualization-with-storage-solutions/thread/746561636157767680-667213859733254144
https://roblox.fandom.com/wiki/Inventory
https://create.roblox.com/docs
https://create.roblox.com/docs
https://terraria.fandom.com/wiki/Biomes
https://terraria.fandom.com/wiki/Enemies
https://terraria.fandom.com/wiki/Inventory
https://terraria.fandom.com/wiki/NPCs
https://terraria.fandom.com/wiki/Blocks
https://en.wikipedia.org/w/index.php?title=2b2t&oldid=1183700518
https://dl.acm.org/doi/10.1145/1807128.1807152
https://dl.acm.org/doi/10.1145/3578244.3583724
https://dl.acm.org/doi/10.1145/3578244.3583724
https://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://dl.acm.org/doi/10.1145/2857274.2874238

[25]

[26]

[27]

[28]

[29]

[30]

M. E. J. Newman. Clustering and preferential attachment in growing networks. 64(2):025102.
ISSN 1063-651X, 1095-3787. doi: 10.1103/PhysRevE.64.025102. URL https://link.aps.org/
doi/10.1103/PhysRevE.64.025102.

Felix Richter. Infographic: Are you not entertained? URL https://www.statista.com/chart/
22392/global-revenue-of-selected-entertainment-industry-sectors.

M. Seltzer, D. Krinsky, K. Smith, and Xiaolan Zhang. The case for application-specific bench-
marking. In Proceedings of the Seventh Workshop on Hot Topics in Operating Systems, pages
102-107. IEEE Comput. Soc. ISBN 978-0-7695-0237-3. doi: 10.1109/HOT0S.1999.798385. URL
http://ieeexplore.ieee.org/document/798385/.

Editorial Team. NVMe™ queues explained. @~ URL https://blog.westerndigital.com/
nvme-queues-explained/.

Jerom Van Der Sar, Jesse Donkervliet, and Alexandru lIosup. Yardstick: A benchmark for
minecraft-like services. In Proceedings of the 2019 ACM/SPEC International Conference on Per-
formance Engineering, pages 243-253. ACM. ISBN 978-1-4503-6239-9. doi: 10.1145/3297663.
3310307. URL https://dl.acm.org/doi/10.1145/3297663.3310307.

Baek Youngkyun. Mining educational implications of minecraft. URL https://
www.tandfonline.com/doi/epdf/10.1080/07380569.2020.17198027needAccess=true. ISSN:
0738-0569.

27

https://link.aps.org/doi/10.1103/PhysRevE.64.025102
https://link.aps.org/doi/10.1103/PhysRevE.64.025102
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors
http://ieeexplore.ieee.org/document/798385/
https://blog.westerndigital.com/nvme-queues-explained/
https://blog.westerndigital.com/nvme-queues-explained/
https://dl.acm.org/doi/10.1145/3297663.3310307
https://www.tandfonline.com/doi/epdf/10.1080/07380569.2020.1719802?needAccess=true
https://www.tandfonline.com/doi/epdf/10.1080/07380569.2020.1719802?needAccess=true

	Introduction
	Research Questions
	Background
	Storage Model
	Minecraft-like Games Behavior Model
	Minecraft-Specific Data Storage Implementation Details
	Files Hierarchy
	Region File Format and Terrain Structure
	World Saving Mechanics
	Point of Interest Data

	Minecraft Player Preferential Attachment

	Design of TheStick - A General Purpose MLG Benchmark Framework
	Framework Use Cases
	Framework Requirements
	Defining Actions - A Tool to Represent Arbitrary Complex User Behavior
	Framework Design
	Design Overview
	Player Emulation Design
	Metrics Collector Design

	Customizing Storage-Stick for Your MLG Server
	Describing Specific to Your MLG Behavior: Adding Your Own Action
	From an Action to a Customized Workload: Composing Own Workload
	Recording Relevant to You Metrics: Adding Your Own Metric
	Adding Your Own MLG

	Modeling MLG User Storage Interaction
	Defining What Data Minecraft-Like Games Store: Data Model
	Terrain Data
	Non-Playable Character Data
	Player Data

	Defining How Minecraft-like Games Store: Storage Process Model
	Actions - Instrument for Modeling User Interactions
	The Definition and Goals of MLG Actions
	Action List Requirements to Target Workload Composability
	Action Requirements for Modeling

	From User Interaction to Storage: Modeling Storage Interaction Through Actions
	Constructing a Model

	Applying TheStick Framework to Study Storage Impact on Quality of Service - StorageStick Benchmark
	Requirements
	Metrics
	System-Level Metrics
	Application-Level Metrics
	Collection Methodology

	Workloads
	Players Joining the World
	Fighting: Attacking NPCs
	Fighting: Attacking Other Players
	Modifying Terrain: Building Blocks
	Modifying Terrain: Removing Blocks
	Modifying Terrain: Changing Redstone
	Exploring The World
	Workload 2
	Workload 3

	Systems

	Evaluation
	Experiment Storage Systems
	Main Findings
	Players Joining and Leaving the World
	Findings for Players Joining the World
	Players Exploring
	Players Fighting
	Finding 2
	Finding 3

