
Vrije Universiteit Amsterdam

Bachelor Thesis

Benchmarking Deployed Modifiable Virtual
Environments across the Cloud-Edge

Continuum

Author: Victor Gavrilovici (2670026)

1st supervisor: Jesse Donkervliet
daily supervisor: Jesse Donkervliet
2nd reader: Alexandru Iosup

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 21, 2024

ii

Abstract

Minecraft could be considered one of the most prevalent video games of our

time, with over 300 million copies sold as of October 2023. Its uniqueness comes

from its role in pioneering Modifiable Virtual Environments (MVE) in video

games, allowing players to change or expand the game’s world how they see fit.

Games are deployed on highly heterogeneous hardware and environments. This

makes evaluating their performance a difficult and time-consuming task. One of

the inherent challenges with MVEs is that online games with such environments

scale poorly to many players, as they have the task of simulating all the player

and non-player interactions, as well as communicating these changes to the

player, in a way that is efficient enough to satisfy the latency constraints of an

online game. Many deployment options exist for online games. This is most

noticeable with deployment strategies across the compute continuum, which

allow for highly configurable hardware and network setups. In this work, we

propose (or use?) the Continuum testing framework to create a benchmark

for the performance of online MVE games running under various computing

models to assess and compare their performance.

Highlights and insights from results, with numbers:

iv

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Questions . 2

1.3 Thesis Contributions . 3

1.4 Plagiarism Declaration . 3

2 Background 5

2.1 Compute Continuum . 5

2.2 Online MVE Games . 7

3 Integration of Continuum and MVEs 11

3.1 Continuum Overview . 11

3.2 Metrics . 13

3.2.1 Tick duration . 14

3.2.2 End-to-end response time . 14

3.3 Workloads . 15

3.3.1 Player movement component . 16

3.3.2 Terrain modification component . 16

3.4 Integration . 17

3.5 Technical limitations . 19

4 Experiments 21

4.1 Overview of experiments . 21

4.2 Main findings . 23

4.3 Impact of latency . 24

4.4 Number of supported players . 26

4.5 Impact of CPU resources . 29

i

CONTENTS

5 Conclusion 33

5.1 Answering Research Questions . 33

5.2 Limitations and Future Work . 34

References 35

A Reproducibility 39

A.1 Abstract . 39

A.2 Artifact check-list (meta-information) . 39

A.3 Description . 40

A.3.1 How to access . 40

A.3.2 Hardware dependencies . 40

A.3.3 Software dependencies . 40

A.3.4 Data sets . 40

A.3.5 Models . 40

A.4 Installation . 40

A.5 Experiment workflow . 40

A.6 Evaluation and expected results . 40

A.7 Experiment customization . 40

A.8 Notes . 40

A.9 Methodology . 40

B Self Reflection 43

C Additional Experiments 45

ii

1

Introduction

Video games have risen to become one of the most popular forms of entertainment, over-

taking already established billion-dollar industries, such as movies and sports in the US

(1). The recent global pandemic has also increased general interest in games, for example

when Twitch, one of the leading live-streaming services for games, experienced an 83%

year-over-year uprise in viewership (2). A European survey on the attitudes towards video

gaming during the COVID-19 lockdown performed from April to June 2020 on more than

10000 respondents aged 11-64 revealed that playing video games made people feel less iso-

lated, less anxious, and happier. Video games, especially online multiplayer experiences

that provide a means for people to connect and socialize, proved to be a popular method

for reducing isolation-induced stress (3) in the context of lockdown and social distancing.

A great example of the kind of work that brings popularity to the industry is Minecraft,

which is currently the most-sold game of all time, with over 238 million copies (4). At

its inception, the game presented a unique creative experience - it provided players with

a virtually infinite, fully modifiable, procedurally generated world to explore: players are

encouraged to explore, find items and places, or build different things as they wish. Fur-

thermore, the Education Edition of this game allows teachers to assist the students during

the learning process. By using computer science lessons, the students may construct their

own digital computers or history lessons to explore, for instance, UNESCO world-heritage

sites (5).

Another advantage particularly related to Minecraft is its capacity to unlock borders

and to have an influence in different authoritarian or repressive societies. For instance,

Minecraft provides the opportunity for people to enter an uncensored library, thus giving

access to usually censored articles in their country of origin, where there is no free access to

information since "Websites are blocked, independent newspapers are banned and the press

1

1. INTRODUCTION

is controlled by the state" (according to Christian Mihr, managing director for Reporters

Without Borders in Germany) (6).

Minecraft’s creation has led to the inception of a new genre of games centered around

one similarity - a Modifiable Virtual Environment (MVE). We describe this characteristic

according to Donkervliet et al: an MVE is a real-time, online, multi-user environment that

allows its users (i.e., players) to modify the virtual world’s objects (e.g., player apparel)

and parts (e.g., terrain) (7).

This thesis focuses on designing and prototyping a serverless approach to running per-

sistent instances of a Minecraft-like environment.

1.1 Problem Statement

There are multiple challenges related to online games that allow full modification of their

world. Scaling the MVE experience to many players is difficult because of the unique free-

dom that such a simulation allows. An online game has to simulate terrain modifications,

player-to-player interactions, the behavior of creatures, and transmit this information to all

players, all in real-time. All these compose a challenging set of constraints. Furthermore,

we see that MVE games are deployed in a wide variety of environments, depending on the

use case, but it is unclear how these environments exactly affect the game’s performance

and scalability. In this work, we show an approach for tackling this problem by using the

Continuum benchmarking framework to create an Online MVE game benchmark that sup-

ports automated emulation of diverse hardware and network infrastructure configurations.

.

1.2 Research Questions

RQ1: How to design and implement a benchmarking platform for analyzing MVE games’

performance on the Compute Continuum?

The continuum poses a unique challenge to game developers, due to the variety of

available hardware configurations to choose from, as well as the constraints their

applications pose. Previous work does exist in the field of Online MVE Games, as

well as in the Computing Continuum sphere, however, a combination of these brings a

new perspective into debate. The heterogeneous space of the Computing Continuum,

with its wide spectrum of hardware configurations and performance options, makes it

a challenge to get valid data about how software can perform in these environments.

2

1.3 Thesis Contributions

RQ2: How can we evaluate an MVE game’s performance in various environments on the

Compute Continuum?

Evaluating the performance of the prototyped system is an essential goal of the

project. Many metrics can be taken into account, and evaluating the relevant ones,

such as bandwidth, network latency, or CPU resources, is the key challenge of this

question. A comparison between potential performance gains and potential disad-

vantages (such as performance inconsistency) is needed to assess the system properly.

1.3 Thesis Contributions

Conceptual contribution 1: We designed real-world experiments to evaluate the per-

formance of MVE games under various computing environments (Section 4).

Technical contribution 2: We extend the Continuum (8), a state-of-the-art framework

for edge-computing research, to perform benchmarks on MVE games (Section 3).

Artifact contribution 3: We created open-source software for running these experi-

ments, with all artifacts available at https://github.com/Fugro-VictorG/continuum/

tree/Continuum_Merge_Main.

Experimental contribution 4:

1.4 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

3

https://github.com/Fugro-VictorG/continuum/tree/Continuum_Merge_Main
https://github.com/Fugro-VictorG/continuum/tree/Continuum_Merge_Main

1. INTRODUCTION

4

2

Background

In this chapter, we describe the concept of the compute continuum, including some of its

associated computing models, and we explain how online games with MVEs usually work

and present the ones we use in our experiments.

2.1 Compute Continuum

A basic overview of the Compute Continuum (9) is provided in Figure 2.1.

Cloud computing is a widely used computing paradigm, known for its on-demand re-

source availability, ease of scalability, and competitive pay-as-you-go pricing model. This

enables users to create a large variety of servers and infrastructure services (e.g. storage,

networks) while avoiding the capital expenses of acquiring and maintaining them (10).

A commonly used computing model that uses cloud computing has endpoints (compo-

nent 1), which are relatively resource-constrained (mobile devices, IoT actuators, PCs),

that offload their computational workloads to the cloud (component 3) for more efficient

processing.

The cloud model is typically achieved by centralizing computing resources in the form

of large data centers spread over the globe. This implies that, on average, there is a

significant geographic separation between user devices and cloud clusters, which leads to

latency in communication between these. This poses a roadblock for latency-constrained

workloads used by recent technologies such as cloud gaming (11), Internet of Things (IoT)

devices (12), Augmented Reality (AR) (13), or self-driving vehicles (14), among others,

which are also constrained in processing power, and could effectively use computation

offloading.

5

2. BACKGROUND

Endpoints Edge Cloud

More Computational Power and Bandwidth

Less Latency to Endpoints

1 2 3

Figure 2.1: Compute Continuum Theoretical Diagram.

To satisfy these low latency requirements, the paradigm of edge computing brings com-

putational resources, storage, and networking closer to the “edge” of the network, near the

data sources and end-users (component 2). The proximity to the user devices results in

faster response times, as well as satisfying potential privacy constraints by keeping data

close to the source. The concept of edge computing can be traced back to the 90s when

the concept of Content Delivery Networks (CDNs) was introduced. They are comprised of

nodes close to the user, on the edge of the network, which cache web content, among other

uses (15).

With edge computing situated as a middle point between the end user and the cloud

infrastructure, it follows that applications can spread their workloads across a spectrum

of cloud, edge, and end devices, depending on their requirements, that we can call the

compute continuum. However, this new space lacks the standardized practices that

already exist, for example, in the case of cloud computing. There can be many factors

to take into account for software developers or infrastructure providers when it comes to

developing or supporting continuum-based applications.

6

2.2 Online MVE Games

Player actions
Networking

Rendering

Local state
processing

State updates

Client
Server

Process incoming player
actions

Terrain simulation

Entity behaviour

Update players with state

...

Virtual
World
Terrain

Player
Entities

Non-Player
Entities

Game Loop

tD

Networking

Rendering

Local state
processing

Client
Communication

Protocol

1

2

3

Persistent
Storage

World 1

World 2

World 3

On
Startup/Shutdown

4

Figure 2.2: A System Model for Modifiable Virtual Environments (MVEs).

Fog computing is a computing model that brings cloud computing’s capabilities to

the edge, to networks of devices such as routers and gateways in closer proximity to the

endpoints. Its core principles involve low latency and widespread geographical distribution

with many heterogeneous nodes.

Mist computing can be seen as an extension of fog computing, pushing computation

even further to the edge, involving end devices, such as sensors which previously only

handled data acquisition. This leads to an autonomous, self-aware system, based on peer-

to-peer communication between its devices (16, 17). While introducing complexity by

having the endpoints be aware of each other and the overall state of the system, by bringing

computation to the extreme edge of the network latency is minimized.

To allow researchers and developers to better understand the benefits and disadvantages

of the compute continuum, a benchmarking framework (8) was created based on the refer-

ence architecture of Matthijs et al. (9). In our work, we expand this system, the Continuum

Benchmarking Framework, to create and run our experiments.

2.2 Online MVE Games

This work commonly references games with modifiable environments. A server-client mul-

tiplayer system is a common way for online games to be implemented. Games with Modi-

fiable Virtual Environments usually follow this pattern as well. Figure 2.2 shows a system

model for MVEs (18). Each player connects to a centralized server using a game client on

their local machine. Typically servers are hosted in remote data centers operated by third

parties, for cost efficiency, and reliability, and to reduce chances of downtime. Depending

on the need, however, one may choose to simply deploy the server on a personal machine,

or use a server-as-a-service solution such as Microsoft’s Minecraft Realms, which handles

server hosting and world storage for a monthly fee.

7

2. BACKGROUND

The game client (component 1) receives inputs from the player and outputs rendered

video, based on the current state of the game. Movements and other inputs from the

player speculatively modify the state locally on the client, before the client notifies the

server of the changes. The decisive source of truth for the game’s state comes from the

server, and for a player’s perspective to stay synchronized with the rest, the client should

receive continuous state updates from the server.

The client and server instances communicate using a common established communication

protocol for the game (component 2). This also allows clients to have different implemen-

tations. For example, the game Minecraft has seen many community-created adaptations

and modifications in the form of different server and client implementations, which all use

the same communication protocol.

The game server (component 3) handles the game loop, which includes receiving the

players’ actions, processing them, and simulating all dynamic components of the environ-

ment, such as the non-player entities’ actions, terrain physics, and world lighting. These

operations are applied to the current state stored in-memory on the server (component

4), which results in a new state that is then sent back to all the players. One iteration of

the game loop can be called a tick. One important metric in analyzing server performance

would be to observe the tick rate, which is the amount of ticks processed in a second. Since

the server is responsible for keeping the players’ state up to date, a low tick rate could

mean that the server is overloaded and cannot process the game loop fast enough. This

leads to the player observing delays between inputs and their effects in-game, or stuttering

due to the server’s state being inconsistent with the client’s.

Generally, an MVE game server would have a tick rate of at least 20Hz to provide

the players with a smooth experience. Moreover, a dip in the server tick rate may not

necessarily always lead to an effect on player experience. Depending on the implementation,

game clients have methods of state prediction (19, 20), or other more complex ways of

compensation (21, 22).

Once the server is shut down, the state should be saved to some form of persistent

storage (component 5) for the changes to the world and players to be saved. On start-up,

the server can also retrieve the needed state from this means of storage.

PaperMC (23) is a modified version of the Minecraft server, able to support the use of

third-party server modifications. It is also very widely used by popular server providers as

the recommended server choice for Minecraft.

Opencraft is an open-source server made for MVE game research, based on the code

of Glowstone - an open-source variant of the Minecraft game server. Its main addition to

8

2.2 Online MVE Games

Glowstone is represented by the Dynamically Managed Consistency Units, or Dyconits (5).

This is a system aimed at reducing the resource usage of the server and therefore allowing

it to support more players simultaneously. This is done by permitting some level of in-

consistency between the game clients and the global state of the game server. The server

would send only a subset of the global state to clients, depending on the player’s interests.

For example, a player could receive regular updates on data about the nearby areas and

players and less consistent updates on far-away players and areas.

In summary, we introduced in this chapter the compute continuum and the Continuum

Benchmarking Framework. We also explained what online MVEs are and which ones we

will be using for our experiments.

9

2. BACKGROUND

10

3

Integration of Continuum and MVEs

In this chapter, we first present an overview of the Continuum Framework (Section 3.1).

Then, in Section 3.2 we explain the metrics we are interested in analyzing, and how they

are collected. Section 3.3 presents the applications under test and describes how we im-

plemented our testing workloads. Finally, in Section 3.4, we describe the changes we made

to the Continuum Framework itself to allow our benchmark.

3.1 Continuum Overview

Our benchmark is an extension of the Continuum Framework (8), which adds new impor-

tant workloads and metrics for MVEs and modifies Continuum’s design to support these

changes.

The Continuum Framework’s input has the form of a configuration file (component 1,

Figure 3.1), in which the Continuum user selects the parameters of the desired infras-

tructure, software deployment, resource management options, and the application to be

benchmarked with any relevant parameters it offers (see Section 3.3).

Concerning the infrastructure options (component 2, Figure 3.1), at the highest level,

the framework emulates Virtual Machines (VMs) or nodes, as they are referred to in the

software. They are either deployed locally using the QEMU emulator supported by KVM

and Libvirt, or on the cloud, using Google Cloud Platform’s Compute Engine VMs or

Amazon Web Services EC2 instances. The VMs’ performance can be configured in CPU

cores, memory size, and disk read/write speeds when emulating locally or by the available

VM/instance tiers offered by the cloud providers.

Another key component of infrastructure provision is having a highly configurable net-

work setup. The framework offers three levels of nodes for which network parameters

11

3. INTEGRATION OF CONTINUUM AND MVES

Metric Collection and Formatting

Infrastructure
Deployment

Workload
Deployment

4

Continuum
Configuration

1

2

Endpoint VMs

Container
Game Client

Edge VMs

Cloud VMs

User

3

VM

Container
Game Client

VM

VM

Container
Game Server

VM

Container
Game Server

Container
Game Client

VM

Container
Game Client

VM

Figure 3.1: A system model for the Continuum Benchmarking Framework.

can be changed - endpoint, edge, and cloud. These three levels are connected by an em-

ulated network, which is configurable for each inter-level connection in throughput and

latency. The same network settings for edge-to-edge and cloud-to-cloud nodes can also be

configured.

After the infrastructure is provisioned, the framework uses Ansible Playbooks to install

prerequisite software for the benchmark (component 3). Optionally, resource managers

Kubernetes or KubeEdge can be installed. On top of this, OpenFaaS can also be used for

testing serverless functions.

Continuum also supports the usage of the MQTT protocol with the Eclipse Mosquitto

message broker, for lightweight and scalable messaging appropriate for lower-power devices

such as endpoint and edge nodes. Furthermore, monitoring and visualization applications

Prometheus and Grafana can optionally be installed also for metric collection and visual-

ization.

The application to test is then deployed (component 4). The endpoint nodes use Docker

12

3.2 Metrics

Player 1

Endpoint 1

Process incoming player
actions

...

Update players with state

Minecraft-Like Server Game Loop

tR

Send
Player action x at

time t0

Receive state
update for action

x at time t1

Measure
response time

dt = t1 - t0

State updates

Cloud Worker 1

Retrieve tick duration tR from
MC JMX Server / Opencraft Logs

Player 2

Player actions

Endpoint 2
Player 3
Move to a

random location

Endpoint 3

...

Continuum Framework Machine

Player 4
Move to a

random location

Benchmark Log File

Collection of Tick
Duration:

:

:

Collection of
Response Time

Benchmark
Workload

Figure 3.2: Overview of metric collection

containers for this purpose, while the worker nodes (cloud and edge nodes) offer flexible

deployment means via Ansible files, allowing the use of Kubernetes, Docker containers, or

other custom solutions supported by the application.

Once application execution is finished, Continuum aggregates logs of the worker and

endpoint nodes, usually comprised of data from the standard output and errors. From

these logs, user-defined Python methods gather and format the metrics desired for the

application for displaying or further processing.

3.2 Metrics

In Figure 3.2, you can see an overview of our metric collection in the context of our MVE

game. During our benchmarks, we collect the following metrics for analysis:

13

3. INTEGRATION OF CONTINUUM AND MVES

3.2.1 Tick duration

A commonly used metric for evaluating server performance is the tick rate, which defines

how many times per second the server can process the game loop. Its importance is due

to the potential negative effects on the player’s experience if the tick rate doesn’t exceed a

certain threshold. The alternative metric for tick-related measurements is the tick duration,

which represents the length of time taken to process a tick. During our testing, we obtain

the tick duration metric in different ways for each type of server:

• The Opencraft server includes a particularly useful feature: tick-related measure-

ments can be logged to a text file, exposing data such as the duration of a whole

tick, the duration of the world processing part of the game loop, or the amount of

time spent sending messages to clients. We retrieve the duration of each tick from

this log file.

• For our tests that use PaperMC as the server, we had to use a different approach to

obtain this metric. The vanilla Minecraft server can expose the tick duration by using

Java Management Extensions (JMX). JMX is a built-in Java technology that allows

remote monitoring of JVM-based applications. By enabling JMX monitoring in the

server’s properties, the server automatically exposes the tick duration in milliseconds.

We use a tool created by a fellow student to specifically extract the tick durations

from a game server’s JMX agent and store them in a text file. We use a tool created

by a fellow student (24) to extract the tick durations from a JMX server and store

them in a text file.

3.2.2 End-to-end response time

This metric represents the time taken from the moment a player’s action is taken until

the state update (which includes the player’s action) is received by another player from

the game server. This is relevant, because for the effects of the action to be observed by

the player, it must first be processed by the server, and the state update sent back to the

game client. If the time taken for this is too long, the player will only see his, and other’s

actions after a noticeable delay.

We can expect the value of this metric to be the result of 3 main factors:

1. The time taken by the state update to traverse the network between the client and

server. We refer to this value as the network latency, and it plays a large part in

affecting this metric, as it can be highly variable and based on multiple factors, such

14

3.3 Workloads

as the geographic location of the server and client, or type of connection of the client

(WiFi, Ethernet, cellular). Studies have also clearly shown that latency has a high

impact on an online game’s Quality of Experience (25).

2. The time taken by the game server to process and send back a game state update

containing the effect of the player’s action. Once the server receives the player’s

action, the effects of their action must be applied to the game state. The duration

of this may vary depending on the complexity of the action and how it affects other

parts of the state.

Typical MVE games of the kind we experiment with in this work send out updates

to all clients once every 50 milliseconds, so the server’s overhead in response time

depends on the timing of the player’s action in relation to the next update to be sent

out by the server. For example, if the processing time for a player’s action is 10ms,

then the server could take from 10 up to 60ms to send an update back to the client

if the player’s action gets received right before a state update is sent.

3. The time taken by the client to process the incoming state update and output this

information to the player. While a regular game client would be responsible for

interpreting the state update into visual output for the player, in this work we use

only simulated clients which do not provide graphical output. This results in the

client’s overhead only being the time taken for internally processing the data.

How this measurement is recorded is shown in Figure 3.2, and it is represented by the

difference ∆t = t2 − t1. Parameter t1 represents the time at which we issue the bot’s block

digging and block placement commands, and t2 the time at which the "block updated" event

is fired by the Mineflayer library that corresponds with the first issued action.

3.3 Workloads

For our experimental evaluation, we simulate players using the Mineflayer API (26), which

emulates a game client by communicating with the server via the Minecraft protocol, used

both by PaperMC and Opencraft.

A player simulated by the software can be referred to as a bot. The behavior of these bots

is programmatically defined with Mineflayer. This, along with the selected or generated

world, represents our workloads used in the benchmark.

We use two main emulation components in our workloads:

15

3. INTEGRATION OF CONTINUUM AND MVES

3.3.1 Player movement component

Several bots independently pick random positions to go inside a square area of a pre-defined

size around the world’s spawn point, where players first appear when entering the world.

We implemented two "patterns", Linear Join and Fixed Join, in which bots connect to

the server, to compare different kinds of server use. These were largely inspired by the

Yardstick (27) benchmark’s workloads.

Linear Join: Every 120 seconds, 10 bots connect to the server, until the defined total

number is reached.

Fixed Join: Every second, 5 bots join the server, until the defined total number is reached.

3.3.2 Terrain modification component

Two bots remain static in the same area, with one repeatedly placing and removing a

block, while the other records the time when the mentioned action can be noticed. The

purpose of this workload is to measure the time taken for the action of the first bot to be

noticed by the observing bot, which represents Metric 2 (§3.2.2). The number of roaming

bots, as well as the number of repetitions of block placement/removal is configurable. For

example, if we choose to do 100 repetitions, the bot will alternate placing and removing a

block, having in total 50 placements and 50 removals.

We encountered various problems while testing and benchmarking. The most persistent

issues are bots losing connection to the server, or getting stuck when moving, either due to

impassible terrain or Mineflayer-dependent issues with finding a path to the next waypoint.

To make our workloads more resilient to such interruptions, we use the following methods

for recovering disconnected or immobile bots:

1. When a bot’s connection to the server ends, it will always attempt to reconnect and

resume its previous actions, until the server is shut down after the benchmark ends.

2. If a moving bot remains immobile for longer than 10 seconds, it will attempt to

respawn - which resets its position to the world spawn point and its next movement

waypoint. If the bot is still immobile, it will attempt to reconnect to the server after

10 respawn retries.

16

3.4 Integration

3.4 Integration

When integrating an application with Continuum, usually two software components must

be implemented, a worker and an endpoint. When using Continuum with an MVE as the

application to be tested, the worker is represented by the game server and the endpoint by

the bot implementation.

For our server, we used two different options, the Paper and Opencraft servers. They

are implemented as Docker images, modified to use the same world, and to support thee

collection of our metrics (described in §3.2 and §3.3).

The bots are implemented as JavaScript files, mainly using the Mineflayer API. We

provide two different implementations for bot behavior as mentioned in Section 3.3.

To integrate these with the Continuum Framework, we use Docker to create images for

the bot and the server. The bot’s image only installs dependencies of Mineflayer and

executes the script.

The server’s image is built using an Ansible Playbook, which aggregates the server itself,

its configuration, and optionally the selected world into the same directory. An instruction

that prints the contents of the server logs is then added, before creating the Dockerfile of

the server image, so that metrics gathered by Opencraft can be collected by Continuum

after server execution is finished.

To use our server as a Continuum cloud worker, we’ve decided to use Kubernetes as the

resource manager for two main reasons: firstly, it simplified the integration of other server

implementations, as the previous integration of Opencraft already had introduced manifest

files for creating the needed resources for a Minecraft-like server, and secondly, since the

purpose of Continuum is emulating cloud and edge environments, it would be appropriate

to use a standard cloud method of resource management and container orchestration.

For starting the worker, we use an Ansible file to define the steps for deploying our

server. For Opencraft, this file starts by creating a YAML Kubernetes manifest file, which

describes two K8s resources. The first one is a Pod which holds a container with the

server’s image, having the CPU and memory resources allocated to the worker node, as

stated in the Continuum configuration. The second resource is a NodePort service, which

maps the port used by the endpoints for communicating with the worker to the Minecraft

protocol port that is exposed by the server image. Continuum assigns consecutive ports

to worker nodes when multiple are used, making the port mapping necessary. If multiple

servers are used, our Ansible Playbook then duplicates this file and replaces placeholders

17

3. INTEGRATION OF CONTINUUM AND MVES

in the necessary fields to accommodate different unique servers. Finally, the Kubernetes

resources are created via a kubectl create command.

So far in this section, we have discussed the typical elements Continuum requires for

integrating a new application to be used in the framework. Additionally, our integration

requires a few modifications to the core code flow of Continuum. These are needed mainly

because we seek to test applications that are not very usual for cloud workloads and have

different requirements. For example, a workload based on an online game does not have

a clearly defined start and end compared to, for example, a machine learning workload.

Therefore, the following changes are applied to the system:

• During startup, MVEs load assets and other resources from storage into memory.

This process typically takes tens of seconds to complete. During this time, players

cannot use the system, because it is unavailable. To reflect this in Continuum, we

only indicate the service to be "Ready" when the game’s initialization process is

done. We do this by scanning the server log for specific keywords that indicate that

loading has been completed. Only when these keywords are detected is the service

marked as ready.

• Due to the real-time interactive nature of MVEs, clients and servers communi-

cate through direct connections, instead of through common distributed systems

approaches for communication such as pub/sub systems. Therefore, we modify Con-

tinuum to support direct connections between entities/nodes.

• In contrast to other common application types (e.g., data processing), MVEs are

online persistent worlds that are always available. Therefore, workloads do not nec-

essarily have a predefined start and end point. To support this, we allow workloads

to define an arbitrary duration for which they are active. After this specified amount

of time, the workload is considered completed, and the server is shut down.

• As this is the default and simplest method of obtaining results from Continuum

Kubernetes benchmarks, we chose to retrieve our measured values from the logs of

the Kubernetes pod our server lies in. To accommodate the size of the Opencraft

server logs, which contain multiple lines of logs for each tick, we had to increase the

default Kubernetes log size by adding an extra config file to the K8s cluster.

18

3.5 Technical limitations

3.5 Technical limitations

We’ve encountered various difficulties with testing the Opencraft game server. The most

problematic issue is the unexpected behavior of the bots when running on an Opencraft

server. This behavior ranges from visual discrepancies, like bots walking through terrain,

to bots suddenly disconnecting or dying. Furthermore, mitigation solutions like respawning

or reconnecting the bots would not function, seemingly due to incompatibility between the

Mineflayer API and Opencraft. Another issue for which no clear solution was found was

that the containerized version of Opencraft would fail to load existing game worlds in most

cases. Instead, on container restart or recreation the server would generate new world files

to overwrite the existing ones. This would occur for both worlds generated by the server

and for custom worlds that were packaged with the container. The only correlation found

for successfully loaded worlds was that they were generated by the server and the server

was running with them for a longer time period (at least 30 minutes). We ultimately

decided to use PaperMC in place of Opencraft as the server for most of our experiments,

as these issues were not encountered while using it.

19

3. INTEGRATION OF CONTINUUM AND MVES

20

4

Experiments

In this chapter, we present our experiments discuss the main findings, and analyze the

results and data plots. We begin with an overview of our experimental environment and

describe the 3 experiments we ran (Section 4.1). Then, in Section 4.2 we present the main

conclusions of our experimental results. Finally, Sections 4.3 - 4.5 show our plotted results

and provide a more in-depth analysis for each experiment.

4.1 Overview of experiments

To evaluate the use of the Continuum Framework as a testing platform for online MVE

games, we ran 3 experiments, to examine the effects of 3 parameters commonly known to

impact an MVE game server’s performance.

We run our experiments on a node of the AtLarge computing cluster, a machine that uses

two 10-core Intel Xeon Silver 4210R CPUs and 256GiB of memory. We use the Continuum

Framework to deploy our game server and clients on individual VMs.

Table 4.1 provides an overview of our experiments, their changing parameters, and work-

loads. The system has a mainly static configuration throughout each experiment, except

for the "Parameter", as the purpose of each experiment is to determine their influence on

the server’s performance and the players’ Quality of Experience.

We define the experiments’ workload to be composed of the following elements:

1. The server, which represents the implementation of the game server used in the

experiment.

2. The bot’s behavior, which represents which Mineflayer bot implementation is used in

the experiment. The possible options are "R" and "W+R", which refer to Response

21

4. EXPERIMENTS

Table 4.1: Overview of experiments

Section Parameter Workload

Server Behavior Join Strategy Bot number

§4.3 Network la-
tency

Opencraft, PaperMC R Default 2

§4.4 Number of
players

PaperMC W+R LinearJoin 20-80

§4.5 CPU Cores PaperMC W+R LinearJoin 40

time measuring, and Walk + Response time measuring respectively. These behaviors

are explained in Section 3.3.

3. The "Join Strategy" - this refers to how the bots will be joining the server (3.3), and

how the end of the benchmark is determined (3.4).

4. The Bot number, which represents the number of players used in a particular exper-

iment.

All of our experiments use a single server to which Mineflayer bot clients connect. Our

Opencraft and Minecraft server configurations, used in our server images, can be found in

Appendix ?, they are unchanged for all of the experiments. Further details will follow for

specific experiment setups.

Continuum allows the configuration of the core count for each VM tier (cloud, edge and

endpoint). Internally, these represent the count of KVM vCPUs assigned to each of these

VMs. These should correspond to a physical CPU core in computational resources, but

the virtualization scheduler decides which core is used at a particular time per VM, to

maximize efficiency.

For our experiment on response time, we used a purpose-built script, described in Sec-

tion 3.3.2, to deploy 2 bots for measuring the response time, a metric described in Sec-

tion 3.2.2. For this experiment, we use one Continuum endpoint node and a cloud node.

We test both with an Opencraft server and a PaperMC server. The server’s Kubernetes

pod was assigned 8 CPU cores and 8.5GB of RAM. Since the response time measuring

bots have minimal movement, and mainly just place and break a block repeatedly, we host

the two bots on a single VM. This VM is assigned 1GB of memory and one CPU core.

Furthermore, the relative CPU quota of this core is set to 0.5. This means Continuum sets

22

4.2 Main findings

the Linux KVM to only use the CPU half the time. The experiment is comprised of 11

tests, with each one incrementing the network latency and latency variation between the

VMs of the bots and the server. We use 50ms increments for the network latency and also

apply a 10% latency variation, i.e., for a latency of 100ms, a transmitted network packet

could take 100 ± 10ms to be received. Except for the first test, which emulates no extra

network between VMs, we use a network throughput of 7.2 Mbits per second for all tests.

The bots take a total of 400 measurements in each test, which means 200 blocks placed

and 200 blocks dug.

For our player impact experiment, we have multiple bots with a movement-based work-

load, described in Section 3.3.1. We use as many Continuum endpoint VMs as we have

bots, that individually connect to a server on a cloud node. We use PaperMC as the server

under test for this experiment. Each bot’s VM was assigned one CPU core with 1GB of

memory. The server uses 6 CPU cores and 7.5GB of memory. These values were decided

so that bots would get minimal CPU allocation while still performing normally, without

getting disconnected by the server. We perform 4 tests, in which we gradually increase

the total number of players from 20 to 80, in intervals of 20. Throughout a test, the bots

connect to the server using the Linear Join strategy, which works as follows: we begin with

10 bots at the start and have 10 more bots join every 2 minutes until the total number of

players is reached. After two more minutes, the test is finished.

Regarding our CPU impact experiment, we use multiple Continuum endpoint VMs with

a single bot on each, using the movement-based behavior described in Section 3.3.1, and

a single VM on a cloud node that contains the server. We only test the PaperMC server

implementation for this experiment. For this experiment, we used 40 bots for each test.

We assign each bot with one CPU core and 1GB of memory. The server’s container is

assigned 7.5GB of memory. We perform 8 tests, incrementing the number of CPU cores

available to the server, ranging from 1 CPU core with 0.5 core quota to 7 cores. The bots

connect the server using the same Linear Join strategy - every 2 minutes 10 players join

the server until they reach 40 total players.

4.2 Main findings

MF1: Response time scales linearly with network latency. We observed in our experiment

that the median response time can be calculated as such: ResponseT ime = 2 ∗
NetworkLatency + SD, where SD is the server delay for sending a response back

23

4. EXPERIMENTS

0 50 100 150 200 250 300 350 400 450 500
Network latency [ms]

0

1000

2000

3000

Re
sp

on
se

 ti
m

es
 [m

s]

Action
Block digging
Block placement

(a) Full plot with outliers.

0 50 100 150 200 250 300 350 400 450 500
Network latency [ms]

0
200
400
600
800

1000
1200
1400
1600
1800

Re
sp

on
se

 ti
m

es
 [m

s]

Action
Block digging
Block placement

(b) Zoomed-in plot.

Figure 4.1: Opencraft Server Response Times.

after an action from the player is received (see Section 3.2.2 for more details). For

our case, the average SD is 49ms (Section 4.3).

MF2: Our system supports Our system supports fewer players than what previous studies

show under similar conditions. While we can’t conclusively assert the maximum

number of players the game provided a good Quality of Experience for, we can affirm

that under our experimental conditions, the game will become overloaded when more

than 40 players are used in the test. This is very unexpected and does not match

similar studies’ results. We speculate this to be caused by CPU saturation of the

system executing the test, due to too many players being simulated (Section 4.4).

MF3: Scaling server performance by increasing CPU core count offers limited benefits.

While acceptable server performance heavily depends on the available CPU resources,

in our experiments we reach a point where we see minimal improvement from adding

cores, despite still experiencing outlying results (Section 4.5).

4.3 Impact of latency

Figures 4.1a, 4.1b and 4.2 show the results of our experiment which measured the time

taken for a player’s action to be observed from the other players’ perspective. The first two

refer to the tests run with the Opencraft server, the former being the plot of the full results,

while the latter is a close-up version without all the extreme outliers. The third is our

complete plot of the results of the tests run with the PaperMC server. This measurement

can be seen on the vertical axis, in milliseconds. The horizontal axis indicates the latency

between the game client’s machine and the server’s, as configured via Continuum. Not

24

4.3 Impact of latency

0 50 100 150 200 250 300 350 400 450 500
Network latency [ms]

0
200
400
600
800

1000
1200
1400
1600
1800

Re
sp

on
se

 ti
m

es
 [m

s]

Action
Block digging
Block placement

Figure 4.2: Minecraft Server Response Times.

mentioned in the figure, but still present in the experiment, is the 10% latency variation,

as explained in Section 4.1.

Our results show a linear growth in response time: as the network latency increases,

the median values increase in similar amounts for each step. We can see this in both

Figure 4.1b for Opencraft and 4.2 for Paper, where we have plotted a line between the

median values of the response time. We can also notice the induced latency variability

- the boxes and whiskers increase in size along with the network latency. Both actions,

block digging and block placement, have similar response times. Data from both server

implementations appears to have the same range of values and has similar variability,

except for their outliers.

Regarding our Opencraft results, we can see some extreme outliers for most boxes, with

some maximum values over one second higher than the rest. This does not happen nearly

at all when running the same experiment on a Paper server, as the highest outlier there

is around 650ms higher than the median. We therefore conclude that the cause of these

high outliers lies in the implementation of Opencraft or Glowstone, the underlying server

Opencraft is based on. However, for both servers, we have minor outliers that are more

numerous and dense, positioned around 0-100ms higher than the tops of the boxes. This is

especially noticeable for the lower latencies when the latency variation is low. As latency

variation increases along with the IQR of our data, these outliers appear to be less frequent,

25

4. EXPERIMENTS

20 40 60 80
Number of players

0

100

200

300

400

Ti
ck

 d
ur

at
io

n
[m

s]

(a) Zoomed-in plot.

20 40 60 80
Number of players

0
100
200
300
400
500
600
700
800
900

Ti
ck

 d
ur

at
io

n
[m

s]

(b) Full plot with outliers

Figure 4.3: Tick duration in Endpoint Scaling Experiment.

and we speculate that they become more uniformly distributed with the rest of the data.

These outliers could have a noticeable impact on player experience if many of them occur

in a short span of time.

We cannot accurately discern the cause of these outliers. However, since these outliers

also seem to occur outside of Continuum experiments in tests using the same Mineflayer

bot behavior, we speculate the source of these is either the internals of the Mineflayer

API, our implementation of the response time measurement, or the virtualization process

of Continuum.

We also compared the response times obtained from our experiment with the Continuum

Framework on the AtLarge node with the ones obtained when testing the workload on a

local setup. When running this scenario, where the bots connect to a server running on a

Docker container, all on the same machine, we observed lower median values for response

times (by approximately 10-15ms) compared to the median results obtained from the test

with zero network latency (49ms) (Figure 4.1b). This test ran on Continuum and was

configured to not use any network emulation like the rest in the figure. Therefore, we

believe this overhead comes from the inner workings of the Continuum Framework and

consequently, all experiments would be affected by it.

4.4 Number of supported players

For our experiment on the impact of the number of players on server performance, Fig-

ure 4.3 shows the tick duration over 4 tests with an increasing number of total players

(from 20 to 80 players). The players join in waves of 10 every two minutes throughout

these tests, starting at 10 players and ending at the specified number of each test. To make

26

4.4 Number of supported players

0 120 240 360 480 600 720 840 960
Time [s]

0
100
200
300
400
500
600
700
800
900

Ti
ck

 d
ur

at
io

n
[m

s]

Figure 4.4: Tick duration over time in the test run from 10 to 80 players.

the majority of the data more visible, we cut off some of the higher outliers in Figure 4.3b.

The tick duration distribution over time for our test with 80 players is shown in Figure 4.4.

We also capture the response time metric for this experiment and show it in Figure 4.5a.

A closeup of the data near the quartiles is presented in 4.5b.

Since the server’s normal rate of tick transmission is 20 ticks per second, the maximum

tick duration for normal operation is 50 ms. Values over this threshold delay the regular

process. In our tick duration plots (Figures 4.3 and 4.4), we included a red horizontal line

to indicate this 50ms mark. A few spread-out outliers over this threshold would not be

problematic, as explained in Section 3.2.1. However, consistent values over 50ms in a short

time will lead to inconsistent states across clients and a loss of Quality of Experience for

the player.

While the mean and median values stay under the 50ms line, the whiskers of the boxes

from the 60 and 80 players tests still cross our line, as we can see from our box plots on tick

duration. A significant part of the measurements of the 60 and 80-player tests lie outside

the 50ms boundary. Outliers are present in all tests, but they are much denser and reach

extreme values for these tests.

From figure 4.4 with tick duration over time for the test with up to 80 players, we can

see high values right at the start of the test, when player load is minimal at a count of 10

players. We assume these outliers are due to measurements starting before the cold start-up

27

4. EXPERIMENTS

20 40 60 80
Players

0
100
200
300
400
500
600
700
800
900

1000

Re
sp

on
se

 ti
m

es
 [m

s]

Action
Block digging
Block placement

(a) Zoomed-in plot.

20 40 60 80
Players

0

1000

2000

3000

4000

5000

Re
sp

on
se

 ti
m

es
 [m

s]

Action
Block digging
Block placement

(b) Full plot with outliers

Figure 4.5: Response time in Endpoint Scaling Experiment.

of the server is finished, as metric collection starts as soon as the server is ready to receive

connections. Since every test begins this way, we can deduce that for our experimental

setup, all tests would suffer from a few outlying values related to the server’s cold start-up.

This is why we see some high outliers for all test runs, no matter the player count.

The Linear Join strategy used in this experiment makes 10 bots connect to the server

every 120 seconds until the target number of bots is reached. The collection of the tick

duration begins as soon as the bot containers are started. Still, after the bots’ containers

start-up and the connection time, we estimate an average delay of 5 seconds between the

start of metric collection and the bots joining the server. With this information, we can

observe some patterns that arise from bots joining the server from Figure 4.4. On the

horizontal axis, we have ticks every 120 seconds to roughly estimate when more bots join

the server. We notice a few spikes in tick duration around these moments, as well as an

increase in the average value after a certain amount of bots is reached, such as the 480

and 600-second marks. Tick duration seems to consistently reach over 50ms after 500-

600 seconds into the test, leading to a noticeable degradation in player experience. After

the last wave of bots is added after 840 seconds, it appears that only a minor amount of

measurements were under the acceptable 50ms threshold.

It is important to note studies have shown that CPU utilization is the main bottleneck of

Minecraft-like services, such as the server under test in this experiment (27). Our server and

bot clients run on the same physical machine, orchestrated by the Continuum Framework.

This limits the number of players that can be simulated while still obtaining realistic

results from the server, as when the number of players increases past a certain threshold,

the availability of the CPU cores the server uses is significantly lowered. This is part of our

reasoning for the dramatic change in performance when the player count surpasses 60 - the

28

4.5 Impact of CPU resources

1 2 3 4 5 6 7
Server CPU Cores

0
50

100
150
200
250
300
350
400
450
500

Ti
ck

 d
ur

at
io

n
[m

s]

(a) Zoomed-in plot.

0.5 1 2 3 4 5 6 7
Server CPU Cores

0
250
500
750

1000
1250
1500
1750
2000
2250
2500

Ti
ck

 d
ur

at
io

n
[m

s]

(b) Full plot with outliers

Figure 4.6: Tick duration in CPU Impact Experiment.

bot processes demand more CPU time to be able to perform their workload, leaving less

computational power for the server to handle the extra players. Additionally, this CPU

insufficiency was observed to also affect the bots. During testing, Mineflayer bots have

been seen having issues maintaining a connection to the server if they weren’t assigned

enough CPU resources. As bot numbers reached 60 and above, we started to see similar

errors. Given that bots have to reconnect every time they lose connection, and during our

80-player test there were 49 disconnections all in the last 5 minutes of the test, we expect

this to also have contributed to the poor server performance in that part of the test.

Our response time measurements (Figures 4.5a and 4.5b) show a similar performance

picture. Our median response times start at around 25ms and end at 50ms on the high-

est amount of players. The variation of our results doesn’t change very much either, the

whiskers of our box plots staying under 100ms until we reach 60+ players, and at a maxi-

mum of 150ms. However, while we see few outliers for our 20 and 40-player tests, we have a

significant increase in outlying values when adding more players, with some extreme values

over 1000ms for the 80-player test. We speculate that lack of CPU availability is the cause

of these extreme outliers, as we see similar results for our low CPU core number scenario

in Section 4.5.

4.5 Impact of CPU resources

This section presents the results obtained from our experiment on the impact of CPU

resources on the server’s performance. Similarly to the experiment described in 4.4, we

show our plotted tick duration and response time data in two figures each, for showing

both the complete data, and for showcasing the greatest concentration of measurements

29

4. EXPERIMENTS

0 120 240 360 480
Time [s]

0
50

100
150
200
250
300
350
400
450
500

Ti
ck

 d
ur

at
io

n
[m

s]

Figure 4.7: Tick duration over time in the test run with 2 CPU Cores.

separately. Figures 4.6a and 4.6b show the tick duration, and Figure 4.7 also shows a

plot of the measurements from our 2-core test over time. Figures 4.8a and 4.8b show the

response time. Tick duration plots also show a red horizontal line to indicate the 50ms

mark.

As we can see from our tick duration plots, most test runs, except those with 0.5, 1, and

2 cores for the server, have their non-outlier values under 50ms. Our run, labeled as 0.5,

with a single core being used only half of the time, behaved very differently than any other

tested setup, with over half of the ticks taking significantly longer than 50ms to process.

This would be inadequate for respecting the standard tick rate of 20 per second.

We observe a downward trend in the mean tick duration and the variability of the

measurements as we increase the core count. However, we do not see further significant

improvement in tick duration from 3 cores onwards. We see some variation in the size of

the whiskers for our results between 3-7 cores, but it doesn’t seem that consistent with the

increase in core count. Furthermore, outliers are present for all our test runs. Extreme

outliers for our higher core test runs can be attributed to cold starts, as explained in

Section 4.4. Nevertheless, we still see dense concentrations of outliers for all our test runs.

These large concentrations scale down from up to 200ms for our 1-core test to about 100ms

for our 6-core test, after which the differences become negligible. Still, portions of them

consistently appear over the 50ms line for all our tests.

30

4.5 Impact of CPU resources

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0
CPU Cores

0
1000
2000
3000
4000
5000
6000
7000

Re
sp

on
se

 ti
m

e
[m

s]

Action
Block digging
Block placement

(a) Plot of the complete data.

1.0 2.0 3.0 4.0 5.0 6.0 7.0
CPU Cores

0
100
200
300
400
500
600
700
800
900

1000

Re
sp

on
se

 ti
m

e
[m

s]

Action
Block digging
Block placement

(b) Zoomed-in plot.

Figure 4.8: Response time in CPU Impact Experiment.

From our figure of tick duration over time for our run with 2 CPU cores, we can see

many spikes of values over 50ms, as well as more constant values above this threshold after

the 360 second mark. We associate the initial spike with the cold start of the system,

similarly to the one seen in Figure 4.4 from the player impact experiment. Also like in the

aforementioned figure, our horizontal axis ticks are every 120 seconds, which is roughly

the moment when a player wave joins the server. We see spikes of tick duration on these

intervals where players join, but we also see the average value of the metric increase as the

bottom of the blue line gets slightly higher with time. On the last wave of players joining

we have a bigger spike in comparison with the previous and we start seeing values over

50ms consistently. While this is partly due to the server only having two cores assigned to

it for this test, we expect there is another factor contributing to the drastic difference in

performance after the 360 second mark. One reason we speculate is the same as for our

player impact experiment with a high number of players - that we observe the combined

CPU demand of the bots and the server saturate the usage of our testing platform’s CPUs,

leading to a somewhat unexpected increase in our metric.

For our latency results, we observe that most of our tests except for our 0.5 and 1 core

tests provide similar results. In the test with a single core used half the time the median

response time is above 200ms, having box whiskers above 1500ms and outliers up to 6000-

7000ms. Our 1 core test outliers can be seen frequently in the 200-1000ms range, with

whiskers above 150ms. We consider these results inadequate for a good player experience

and deduce that for our workload the CPU resources provided are insufficient.

For the tests with 2 or more cores, we see a very slight downward trend for median values

and whiskers, but nonetheless a minimal overall difference in response times when scaling

core count. Additionally, the outliers for these tests seem somewhat inconsistent with CPU

31

4. EXPERIMENTS

resources, as we have lower outlier values for our 2-core test compared with higher core

count tests.

To summarize, through our experimentation we found a linear relationship between

response time and network latency. Also, we notice that server performance scales poorly

when increasing the computational capacity of the machine it’s running on. Finally, we

evidenced a non-linear association between the player count and the server’s performance

(represented by the tick rate).

32

5

Conclusion

To this day, online MVE games maintain their appeal and continue to grow in complexity.

Emerging services such as edge computing could be useful tools in supporting this growth

and helping scale these online games to more players. There is, therefore, a need to deduce

which of these deployment methods are generally beneficial. This work sought to help

towards this goal by showcasing the design of a benchmark for a popular MVE online

game.

5.1 Answering Research Questions

In Section 1.2, we established 2 research questions to answer in this project.

RQ1: How to design and implement a benchmarking platform for analyzing MVE games’

performance on the computing continuum?

Since our benchmark is heavily reliant on the Continuum framework, our design

was inspired by existing benchmarks created for the framework, and we attempted

to keep a similar structure for our benchmark where possible. Nonetheless, the

core challenge in our implementation was successfully interconnecting Continuum

with our application and our metric collection mechanisms. Section 3 addresses this

question by presenting a complete overview of our benchmark’s design and providing

implementation details.

RQ2: How can we evaluate an MVE game’s performance in various environments in the

Computing Continuum?

The key aspects of the experimentation process are determining what metrics to

collect for analysis, creating realistic workloads, and visualizing and analyzing our

33

5. CONCLUSION

results. Our metrics were chosen to easily compare our system’s performance to

results from similar studies, and with our experiments, we attempted to reproduce a

variety of environments to observe their effects on the game. Our main findings as

as follows:

MF1: Response time scales linearly with network latency.

MF2: Our system supports fewer players than what previous studies show under

similar conditions.

MF3: Scaling server performance by increasing CPU core count offers limited ben-

efits.

Details about our experiments and the analysis of their results can be found in

Section 4.

5.2 Limitations and Future Work

The first limitation of our benchmark, which is noticeable in our experimentation, is our

unexpectedly low number of supported players. Further investigation is needed to confirm

the cause and whether there is a noticeable performance overhead to using Continuum

with applications like MVEs. A first suggestion for this issue would be to run the same

experiment on a system with more CPU resources, as this would rule out the speculated

cause of this discrepancy, as mentioned in Section 4.2.

Additionally, even in the current form of our system, there is still much more informa-

tion that can be obtained by using different Continuum configurations. For example, an

experiment that targets the variability of network bandwidth or latency.

Another direction for research could be the comparison of different commonly used so-

lutions and services for deploying online games, such as comparing different environments

part of the compute continuum, or popular game server hosting providers. Continuum

can also deploy benchmarks using cloud-based VMs, instead of using locally created ones,

which could allow for another type of comparison.

Finally, using the existing system, more Minecraft-like MVEs could be integrated for

testing with Continuum. Hypothetically, any containerized game server that uses the

same Minecraft communication protocol can be used, with limited code changes needed

for the system.

34

References

[1] Ben Gilbert. VideoGame Industry Revenues Exceed Sports Film

Combined in 2020 | Business Insider. https://www.businessinsider.com/

video-game-industry-revenues-exceed-sports-and-film-combined-idc-2020-12?

international=true&r=US&IR=T, December 2020. 1

[2] Streamlabs & Stream Hatchet Q2 2020 Live Streaming Industry Report,

May 2024. [Online; accessed 4. May 2024]. 1

[3] Europe gaming attitudes during COVID lockdowns 2020

| Statista. https://www.statista.com/statistics/1222697/

gaming-attitudes-lockdown-covid-europe/, April 2020. (Accessed on

12/31/2022). 1

[4] Jeremy Winslow. Minecraft Reached 140 Million

Monthly Users And Generated Over $350 Million To

Date - GameSpot. https://www.gamespot.com/articles/

minecraft-reached-140-million-monthly-users-and-generated-over-350-million-to-date/

1100-6490962/, May 2021. (Accessed on 10/27/2022). 1

[5] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. Dyconits: Scal-

ing Minecraft-like Services through Dynamically Managed Inconsistency.

In 2021 IEEE 41st International Conference on Distributed Computing Systems

(ICDCS), pages 126–137. IEEE, 2021. 1, 9

[6] Minecraft inspires crafty way around government censorship, May 2024. [On-

line; accessed 4. May 2024]. 2

[7] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards Sup-

porting Millions of Users in Modifiable Virtual Environments by Redesign-

ing Minecraft-Like Games as Serverless Systems. In Amar Phanishayee and

35

https://www.businessinsider.com/video-game-industry-revenues-exceed-sports-and-film-combined-idc-2020-12?international=true&r=US&IR=T
https://www.businessinsider.com/video-game-industry-revenues-exceed-sports-and-film-combined-idc-2020-12?international=true&r=US&IR=T
https://www.businessinsider.com/video-game-industry-revenues-exceed-sports-and-film-combined-idc-2020-12?international=true&r=US&IR=T
https://streamlabs.com/content-hub/post/streamlabs-stream-hatchet-q2-2020-live-streaming-industry-report
https://www.statista.com/statistics/1222697/gaming-attitudes-lockdown-covid-europe/
https://www.statista.com/statistics/1222697/gaming-attitudes-lockdown-covid-europe/
https://www.gamespot.com/articles/minecraft-reached-140-million-monthly-users-and-generated-over-350-million-to-date/1100-6490962/
https://www.gamespot.com/articles/minecraft-reached-140-million-monthly-users-and-generated-over-350-million-to-date/1100-6490962/
https://www.gamespot.com/articles/minecraft-reached-140-million-monthly-users-and-generated-over-350-million-to-date/1100-6490962/
https://www.cnet.com/news/politics/minecraft-inspires-crafty-way-around-government-censorship
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet

REFERENCES

Ryan Stutsman, editors, 12th USENIX Workshop on Hot Topics in Cloud Comput-

ing, HotCloud 2020, July 13-14, 2020. USENIX Association, 2020. 2

[8] Matthijs Jansen, Linus Wagner, Animesh Trivedi, and Alexandru Iosup.

Continuum: Automate Infrastructure Deployment and Benchmarking in

the Compute Continuum. In Proceedings of the International Conference on Per-

formance Engineering, Coimbra, Portugal, April, 2023, 2023. 3, 7, 11

[9] Matthijs Jansen, Auday Al-Dulaimy, Alessandro V. Papadopoulos, Ani-

mesh Trivedi, and Alexandru Iosup. The SPEC-RG Reference Architec-

ture for The Compute Continuum. In 2023 IEEE/ACM 23rd International Sym-

posium on Cluster, Cloud and Internet Computing (CCGrid), pages 469–484, 2023. 5,

7

[10] Yi Wei and M Brian Blake. Service-oriented computing and cloud com-

puting: Challenges and opportunities. IEEE Internet Computing, 14(6):72–75,

2010. 5

[11] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling Xu, Haojun

Huang, Hao Yin, and Dapeng Oliver Wu. Improving Cloud Gaming Ex-

perience through Mobile Edge Computing. IEEE Wireless Communications,

26(4):178–183, 2019. 5

[12] Azure IoT – Internet of Things Platform | Microsoft Azure. https://azure.

microsoft.com/en-us/solutions/iot/. (Accessed on 08/10/2023). 5

[13] Jinke Ren, Yinghui He, Guan Huang, Guanding Yu, Yunlong Cai, and

Zhaoyang Zhang. An edge-computing based architecture for mobile aug-

mented reality. IEEE Network, 33(4):162–169, 2019. 5

[14] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E

Haque, Lingjia Tang, and Jason Mars. The architectural implications

of autonomous driving: Constraints and acceleration. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 751–766, 2018. 5

[15] Mahadev Satyanarayanan. The Emergence of Edge Computing. Computer,

50(1):30–39, 2017. 6

36

https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://azure.microsoft.com/en-us/solutions/iot/
https://azure.microsoft.com/en-us/solutions/iot/

REFERENCES

[16] Eustace M. Dogo, Abdulazeez Femi Salami, Clinton O. Aigbavboa, and

Thembinkosi Nkonyana. Taking Cloud Computing to the Extreme Edge: A Re-

view of Mist Computing for Smart Cities and Industry 4.0 in Africa, pages 107–132.

Springer International Publishing, Cham, 2019. 7

[17] Jürgo S. Preden, Kalle Tammemäe, Axel Jantsch, Mairo Leier, Andri

Riid, and Emine Calis. The Benefits of Self-Awareness and Attention in

Fog and Mist Computing. Computer, 48(7):37–45, 2015. 7

[18] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meterstick:

Benchmarking performance variability in cloud and self-hosted minecraft-

like games extended technical report. arXiv preprint arXiv:2112.06963, 2021.

7

[19] Yi Zhang, Ling Chen, and Gencai Chen. Globally synchronized dead-

reckoning with local lag for continuous distributed multiplayer games. In

Proceedings of 5th ACM SIGCOMM workshop on Network and system support for

games, pages 7–es, 2006. 8

[20] Lothar Pantel and Lars C. Wolf. On the suitability of dead reckoning

schemes for games. In Proceedings of the 1st Workshop on Network and System Sup-

port for Games, NetGames ’02, page 79–84, New York, NY, USA, 2002. Association

for Computing Machinery. 8

[21] Ashwin Bharambe, John R Douceur, Jacob R Lorch, Thomas Moscibroda,

Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: En-

abling large-scale, high-speed, peer-to-peer games. ACM SIGCOMM Com-

puter Communication Review, 38(4):389–400, 2008. 8

[22] Siqi Shen, Shun-Yun Hu, Alexandru Iosup, and Dick Epema. Area of simu-

lation: Mechanism and architecture for multi-avatar virtual environments.

ACM Transactions on Multimedia Computing, Communications, and Applications

(TOMM), 12(1):1–24, 2015. 8

[23] PaperMC. Paper, April 2024. [Online; accessed 9. Apr. 2024]. 8

[24] jmxClient, May 2024. [Online; accessed 4. May 2024]. 14

37

https://doi.org/10.1007/978-3-319-99061-3_7
https://doi.org/10.1007/978-3-319-99061-3_7
https://doi.org/10.1145/566500.566512
https://doi.org/10.1145/566500.566512
https://github.com/PaperMC/Paper
https://github.com/JerritEic/jmxClient

REFERENCES

[25] Jose Saldana and Mirko Suznjevic. QoE and latency issues in networked

games. Handbook of digital games and entertainment technologies, pages 1–36, 2015.

15

[26] mineflayer, February 2024. [Online; accessed 27. Feb. 2024]. 15

[27] Jerom Van Der Sar, Jesse Donkervliet, and Alexandru Iosup. Yardstick:

A benchmark for minecraft-like services. In Proceedings of the 2019 ACM/SPEC

International Conference on Performance Engineering, pages 243–253, 2019. 16, 28

38

https://github.com/PrismarineJS/mineflayer?tab=readme-ov-file

Appendix A

Reproducibility

A.1 Abstract

Obligatory

A.2 Artifact check-list (meta-information)

Obligatory. Use just a few informal keywords in all fields applicable to your artifacts and

remove the rest. This information is needed to find appropriate reviewers and gradually

unify artifact meta information in Digital Libraries.

• Algorithm:

• Program:

• Compilation:

• Transformations:

• Binary:

• Model:

• Data set:

• Run-time environment:

• Hardware:

• Run-time state:

• Execution:

• Metrics:

• Output:

• Experiments:

39

A. REPRODUCIBILITY

• How much disk space required (approximately)?:

• How much time is needed to prepare workflow (approximately)?:

• How much time is needed to complete experiments (approximately)?:

• Publicly available?:

• Code licenses (if publicly available)?:

• Data licenses (if publicly available)?:

• Workflow framework used?:

• Archived (provide DOI)?:

A.3 Description

A.3.1 How to access

Obligatory

A.3.2 Hardware dependencies

A.3.3 Software dependencies

A.3.4 Data sets

A.3.5 Models

A.4 Installation

Obligatory

A.5 Experiment workflow

A.6 Evaluation and expected results

Obligatory

A.7 Experiment customization

A.8 Notes

A.9 Methodology

Submission, reviewing and badging methodology:

40

A.9 Methodology

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

. . .

41

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

A. REPRODUCIBILITY

42

Appendix B

Self Reflection

. . .

43

B. SELF REFLECTION

44

Appendix C

Additional Experiments

. . .

45

	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Thesis Contributions
	1.4 Plagiarism Declaration

	2 Background
	2.1 Compute Continuum
	2.2 Online MVE Games

	3 Integration of Continuum and MVEs
	3.1 Continuum Overview
	3.2 Metrics
	3.2.1 Tick duration
	3.2.2 End-to-end response time

	3.3 Workloads
	3.3.1 Player movement component
	3.3.2 Terrain modification component

	3.4 Integration
	3.5 Technical limitations

	4 Experiments
	4.1 Overview of experiments
	4.2 Main findings
	4.3 Impact of latency
	4.4 Number of supported players
	4.5 Impact of CPU resources

	5 Conclusion
	5.1 Answering Research Questions
	5.2 Limitations and Future Work

	References
	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies
	A.3.4 Data sets
	A.3.5 Models

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

	B Self Reflection
	C Additional Experiments

