
Vrije Universiteit Amsterdam

Bachelor’s thesis

Evaluating performance of MVEs on VR

with an experiment framework

Author: Joachim Bose (2736851)

1st and daily supervisor: Jesse Donkervliet
2nd reader: Daniele Bonetta

A thesis submitted in fulfilment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 21, 2024

ii

Abstract

Standalone Virtual Reality (VR) devices are new and have received interest

from industry (Meta invested 42 billion dollars (1)) and academia due to their

potential in digital twins and the 248 billion dollar gaming market (2). To ex-

pand on current applications, standalone VR should support modifiable virtual

environments (MVEs), where the virtual worlds can be terraformed on a large

scale. However, VR has performance requirements to prevent motion sickness

and MVEs have strict performance limitations. In this work, we investigate

the performance of MVEs in VR by designing, implementing, and conducting

experiments using Yardstick-VR, a performance evaluation framework for an

MVE in VR called Opencraft2-VR. We found the Meta Quest (MQ) 3 per-

forms similarly to a gaming PC, where its predecessors MQ2 and MQ Pro had,

respectively, 183% and 223% more frame times than Meta Quest 3 in a terrain

workload. We find a low risk of motion sickness below a world size of 9, where

popular (non-VR) Minecraft has 12, and it is limited by terrain synchronization

time.

iv

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Research questions . 2

1.3 Research methodology . 3

1.4 Thesis contributions . 3

1.5 Plagiarism declaration . 4

1.6 Thesis structure . 4

2 Background 5

2.1 Virtual reality devices . 5

2.1.1 Motion sickness and performance requirements 5

2.1.2 Common VR deployments . 6

2.2 Modifiable virtual environments . 7

2.2.1 System model . 7

2.2.2 Multi-user modifiable virtual environments 8

3 Design of Yardstick-VR 9

3.1 Stakeholders . 9

3.2 Use cases . 10

3.3 Requirements . 10

3.4 Design overview . 11

3.5 experiment controller . 13

3.6 Terrain workload . 13

3.7 Tracing workloads . 14

3.8 metric collector . 14

i

CONTENTS

4 Implementation 15

4.1 Implementation overview . 15

4.2 The experiment controller . 16

4.3 Opencraft2 and Opencraft2-VR . 17

4.3.1 Android version . 18

4.3.2 VR version . 18

4.3.3 Terrain workload . 19

4.3.4 Configurable render distance . 19

4.3.5 Terrain building bug . 19

4.4 Data collectors . 19

4.4.1 The selective profiler . 20

4.4.2 The Unity profiler . 20

4.4.3 The system profiler . 21

5 Evaluation 23

5.1 Experimental setup . 24

5.2 KF1: Opencraft2-VR supports render distance up to 9 25

5.3 KF2 MQ3 outperforms its predecessors and performs similar to PC 28

5.4 KF3 Single-user Opencraft2-VR should not be offloaded to a server 30

5.5 Limitations and/or threat to validity . 32

5.6 Conclusion . 32

5.7 Advice for MVE VR developers . 33

6 Related Work 35

7 Conclusion 37

References 41

A Code repository 47

ii

1

Introduction

Virtual reality (VR) has received a lot of attention from the academic and industrial

community, as it is a powerful technology for applications that include games, education

(3), and health (4). Furthermore, Meta has invested more than 40 billion dollars in the

development of their Meta Quest lineup(1), showing great interest from the industry as

well.

Virtual reality technology aims to fully immerse users in virtual worlds. To provide

immersion, devices often use a head-mounted display (HMD) and hand tracking to give

the user a view of the virtual world through their own eyes while being able to interact with

this virtual world with their own hands. Modern VR devices use a standalone VR HMD

like Meta’s Quest lineup (5) and Apple’s Vision Pro (6), which have onboard processors

capable of simulating the virtual worlds on its own, rather than offloading this to another

device.

The power of the virtual environment can be further increased by using modifiable virtual

environments (MVEs). These are (usually) procedurally generated worlds and can be

terraformed or modified on a large scale by its users, increasing the possibilities of what

such worlds can represent. Existing popular MVEs include Minecraft, which is one of the

most popular games in the world (7), which the community has modified and expanded to

create entirely new games.

The applications identified for VR devices where MVEs technology could help include

virtual training and education worlds specifically designed for the user to perform some

exercise. This world may be cheaper and safer than a similar setup in actual reality,

allowing more accessible training environments for more users, such as driving (8) where

environments could be built procedurally to create an expansive driving simulator or crisis

1

1. INTRODUCTION

management(9, 10, 11) where buildings can collapse or break to create more realistic

scenarios.

Academia also hopes that such trainable skills include teamwork, where multiple users

are immersed in the same world, and interact and build on each other to complete a

new task. Academia has proposed multiple applications for the so-called multi-user VR

(9, 10, 11, 12).

1.1 Problem statement

VR devices are promising in their applications, but they have a flaw: motion sickness is

common among users when performance drops below certain thresholds. Moreover, motion-

to-photon latency (MTP latency) and frames per second (FPS) have been identified as key

metrics in this system (13), where high latency and low FPS induce this motion sickness,

making the experience uncomfortable.

(14) identified a knowledge gap about exactly these performance metrics in VR MVEs.

Workloads related to MVEs are untested or documented, and we hope to find lessons or

improvements for MVEs in VR in this knowledge.

Addressing this knowledge gap is nontrivial due to at least two identified reasons: Firstly,

standalone VR hardware is a new device with counterintuitive behavior compared to its

predecessors, shown by (14). Secondly, there is no standalone MVE to measure and com-

pare with traditional platforms as the only MVE in VR is the closed-source Minecraft

Questcraft, which means that such experiments will first have to be designed and built

before addressing these gaps.

1.2 Research questions

This work attempts to help close the research gap explained by 1.1 by answering the

following research questions.

RQ1. How to design an experiment framework for comparing MVE performance

on established gaming platforms and a standalone VR headset? Because

established VR MVEs like Minecraft Questcraft are not open source, a new one

must be designed together with an experiment framework and workloads for running

experiments with the MVE. However, this is not trivial, as workloads for MVE clients

are not established.

2

1.3 Research methodology

RQ2. How to implement such a design? To properly address the research gap, experi-

ments must be accurate by measuring an MVE running on actual VR devices. To do

this, a version of the design from RQ1 should be implemented. VR devices have a

large amount of frameworks and software available, which will have to be considered

and integrated into a product, in addition to the numerous errors associated with

integrating these software systems.

RQ3. How do MVEs perform on VR compared to traditional MVE platforms?

A knowledge gap about performance, should ideally be filled with measurements.

Such measurements include comparison with other devices to place VR devices into

a reference frame, some deeper measurement into pitfalls and performance problems,

and some advice for future MVE developers targeting VR MVEs

1.3 Research methodology

To address the research questions in Section 1.2, we use a three-step methodology: we

design a system, implement this system, and evaluate performance using experiments and

the system. Firstly, we design Yardstick-VR an experiment framework with an application

and workloads for evaluation (RQ1). Secondly, we implement Opencraft2-VR and a pro-

totype of Yardstick-VR to carry out experiments (RQ2). Third, we used our prototype

and Opencraft2-VR to obtain experimental results to shrink the knowledge gap discussed

in Section 1.1 (RQ3).

1.4 Thesis contributions

When exploring the research questions, some contributions useful to a wider community

presented themselves:

Knowledge contribution

KC1. Design of Yardstick-VR A benchmarking tool to conduct experiments for MVEs

on VR. The design tool has an MVE capable of running on different platforms,

including standalone VR and HMDs. Additionally, it has support for system and

application level metrics.

3

1. INTRODUCTION

KC2. VR device reference frame We provide a reference frame for performance of VR

devices and a gaming PC. This is done through results found through experiments

with Yardstick-VR’s multi-platform support.

KC3. Advice for VR MVE developers Through experiments evaluating different design

choices and workloads, we find some actionable insights for developing MVEs (in VR).

We summarize and enumerate this advice in Section 5.7.

Technical Contributions:

TC1. Opencraft2-VR is a port of Opencraft2 (15) to Meta’s Quest lineup of standalone

VR devices, and is the first Open-source MVE in VR. The features of Opencraft 2

were also adapted to run on Android, creating an almost full port. It is built on an

industry standard technology stack using Unity3d and OculusVR.

TC2. A prototype of Yardstick-VR An experiment tool for Android and Linux devices

by extending the tools available inside Opencraft 2 and "Measuring the Metaverse"(14),

and combining them to create a performance evaluation framework where experi-

ments can be automated.

1.5 Plagiarism declaration

I declare that this thesis is my own original work and has not been assisted by anyone else.

1.6 Thesis structure

Chapter 2 sets the groundwork and foundation for the rest of the work by talking about

work in the past and the ecosystem in which this work lives. Chapter 3 is conceptual about

the design of the experiment framework Yardstick-VR. Chapter 4 discusses the technical

details and technical problems encountered in implementing this design. Chapter 5 dis-

cusses the experiments conducted using this design.

If you are a VR developer, read some advice in Section 5.7. Sections 5.2 5.4 and 5.3 may

also be of interest as they explore design decisions and MVE performance.

If you are a VR enthusiast, Sections 5.3 on a reference frame for VR devices may be of

interest, in addition to Section 4.3.2 on the Opencraft2-VR VR runtime that Opencraft2-

VR uses.

4

2

Background

This chapter introduces virtual reality background with system models and offloading

strategies, and follows up by discussing modifiable virtual environment background with

common terminology and a system model.

2.1 Virtual reality devices

A VR device is a device that provides the illusion to the user that they exist in a virtual

world other than our own simulated by a computer. In this work, we focus on standalone

head mounted displays (HMD). The display provides an accurate illusion to the user that

they are looking into a virtual world by covering the user’s entire field of view. To better

meet the need for immersion and user comfort, VR technologists have redesigned the system

multiple times over the years to push immersion.

2.1.1 Motion sickness and performance requirements

HMD are associated with motion sickness when the latency between the movement of

the user’s head and the movement on the screen in the HMD is too large (16). Users

start noticing the latency when it increases above 23 ms (17), creating less comfortable

and less immersive experiences. Furthermore, the frame rate or frames per second (FPS)

should be higher than 120 HZ (18) to minimize symptoms of motion sickness. (19) warns

VR developers about the negative effects of frame rate drops on motion sickness, we also

define a spread of the frame time.

On modern VR devices such as Meta Quest 3 (MQ3), some tricks are used to mitigate

motion sickness with frame rates below 120 HZ and frame times greater than 20 ms. These

tricks include Camera time warp (20), Application Space Warp (21), and can fake more

5

2. BACKGROUND

cable

Application

(a) Tethered (i.e., wired) de-
ployment.

ApplicationWiFi

(b) Wireless deployment

Application

(c) A standalone HMD

Figure 2.1: Commonly used deployments of HMDs and applications. Applications can be
streamed from a remote computer to the VR device using cable 2.1a or Wi-Fi 2.1b, or the
application is rendered on the VR device hardware without offloading.

frames per second. The Meta Quest application marketplace guidelines suggest that VR

applications should achieve a frame rate of at least or 36 frames per second (FPS) (22)

that can then be upscaled with techniques to the desired refresh rate.

Based on Meta’s guidelines, we define a performance requirement called ’par’ which

applications should meet to mitigate motion sickness: As a user, I want 99% of the frame

times to fall below 1/36 seconds or 27.7 milliseconds. To make par less arbitrary and more

accurate, future work is needed to move par in the correct position.

2.1.2 Common VR deployments

The first HMDs were tethered headsets, which do not have hardware to run games them-

selves, but require a more powerful computer to render and stream video to the HMD

over a cable. Users found the tether and PC requirement uncomfortable, because they can

get in the way and are a reminder of the real world around you, decreasing the immer-

sive experience. Multiple efforts were made to remove them while meeting performance

requirements.

The first non-tethered HMDs were standalone HMDs (Figure 2.1c), which have proces-

sors onboard capable of running the VR application, eliminating the need for offloading.

This deployment was experimented with by putting an off-the-shelf phone into a head-

mounted box with lenses, utilizing the phone’s processor to render and simulate the envi-

ronment. This was upgraded with hardware integrated into the headset, as in Pico Goblin

and Meta Quest.

Due to the onboard processor, these HMDs also allow games to be offloaded over Wi-Fi

(Figure 2.1b). This was viewed by many as the best design, because it allows a strong

gaming computer to provide high-quality graphics to be sent to the VR device (23).

6

2.2 Modifiable virtual environments

frames

user

physics

rendering

input

game logic

game
state

(a) A sketch of the game loop

unrendered terrain

rendered
terrain

Terrain being
built

(b) Terrain generation in MVEs

Figure 2.2: On the left a system model of an MVE showing the game loop. On the right, a
common task in MVEs called terrain generation.

However, the view changed when (14) found that receiving the video stream costs energy

and can lead to lower frames per second. In this work, we focus on the latter deployment

configuration, where the device stands alone.

2.2 Modifiable virtual environments

Modifiable virtual environments (MVEs) are terraformable (procedurally generated) worlds,

where the user can modify the world on a large scale. Minecraft is the most popular MVE,

featuring a blocky terrain where the user can add and remove blocks to build nearly infinite

structures.

2.2.1 System model

An MVE usually includes multiple components, as we sketched in a system model 2.2.

An important part of an MVE is the game loop. This represents the feedback loop with

the user, where the input of the user is inputted, processed, and the state of the game is

updated.

In an MVE or other game, components of a traditional MVE could look something like

Figure 2.2a. The user gives input to the input processor, this input has an effect on the

game logic, which may set up some features of the physics engine to be rendered back to

the user. The simulator component is defined by the components of the game loop that

modify the game state, in our system model, this is all but the rendering component.

To keep the near-infinite terrain processable, an terrain loading protocol is used like the

protocol sketched in 2.2b. The terrain is abstracted in a grid of areas or chunks, which

can individually be loaded and unloaded when a player, respectively, approaches the area

7

2. BACKGROUND

within render distance (a configurable parameter) or moves further than one view distance

away.

2.2.2 Multi-user modifiable virtual environments

In Multi-user MVEs, multiple users play in the same world, usually from multiple machines

connected to the Internet. The management of the users machines can be done in multiple

ways, including the industry standard for games, which is a dedicated server providing

service to some player (client) machines. This dedicated server can then simulate the

world of the game by processing the input received from the client machines and returning

the state of the game necessary to render the world and inform the players (24).

In traditional games, the player machines typically interact with the server through

remote procedure calls (RPCs) where the server or the clients can perform a function call

across the Internet, which may return some data. However, due to the nondeterministic

nature of the internet, return delays larger than 60 milliseconds are not uncommon, making

it difficult to keep the state on the client and the state on the server synchronized.

However, in MVEs the networking model is an active area of research (25). In this work,

we use a networking model in which networked objects live in a server world and have a

mimic in the client world called a ghost. The server then sends state updates over the

network to the ghost object to keep the game synchronized.

8

3

Design of Yardstick-VR

This chapter answers research question RQ1: How to design an experiment framework

for comparing MVE performance on established gaming platforms and a standalone VR

headset? By designing an experiment framework for comparing MVE performance on

established gaming platforms and standalone VR headsets called Yardstick-VR. Sections

3.1, 3.2, and 3.3 profile the use and elicit some requirements for Yardstick-VR , Section 3.4

looks at the design in total, and the rest of the sections look at specific components of this

design overview.

3.1 Stakeholders

To best satisfy the needs of relevant stakeholders, they are enumerated and profiled below.

ST1. Researchers: These stakeholders use experiments and data to provide the world

with better and more accessible VR systems and applications. This stakeholder

wants to keep track of the state-of-the-art and advance it by producing papers like:

(20, 24, 26). To produce these, they want data from scientifically found experiments

and reproducibility.

ST2. MVE Developers: These stakeholders have project-ideas related to MVEs and

may lack knowledge to turn their ideas into a product. These are technically skilled

people and built popular MVEs like Minecraft. They have knowledge about technical

details, design decisions and their effect on the MVE. To produce value game features

and applicability to their products.

9

3. DESIGN OF YARDSTICK-VR

3.2 Use cases

The product aims to satisfy the needs of the stakeholders through the following use-cases:

UC1. Comparing different MVE platforms. A developer (ST2) has an idea for an

MVE and wants to make a decision about what device to target or VR runtime to

choose for his MVE. They pick up Yardstick-VR or investigate the results ST1 found

in a paper produced using Yardstick-VR. This provides them with a reference frame

for every device, assisting in their decision and speeding up the process.

Similarly, researchers (ST1) may want to improve the performance of a platform

and investigate what holds the platform back compared to other platforms. The

researcher can pick up Yardstick-VR and find detailed information on the perfor-

mance of the application in their target stack and evaluate their improvement on

it too, speeding up the process by eliminating the need for the researcher to build

Yardstick-VR from scratch.

UC2. Push MVEs on VR to their limits and improve this limit. The complexity

of the world is related to the strength of the MVE as explained in 1, and thus,

ST2 wants to gain intuition about the feasibility of their idea. They can then pick

up Yardstick-VR to gain an intuition about the strength of the state-of-the-art and

whether his idea may work.

The ST1 wants to improve this complexity to provide for ST2 and advance the field.

They pick up Yardstick-VR and see why the application breaks when it breaks. They

can then look for improvements in this area to allow better performance.

UC3. Evaluate effectiveness of deployments. As ST1 has new ideas about offloading,

they would like to find out if this idea is feasible and improves the performance or

complexity of MVEs. Their idea is to offload the game logic and terrain rendering

from the HMD to a server over network. They can pick up Yardstick-VR and test

the offloading mechanism and compare it with the traditional deployment.

3.3 Requirements

In general, Yardstick-VR is used like an experiment platform; this requires the need for a

metric collector 6 , control over the target system, and a workload. We obtain some more

detailed requirements (RE), and some nonfunctional requirements (NFE):

10

3.4 Design overview

RE1. Platform support. To aid in UC3 multiple platforms must be supported with

the same workload. Although the workload to put the system under test may not

change, the system under test may change. The underlying layers, such as runtimes,

operating systems, and hardware, can be swapped out.

RE2. Repeatable automated experiments. As ST1 wants repeatable experiment data

in UC1 UC2 and UC3, automated experiments are required to reduce human error

and assist and reduce researcher ST1 time per experiment. The entire experiment

and all its workload configurations should be runnable with one click of a button to

allow other researchers to easily repeat the experiment without much assistance of

the original researcher.

RE3. Configurable workloads. To push platforms to their limits in UC2, workloads

within the MVE should have this capability. When workloads are configurable, these

parameters should be easily modifiable by users of Yardstick-VR. This allows for

experiments to be conducted faster, and decrease the iteration time of the project.

RE4. Collectable metrics. As the ST1 values hard data and in all UC2 UC1 UC3

Yardstick-VR it is used to compare multiple things using performance data. De-

tailed subcomponent level frame-time and hardware utilization metrics (CPU usage,

GPU usage, memory, network usage) should be collectable to find when the system

drops below acceptable performance, and why the system drops below acceptable

performance.

NFE1. Perform on par. In Section 2.1.1 we defined par, the level a modern VR system

should at least perform to mitigate motion sickness for its users. It is important that

at least one VR system supported by the limits of Yardstick-VR is in the middle

between the lowest load that Yardstick-VR can provide and the highest load that

Yardstick-VR can provide.

NFE2. Collector overhead. The metric collector overhead must be kept low to keep the

experiments close to real world scenarios. We define an arbitrary 5% overhead on

the metric collector.

3.4 Design overview

Figure 3.1 shows the components of Yardstick-VR. Arrows represent the direction of the

data flow; for example, A → B means that data flows from A to B. The colored boxes

11

3. DESIGN OF YARDSTICK-VR

Workload builder

Workloads

Experiment
controller

Config

Config

Researcher

Metric collector

Metrics

Game server
Simulated

clientsConfig

 Trace
workload

Player

Target metric
names

Lightweight
collector

(optional) Heavy
data collector

Application config

Terrain
workload

Player movement

Input

Experiment Director Tested (VR) platform platforms
can be

swapped
out

Legend

Button

Metrics

Configured workload

Metric component

MVE component

Workload component

Data flow

1

workloads

metrics

2

2
4

6

3

4

5

7

8

9

10

11

12

Figure 3.1: Design components

represent higher level parts of Yardstick-VR with a common goal; for example, a yellow

box represents a component involved in configurable workloads, a red box represents a box

involved in the MVE, and a blue component is one involved in the collection of metrics.

The left shows the experiment director, a device hosting most experiment infrastructure

in 4 components: (1) The metric receiver 6 , which receives the metrics described in RE4

from 11 and 12 , and records them into the experiment director’s disk (see Section 3.8);

(2) The Game server (only when required by experiment like in UC3); (3) And the

experiment controller 4 (see Section 3.5), which starts and stops other components at

the right time, this eliminates the need for the researcher to manage multiple tasks, helping

RE2. (4) The workload builder takes a set of workload configurations and builds a set of

executables for the target platform when required. This once again saves the researcher

(ST1) the need to do some work and satisfies RE2.

The right shows the experiment subject, an MVE platform (maybe in VR) under test,

containing an instance of the MVE (not shown). In this MVE, the handling of player input

can optionally be overridden with a trace 2 or terrain workload 2 . The workload and

trace are configured through the application configuration 9 , which serves as the central

configuration point where the configuration can be accessed by other components.

The platform under test 8 can be swapped out by different platforms, such as a gaming

PC or a smartphone, to compare these between multiple platforms. This satisfies the

12

3.5 experiment controller

requirement RE1.

This multi-machine setup was chosen for three reasons: Firstly, this allows parts of

the metric collection 6 and the experiment controller 4 to connect to the running

application without taking too much CPU time away from the subject of the experiment

to help with NFE2. Secondly, popular VR devices are very restrictive and do not easily

allow applications to share files, making it somewhat difficult to export data and results for

further processing. Third, ST1 has to combine the data collected from multiple platforms

when using Yardstick-VR in UC1 to analyze the data; this step is made easier if all data

are collected on the experiment director like in 7 .

To look at the overview of the design from a usage perspective, an example of UC2

is sketched: The researcher configures the experiment builder 2 for a number of differ-

ently configured workloads 3 that increase in strength. They press the build button and

give these executables to the experiment controller 4 to test. The researcher can then

connect their favorite VR device and press the Run button on the experiment controller.

The controller loads the workloads onto the tested VR platform, where the application

configurator 9 sets up the metric collectors 11 and the trace 4 or terrain workload

2 . The experiment controller then starts the game server 5 , if required, and a timer.

When the timer runs out, the experiment controller loads a new workload and repeats the

experiment process until all metrics are collected in 7 .

3.5 experiment controller

This component exists to satisfy RE2 by automating the entire experiment-running pro-

cess. The user of Yardstick-VR can give the experiment controller 4 a set of workloads

built with the workload builder. The experiment controller 4 will then load the workloads

onto the target system and start the workload. This task is platform-dependent and may

have to be implemented multiple times. After starting the workload, it starts the metric

collector 6 and the game server (when required) and keeps track of the time programmed

by the researcher. When time is up, the controller stops these processes and saves the

data.

3.6 Terrain workload

To satisfy the requirement, RE3, Yardstick-VR is designed with a workload that pushes

the terrain-building capability of the MVE running on the target platform to its limits

13

3. DESIGN OF YARDSTICK-VR

(UC2). The player is elevated above the world and given a constant speed. Then, as

the MVE has to keep building terrain around the player while keeping up with a second

parameter, render distance (see Section 2.2.1). The speed and view distance parameters

do the same; thus, only one has to be configurable.

(24) has found that this terrain building is one of the most challenging tasks in MVE

design, which is why it was specifically added as a workload for testing MVEs on our

system, where replay of exploration traces tend to get stuck due to small inconsistencies.

3.7 Tracing workloads

As the terrain workload is quite niche, a workload that is more generally applicable and

established by previous work (27) is input tracing. The MVE should support creation and

replay of input traces, allowing researchers to easily create their own repeatable workloads.

3.8 metric collector

To satisfy the research requirements RE4 and RE2 A metric collector 6 capable of

collecting detailed low-level information about frame time with low overhead. Although

the researcher wants to publish results measured on a platform with low overhead, to find

hypotheses, the researcher typically does not need the low overhead.

The metric collector 6 for Yardstick-VR has two modes: (1) high overhead high detail,

used by the researcher to find hypotheses and has to follow scientific laws less strictly, and

(2) low overhead, low detail mode, which is used by the researcher to create scientifically

sound results and verify the hypotheses made earlier.

14

4

Implementation

In this chapter, we answer the research question RQ2: How to implement the design from

Chapter 3? By implementing a prototype of Yardstick-VR

4.1 Implementation overview

In Figure 4.1 the overview of the implementation is shown. The right shows the tested VR

device running Opencraft2-VR, and the left shows the experiment host running multiple

processes. The dotted containers specify groups of components that live in the Unity

ecosystem, and the arrows represent data flow.

For our system stack, we target the Meta Quest lineup running a Unity application 9 .

We chose this combination because both are widely used in other works. Unity with VR

is used in (28, 29, 30, 31, 32) and Quest HMDs are used in (14, 27, 33, 34). Additionally,

Meta has more documentation and code available for this specific setup. Unity is a game

engine editor and runtime that supports multiple platforms. Unity also has many tools

available for extending its functionality that are used by many other components, and the

chosen application is also built in Unity.

The Meta Quest lineup are established standalone VR HMDs running on Android, which

allows us to use the Android debug bridge (ADB) to interface with them. Using ADB, we

can connect experiment director to the HMD via USB for multiple functionalities. These

functionalities include ADB logcat, a utility to listen to printed logs from applications on

the HMD; ADB shell, which allows the experiment director to execute shell commands on

the target HMD, which allows us to install and start programs.

For our application, we extended Opencraft-2 (15). Opencraft2 is fully open source and

has been chosen from other options for a few reasons. Firstly, Opencraft2 is not in the

15

4. IMPLEMENTATION

Unity Editor

Unity profiler

Apks

Experiment
controller

3

4

Workload builder

Researcher

Metric receiver

Game server
Simulated clients

6

Metrics

7

5

8

selective profiler

/proc filesystem

 Trace
workload

input

Player

cmdArgs.json

Terrain
workload

Player movement

Unity input
system

11

MetaXR
10

1213

14

15

16

Experiment Director Unity player platforms
can be

swapped
out

Legend

Button

Metrics

Configured workload

Metric component

MVE component

Workload component

Data flow

1

ADB install

Android
debug
bridge

2

9

Figure 4.1: Overview of implemented components

Minecraft ecosystem, which does not allow open-source clients, unlike other MLGs such as

Glowstone(35) or Opencraft 1 (36). Secondly, Opencraft2 is made for research and supports

features including simulated players, advanced data collection methods, and input tracing

unlike other open-source MVEs such as Minetest (37) or Terasology (38).

4.2 The experiment controller

The experiment controller 5 lives in the Unity editor by extending the editor with an

editor window. Even though other options like bash are more easily developed due to the

slow Unity editor, the Unity Profiler was desired for the data collection. This profiler can

only be controlled from the UnityEditorInternal namespace, which is only available inside

an editor script such as one from the UI toolkit.

The implemented experiment controller is practically a loop over every workload provided

by the researcher, and an exact implementation of the designed controller in Section 3.5.

In addition to this workload, the researcher also provides a set of server configurations

corresponding to the workload. The loop looks like this:

1. Start the game server 6 in the correct deployment.

16

4.3 Opencraft2 and Opencraft2-VR

2. Start the workload, if the target platform is Android, first install the workload on

through ADB.

3. Start metric receiver 7 .

4. Await a timer while the experiment is running.

5. Stop the metric receiver and save the data 8 .

6. Stop the server gently, to allow proper cleanup of socket data.

7. Stop the workload, if the target is Android, we remove the workload too.

As the Unity Editor is single-threaded, busy waiting in the loop will cease all other

functions of the editor during the experiment, including the Unity Profiler 3 required

to collect data. To avoid such a problem in the Unity player, developers usually use a

coroutine. This looks like a function call and runs until it hits a yield statement, where

execution is suspended. The Unity player then resumes the execution of the caller and

resumes the execution of all coroutines at a specific location in the Unity player loop. This

creates a nonparallel thread-like behavior, allowing non-busy waiting.

Coroutines are usually not available in Editor scripts like editor windows, luckily Unity

provides an extended library to allow the functionality of these coroutines inside the Unity

editor. The library is limited compared to the full implementation of the regular coroutines

but works very well for our use case.

The interface with the researcher is implemented using the Unity UI toolkit, a framework

to extend the functionality of the Unity editor by adding new scriptable editor windows

featuring interactable elements such as buttons and input fields. This was used to create

a window that features input fields for the path where workloads are stored, a path where

servers are stored, and buttons to start the experiment for different targets.

4.3 Opencraft2 and Opencraft2-VR

To create Opencraft2-VR targeting the Meta Quest lineup on the Android operating sys-

tem, a version running on an Android phone was first created (Subsection 4.3.1) because

the phone was more open and problems were easier to fix. From there a VR version

was built (see Subsection 4.3.2) which is used by the evaluation section. Some additional

features were added to the VR version, which are elaborated in Sections 4.3.3 and 4.3.4.

17

4. IMPLEMENTATION

4.3.1 Android version

Opencraft2 android implements only one new feature, but fixes some porting errors. The

feature is command-line arguments packaged with the build. This is required for An-

droid, as command-line arguments are not supported, which is required by Opencraft2 to

configure the deployment.

We implemented a feature where the argument parser looks for a special file called

"Assets/Resources/cmdArgs.json" and sources its arguments from there if no arguments

are detected through the command line. For trace file and deployment file path arguments,

the file in question can be placed in the Resources folder, and the filename (without path

or extension) can be passed as an argument in cmdArgs.json. The parser will then look

for the file in the Resources folder and load it correctly.

As the Unity build system in Unity is all hidden from the user, the platform switch and

recompilation should be a one-click functionality. However, due to an internal Unity shader

compiler error, the Unity editor kept crashing and corrupting the project. It seemed to be

an AMD-GPU driver error and an update of the OS from Windows 10 to 11, which fixed

the issue.

At some point, Opencraft2 was running, but nothing was rendered, except the player.

This error was fixed more easily by switching the graphics API from Vulkan to OpenGL.

4.3.2 VR version

In the design, Opencraft2-VR is a modification of the player object and the player input

system, to fit the new VR input system functionality into Opencraft2. This extension is

aided by a library. Once the application was running, problems related to terrain rendering

popped up again, as described in 4.3.2.

The VR extension of the player is done using the MetaXR plugin for Unity. This was

not the first choice, as MetaXR is not open source and fewer headsets support this plugin

compared to OpenXR. Moreover, OpenXR is also supported by (27) and OpenXR has

received attention from the academic community. OpenXR seemed to have some input

issues and was more difficult to get to work than expected, whereas the MetaXR package

provides more assistance for this.

Opencraft-2 utilizes a custom shader to render the terrain and reduce data copy overhead.

It took some time to realize where the shader enters the render pipeline and how the terrain

was built. Shader compilation errors were difficult to fix with limited knowledge of shaders,

and some small things were tried to "wish" the problem away.

18

4.4 Data collectors

Because this approach was not working, a different frontal assault strategy was chosen

by choosing to write a new shader. The project contained a second broken shader with

much less code, which was taken as a starting point. When implementing the vertex pass,

problems started arising when mixing libraries in different shader languages called HLSL

and CGINC. These languages have the same syntax but have different standard libraries

that use many of the same names. The VR shader libraries extended the definition of

the HLSL’s standard library, but some were overwritten by the CGINC library, reverting

the changes. Replacement of the entire CGINC standard library with only the necessary

definitions fixed the issue.

4.3.3 Terrain workload

To implement the designed terrain workload 3.6, we use a simple hook in the player move-

ment code that checks for a command-line parameter, assisted by the command-line pa-

rameter framework from the Opencraft2 base. If the flag "-playerFly True" is passed, the

player movement is overridden with the designed behavior.

4.3.4 Configurable render distance

Using the same command-line parameter framework, a parameter "-renderDist" was imple-

mented over the base of Opencraft2, which was a terrain configuration baked into the code

by the compiler. The base Opencraft2 implementation caused a problem when workloads

with more than one render distance were built, as Unity would rebuild large code sections.

Changing render distances was sped up from 2̃0 minutes to 4̃0 seconds.

4.3.5 Terrain building bug

Additional to all the features, the most notable bug (among others) fixed by this work was

a bug in terrain generation. The terrain generation works in a few steps, the first of which

looks at the position of the players and the completed terrain areas and determines which

areas need to be spawned; another system then takes this set and builds them concurrently.

There was a problem where duplicates would be added to the list of areas to be built, and

multiple threads would build the same area. A preventive fix improves performance.

4.4 Data collectors

Contrary to the design of Yardstick-VR, our prototype features 3 metric collectors instead

of 2. These include: (1) the Unity profiler 3 with large overhead measuring application-

19

4. IMPLEMENTATION

specific metrics, (2) a less overhead heavy selective profiler 15 measuring a subset of those

metrics, and (3) the /proc file system 16 measuring system-level metrics scraped by the

metric receiver 7 . The Unity profiler is already implemented and comes with the Unity

editor, whereas the selective profiler is implemented by us.

Both the Unity profiler and the statistic writer use instrumentation from the base unity

system, called profiler markers. These markers have a Begin() and End() function and

a name. Unity placed many of these markers throughout the engine runtime, and many

already exist. The Unity profiler profiles all markers, making it slow, which is why the

lighter selective profiler measures only a configurable subset.

4.4.1 The selective profiler

The base selective profiler measures a subset of profiler markers and adds the last sample

to a list for every frame. This becomes a problem when adding profilers called more than

once per frame. We added a flag, which changed it to sum all the samples from the last

frame instead.

Additionally, we changed the logging mechanism from adding all data to a buffer and

saving that buffer on exit to writing every frame to file (when on Linux or Windows) or

to ADB logcat (when on Android) that the system profiler picks up. This saves a copy

step for the researcher in the Android case and saves a system slowdown when writing this

large file to disk in the Linux & Windows case.

However, the selective profiler still had some issues, as it did not seem to measure profiler

markers in subcomponents completely compiled by the burst compiler such as the Ghost

update system (see Section 5.2). An awful workaround was found by placing an additional

marker in this system.

4.4.2 The Unity profiler

This is a tool from the Unity ecosystem that has already been implemented by Unity with

a nice graphical interface, which can be extended with the profiler analyzer package. It

can compare datasets, find markers with the biggest differences, and investigate spikes in

frame rate. However, it has some serious limitations, as it can only analyze up to 300

frames, which is less than 5 seconds on a 72 HZ refresh rate with Meta Quest 3.

20

4.4 Data collectors

4.4.3 The system profiler

To find system-level metrics such as CPU usage, memory usage, and GPU usage, we

adapted the system from (14) to fit our needs. Some functionality was removed, such as

the timer and host metrics, and some functionality was added to make it more automatable,

including a filter for the statistic writer metrics coming through ADB logcat.

The system profiler is implemented in Windows PowerShell and uses the ADB shell to

run commands on the connected Android device, it reads out the /proc file system files

including /proc/stat and /proc/meminfo every second and dumps them to disk. These

dumps can then be parsed to find detailed CPU usage for every core and memory usage.

21

4. IMPLEMENTATION

22

5

Evaluation

This chapter focuses on RQ3: How do MVEs perform on VR compared to traditional

MVE platforms? The experiments presented in this chapter are enumerated in Table 5.1

using the tools implemented in Chapter 4 to conclude 3 key findings.

KF1 single-user Opencraft2-VR supports render distances up to 9, lower than

default Minecraft. (Section 5.2). We used Yardstick-VR to evaluate the perfor-

mance of MQ3 in terrain workloads and find the limit of Opencraft2-VR in MQ3. We

used terrain workloads (see Section 3.6) configured with increasingly larger render

distances. We find that the maximum render distance that performs above par (see

Section 2.1.1) is 9, which is below the Minecraft default render distance of 12 (64-

bit Java edition), where Opencraft2-VR is also a less complex game. Additionally,

we find that the VR device is limited by the MVE architecture, where synchroniz-

ing worlds is a particular problem. We advise MVE developers to consider terrain

requirements with care when developing MVEs.

KF2 Frame time in Opencraft2-VR in Meta Quest 3 is better than its prede-

cessors and is similar to PC (Section 5.3). We compare Meta Quest 2 (MQ2), 3

(MQ3) and Pro (MQP) with a gaming computer using Yardstick-VR. We conduct a

stress test using our terrain workload and a high render-distance where mean frame

time is far below the target 72 Hz. We show MQ3 and the PC to have similar frame

time and significantly less frame time than the MQ2 and MQP. We advise developers

of VR applications to target MQ3 instead of previous HMDs for better frame times.

KF3 Offloading the simulator of Opencraft2-VR does not significantly impact

frame time or CPU usage (Section 5.4). We place a single-user Opencraft2-VR

23

5. EVALUATION

KF Section Independent variable Dependent variable Workload
KF1 5.2 render distance frame time terrain workload
KF2 5.3 platform frame time & CPU usage terrain workload
KF3 5.4 deployment frame time & CPU usage terrain workload

Table 5.1: Experiment overview

on MQ3 in a client-server configuration (the server is offloaded) and compare them

using Yardstick-VR to a standalone configuration. Our comparison shows that not all

MVEs benefit from offloading the simulator to a server; in particular, Opencraft2-VR

does not have significant differences between deployments.

5.1 Experimental setup

The experimental setup was performed with the implementation discussed in 4. The exper-

iment runs for 120 seconds to collect numerous samples and frames. The Android devices

(MQP, MQ3, MQ2) were connected to experiment director (an Asus Zenbook UM425I lap-

top), via USB through the Android Debug Bridge (ADB). Care was taken to fully update

the devices before running the experiment. During the experiments, the VR headsets were

laying still on the table, some paper was glued to the sensor between the lenses, which

checks if the headset is being worn, a technique pioneered by (27).

In some experiments, a common desktop gaming PC is used. The Gaming PC consists

of the following hardware and operating system (OS):

• AMD Ryzen 5 5600X

• Gigabyte B550 Aorus elite

• 16 GB DDR4 RAM (3200 MHz)

• MSI NVIDIA RTX 3060

• Seagate ST3500141cs: an HDD 5900 rpm made for home media servers

• OS: Linux Ubuntu 22.04 LTS (an unused fresh installation)

24

5.2 KF1: Opencraft2-VR supports render distance up to 9

5.2 KF1 Opencraft2-VR supports render distances up to 9
due to performance problems associated with the MVE
architecture

Section 1 describes the importance of world complexity, which we evaluate in this section

to find improvements. We find that Opencraft2-VR terrain synchronization takes a lot of

frame time, causing the maximum render distance for Opencraft2-VR to be not greater

than 9, where Minecrafts default render distance is 12. A higher render distance causes the

frame time to rise above par (see Section 2.1.1), introducing the risk of motion sickness.

We measured in an experiment using MQ3 with the terrain area generation workload

described in 3.6, where more parts of the world are generated over time so that the system

has an increasingly larger world to render. The experiment was repeated multiple times,

each time varying the render distance. The experiment was conducted with the Opencraft2

data collector and the system level data collector and without the Unity Profiler to keep

overhead to a minimum. The first 300 frames of the application were cut to focus the

measurement on the stable state of the system.

This experiment resulted in Figures 5.1a and 5.1b, where the horizontal axes contain the

render distance, and the vertical axis represents the frame time in milliseconds. In 5.1a The

data is displayed as box plots, where the whiskers represent the end of the first percentile

and the end of the ninety-ninth percentile. 50% of the samples fall within the box, where

the small green lines represent the median frame time. Outliers are not shown. The green

and red lines represent the par defined in 2.1.1 by showing the frame time required for 36

FPS, and 72 FPS.

Figure 5.1a shows an increase in the median frame time over the render distance, where

the ninety-ninth percentile also increases, while the lower percentile remains relatively

stable. All medians are between the 36 FPS and 72 FPS lines, where the upper whiskers

cross the 36 FPS line between the render distance 9 and the render distance 10.

The frame time in both figures is expected to increase as the render distance increases,

the plot agrees. We expect this increase because the world the application has to keep

track of is larger, and more world areas have to be generated at the same time. The

upper whisker crosses the red line between render distance 9 and 10, which means that the

render distance 9 is the highest render distance when the samples are below the red line

and subsequently means that render distance 9 is the last render distance above par where

the risk of users developing motion sickness is low.

25

5. EVALUATION

3 4 5 6 7 8 9 10 11 12
render distance

0

10

20

30

fra
m

e
tim

e
[m

s]

72 FPS

36 FPS

(a) Opencraft2-VR frame time vs render distance on MQ3

4 6 8 10 12
render distance

0

5

10

15

20

tim
e

[m
s]

terrain update
player movement (server)
player movement (client)
terrain synchronisation
other scripts
Frame synchronization wait
other loop components
frame time

(b) breakdown of frame time and biggest contributors

Figure 5.1: Analysis of frame time when exploring at increasing render distances

The upper whiskers of render distances 10 and 11 are not in the pattern strictly increas-

ing, similar to 8 and 9. This suggests a lack of samples used for this plot, a limitation

discussed in Section 7

The areas in Figure 5.1b represent the mean time that different components contribute

to frame time. All components shaded in blue (the first seven components in the legend

when read top-down) are all logic components of the game loop (see Section 2.1). The

other colors are other components of the game loop. Some more detail and analyses are

given for every component:

1. Terrain building This component is responsible for building the terrain layers from

a random function and storing it in data structures. This area represents three subcom-

ponents dividing the responsibility between them: A component which schedules areas to

spawn, a component which builds the ground of those scheduled areas and a component

26

5.2 KF1: Opencraft2-VR supports render distance up to 9

which builds trees on those scheduled areas.

The area that represents the terrain builder is small and does not increase fast when the

render distance increases. The latter subcomponents are largely multithreaded through

the C# job system. However, the C# job threads remain largely unused and mostly idle,

suggesting that these components contribute relatively little time.

2. player movement (client & server): This component is responsible for moving the

player character according to the input of the user and the terrain. Due to the deployment

of single user Opencraft2, which still uses client and server deployment, the difference for

the server and client can be measured. It is implemented by first fetching all terrain areas,

and then accessing only important parts

The time used by this script is constant over the render distance for the server, but

increasing for the clients, the times spent in each server and client are still larger than the

terrain update. The large time spent is supposedly due to the implementation fetching all

terrain areas after some nonscientific extra measurements. The reason why the server time

spent in the movement is unclear.

3. terrain synchronization: The terrain synchronization component in the figure is a

C# job managed by a subcomponent of the networking library that keeps the world on the

client and server synchronized. It does this by doing the game logic of specific objects on

the server and pushing state updates to a replica (ghost object) on the client, the client can

then interpolate between these state updates to allow additional updates for smoothness.

The terrain synchronization job is the fastest growing component when increasing the

render distance. This component is also the cause of a large amount of variation in the

frame time, as problem 5.1a shows. The linear increase of the frame time can be explained

by the linear increase in the world size on which the terrain depends.

4. Other scripts: The time for this component has been calculated using the total time

for the scripts in the player loop and subtracting all the other plotted script updates time.

The area in the graph grows with the render distance, which means that there are still

more components that are growing with the render distance; more work is required to

identify these components and improvements to the system.

5. Frame synchronization wait: This component keeps the game loop frequency syn-

chronized with the refresh rate of the headset. The component lives in the oculus XR

plugin (see Section 4.3.2) which is not open source. A forum post (39) states the oculus

27

5. EVALUATION

plugin will wait when the engine is producing faster than the headsets 72 display refresh

rate to prevent too many frames too fast. Due to the closed source of the Oculus plugin

used, we have not been able to verify the implementation or find more details for this

component.

The figure shows that the area of the frame synchronization wait component starts large

and shrinks fast. The explanation presented by (39) is applicable at small render distances,

as the mean frame time is very close to the 72 FPS with high variance (see Section KF1).

Samples with a frame time below the green line that the Oculus VR plugin will wait.

6. Other loop components This area represents the rest of the loop components of

the game that are not updates to the game logic script. As the figure shows, the area

representing these components is constant.

To conclude, Opencraft2-VR’s 9 is low compared to (the most popular MVE) Minecraft’s

render distance of 12, where Minecraft also has a more complex and taller world compared

to Opencraft2-VR. We advise MVE developers targeting VR applications to take care when

setting higher render distance requirements, as they are not trivial to achieve.

Additionally, components implemented with a time complexity depending on the number

of areas cause great problems when dealing with large worlds. Terrain synchronization

and player movement times are examples of components with such time complexities.

Terrain synchronization is the main problem that holds the frame time back. The terrain

synchronization time grows fast and also brings a large amount of variance to the frame

time. The player movement time also increases as the render distance increases, and is a

good candidate for the next problem when the terrain synchronization time is reduced.

Because terrain synchronization and the client-server deployment are not necessary in

single-user MVEs, MVE developers who want to build and simulate large worlds should

attempt to find alternatives to continuously synchronizing unchanging worlds, as this ar-

chitectural decision really holds Opencraft2 world complexity back.

5.3 KF2 Opencraft2-VR frame time is better on MQ3 than
its predecessors and comparable to PC

As the performance of standalone devices is not yet adequately understood (see Section 1),

it is important to compare these devices with traditional simulator platforms such as the

PC, to create a reference frame. We show that MQ3 performance is comparable to PC

and better than MQ2 and MQP.

28

5.3 KF2 MQ3 outperforms its predecessors and performs similar to PC

M
Q2

M
Q3 M
QP PC

25

50

75

100

fra
m

e
tim

e
[m

s]

0 50 100 150
time [s]

40

60

80

100

CP
U

us
ag

e
[%

] MQ2
MQ3
MQP
PC

Figure 5.2: Frame time and CPU usage are different across different platforms.

To come to this conclusion, an experiment was run using our platform built in Chapter 4.

The same workload, that is, the player flight workload, was run with a render distance of

18 for all bench-marked hardware. The four selected hardware platforms were MQ2, MQP,

MQ3, and PC. The Unity profiler was turned off for the experiment, to mitigate overhead

and provide more relevant results.

The experiment produced 5.2 similar to KF1 in which the different platforms are enu-

merated on the horizontal axis and the frame time in milliseconds is shown on the vertical

axis. The data is again shown in box plots where the whiskers represent the first and

ninety-ninth percentile, the boxes show the range of 50% of the data, and the median is

annotated with the green lines in these boxes.

The figure shows the mean frame time for MQ3 to be the lowest, closely followed by

PC. The frame times of MQ2 and MQP are, respectively, farther away. The spread of

frame times are also quite different, where the MQ2 and MQP have a significantly larger

difference between their whiskers and larger boxes compared to the MQ3 and PC.

As applications running on different devices are the same, we identify the lower layers of

the technology stack as the reasons for the difference in performance. However, the lower

layers are proprietary and there may be many reasons in operating system, XR runtime,

hardware, etc. We hypothesize that this difference is not due to the processor upgrade

MQ3 has over its predecessors as the CPU utilization of the MQ3 is much higher than the

CPU utilization of the MQ2 and MQP, which suggests that there is some other bottleneck

in the system that keeps the CPU from delivering strong performance.

In conclusion, MQ3 is the best Opencraft2-VR platform of the evaluated selection. The

MQ3 outperforms its predecessors, which is surprising as the MQP is Meta’s flagship

29

5. EVALUATION

device and the MQ3 achieves performance surprisingly close to PC. We discourage MVE

developers from targeting MQP and MQ2.

5.4 KF3 Single-user Opencraft2-VR should not be offloaded
to a server

(40) shows the benefits of offloading terrain generation, we explore the possibility and

effectiveness of offloading the server part of Opencraft2-VR to a new device. We show

using an experiment that offloading does not increase the application performance at our

render distance.

To conclude this finding, an experiment was run using our platform built in Chapter 4.

The player flight workload was run using a render distance of 18, producing one data point

where the server and the client run on MQ3 (onloaded) and one data point where the

client runs on MQ3, and the server runs on the experiment director connected over Wi-Fi

(onloaded) (see Section 5.1 for hardware details).

The experiment produced Figure 5.3, consisting of 3 subplots representing frame time

(left) and CPU usage (right):

The left subplot shows the frame time on the vertical axis, with the configurations on

the horizontal axis. The data is shown in box plots for each configuration, where the lower

whisker is in the lowest 1%, the upper whisker is in the upper 1%, the box represents the

range of 50% of the data, and the bar within the box represents the median. Below the

boxes, some bar charts represent where this frame time is going within the application.

All areas in the bar charts shaded blue (the first 5 when reading the legend top-down)

represent subcomponents in the game logic components of the game loop, where other

colors represent subcomponents of other game loop components. The measured compo-

nents include: the terrain update and terrain meshing which are related to building the

terrain; the movement components which are related to calculating how a player should

move through the world; the terrain synchronization update, which is a subcomponent

of the network library that sends game state between the server and client components;

and other scripts and the rest of the game loop which represent components not explicitly

measured.

The right subplots show the CPU usage for both configurations. On the vertical

axes, the CPU usage is displayed, where the horizontal axis displays the time over the

experiment. The data is displayed with a line for every CPU core and one line (blue) for

the mean of all CPU cores.

30

5.4 KF3 Single-user Opencraft2-VR should not be offloaded to a server

of
flo

ad
ed

on
lo

ad
ed

0

5

10

15

20

25

30

fra
m

e
tim

e
[m

s]

0 25 50 75 100 125 150
time [s]

0

50

100

CP
U

us
ag

e
[%

] offloaded

0 25 50 75 100 125 150
time [s]

0

50

100

CP
U

us
ag

e
[%

] onloaded

terrain update
player movement (server)
player movement (client)
Ghost update
other scripts

Cadence wait
terrain meshing
other loop components
cpu
cpu0

cpu1
cpu2
cpu3
cpu4
cpu5

Figure 5.3: Difference in frame time and CPU usage between a deployment with an offloaded
server and an onloaded server

The figure shows that the mean frame time is slightly lower when the server is offloaded

(17.33 ms) compared to the configuration where the server is onloaded (17.46 ms). The

time saved by eliminating the terrain update is around 2 ms, as shown by the darker

blue components disappearing. However, this extra time is lost due to a larger terrain

synchronization time, as shown by the larger area representing terrain synchronization.

Some of the increasing subcomponents of the script component also shrink when the server

is offloaded, which is being offset by some unmeasured components in the rest of the game

loop. More insight into the missing components is needed in future work.

The CPU usage of the top core increases to 100%, after which it starts doing a strange

dance with another core. It is hypothesized that this is the kernel switching some allocation

strategy or memory swapping when memory starts running out. This hypothesis comes

from the observation that the android out-of-memory killer killed both applications 110

31

5. EVALUATION

seconds into the experiment, And the start of this dancing perfectly coincides with a

lowering spike in memory usage. The evaluation of this repository has been left to future

work, as it is hardly relevant.

In conclusion, offloading does not increase the application performance at our render

distance. The CPU usage is similar, the time saved by eliminating components is offset

by others, and the mean and median frame times do not change much when changing

configuration. We do not recommend MVE developers to offload the server component to

another machine when developing single-user MVEs.

5.5 Limitations and/or threat to validity

A limitation of this experiment setup when comparing different platforms is a different

deployment for PC and Meta Quest devices. As Linux does not have ADB, an alternative

to ADB USB was searched for Linux, but this came up empty-handed. This is the reason

why the PC is connected with SSH (Secure shell) to the experiment controller over a 1GPS

Ethernet cable to a Fritz box 4040 router, which is connected via Wi-Fi to the experiment

controller.

An additional limitation to the PC is the required Linux OS, as it is the only OS sup-

ported by our system-level data collector. The common OS for gaming on desktop form

factor devices is Windows, which does not have the /proc file system the data collector

is based on. This created the need to dual boot Linux (the original PC had windows),

but the B.Sc. thesis student would not like his operating system and storage drives to be

messed with, so an off-the-shelf (slow) HDD was used.

A limitation to Opencraft2-VR is its memory usage; when running render distances

which are challenging for Quest devices, but not challenging enough to slow the simulator

down, the out-of-memory killer kills Opencraft2-VR, which strictly limits the time we can

spend to measure frame times over longer application lifetime. A fix for this would be to

implement a feature in which terrain areas far away from the player can be removed to

allow memory to be reclaimed; more future work is needed to implement such a feature.

5.6 Conclusion

In conclusion to our research question RQ3, VR is ready for MVEs, but Opencraft2-VR

can still improve VR performance. We conclude this as the performance of the MQ3 in

Figure 5.2 is comparable to the gaming computer, which is the origin platform of the most

32

5.7 Advice for MVE VR developers

popular MVE (Minecraft). The problems with terrain synchronization discussed in KF1

should be solved, which was again shown to be a problem in KF3, as there is much to gain

by fixing this problem. We advise VR MVE developers to refrain from targeting MQ2 and

MQP and suggest MQ3; we also suggest finding a more performant solution for keeping

large worlds synchronized; and suggest a fully central world when targeting a single-user

MVE.

5.7 Advice for MVE VR developers

To assist future work and MVE developers, we summarize the advice found while answering

these research questions for researchers and developers in this field. We present this advice

in a few pieces of advice (PA):

PA1. Target the Meta Quest 3 instead of the older Meta Quest 2 and Pro. In Section 5.3 we

found a significant improvement for the Meta Quest 3 compared to its predecessors

when stressed by our environmental workloads.

PA2. Consider minimizing terrain updates or eliminating the need for them if possible.

In 5.2 we found large parts of the frame time spent on synchronizing terrain in the

client world with terrain in the server world running on the same VR HMD. We

advise merging these worlds when running a local game, and to take care in picking

your update strategy developing a client server deployment.

PA3. Do not assume offloading terrain building to a server always improves performance.

In 5.4, we found offloading Opencraft2-VR server to an edge device did not improve

performance. This is counterintuitive as we have seen performance improvements

with similar optimizations like in (40).

33

5. EVALUATION

34

6

Related Work

To the best of our knowledge, we are the first to build an MVE on VR in an academic work.

The commercial MVE Minecraft(41) and its community (42) have made VR versions, but

none of these has been documented in a paper. Other works have built other VR appli-

cations and analysed the performance of other MVEs. Furthermore, (43) has investigated

technical challenges involving scalable VR environments but has not yet built a system to

address these challenges.

Other works have investigated VR systems and applications, which we summarise and

compare in Section 6. The works related to the MVE part of this work are enumerated in

Section 6.

Related VR work

Many other works have built standalone VR applications, but none of them are MVEs like

Opencraft2-VR. This is an important distinction, as the performance profile of an MVE is

much different than traditional games (24).

(14) investigated VR performance in and between different offload strategies. In stan-

dalone HMDs, they found that GPU usage is significantly higher than CPU usage. They

also show that wired and wireless offloading may negatively affect the frame time and

identify network requirements for wireless offloading.

(44) builds PlayBricks, a standalone VR application where users can create buildings

from shapes to demonstrate a performance problem when 2000+ cubes are placed in the

rendered environment. The PlayBricks application features an optimisation to a problem

created by Meta’s Application spacewarp optimisation, which significantly increases the

amount of cubes able to exist in a scene.

35

6. RELATED WORK

(45) Built two applications for standalone VR: WeldVR and SprayVR, where the user can

exercise welding and spraypainting in a cheaper environment. During their implementation,

they encountered multiple problems including large script updates like we found in 5.2. (45)

also found additional performance problems unexplored by us involving rendering.

(46) Rebuilt A VR application from (47) for standalone VR, which suffered a performance

problem and found that the standalone MQ2 was much weaker than the PCVR setup used

by the original application.

Additional non-standalone VR applications have also been developed by (8, 9, 10, 11,

23, 34, 48, 49) with offloaded configurations like WiFi offloading or tethered offloading.

Related MVE work

However, no work has created an MVE on VR like Opencraft2-VR, some works did find

overlapping ideas. We show how MVEs can be limited by deployment and implementation

when scaling world size and similarly, other works have shown limitations of MVEs through

experimental data and benchmarking.

(50) developed Yardstick, a benchmark for Minecraft-like services, where the server per-

formance of MVE was tested with high player counts. Using their benchmark, they found

similarly to us that terrain synchronisation between worlds can be a problem for the net-

work, where we concluded that these synchronisations can strain the compute hardware

available. Furthermore, (50) found how minecraft-like services are poorly paralelised, have

different performance profiles between different server implementations and scale to hun-

dreds of players.

(24) went further and developed Meterstick, a similar benchmark for Minecraft servers.

Using Meterstick, the authors found how environmental workloads like terrain generation

were hard for the systems under test and caused a lot of performance variability. (40)

found an improvement for this and increased performance with a serverless extention,

which provides additional compute resources when needed.

36

7

Conclusion

Modifiable virtual environments in virtual reality are desirable, as they may help bring

existing VR technologies to the next level. Virtual reality is a fast evolving technology

with strong performance requirements, for which the exact performance and combination

with MVEs remain undocumented. In this work, we try to narrow this research gap with

Opencraft2-VR, an MVE in VR, and Yardstick-VR an experiment framework for this MVE

by answering a few research questions.

RQ1 How to design an experiment framework to compare MVE performance

on established gaming platforms and a standalone VR headset? In Chapter 3 we

designed a multi-machine setup that supports multiple platforms including standalone VR

HMDs. We looked at the needs of the stakeholders in this system and their requirements.

There we found a requirement and designed for automated experiments with an experiment

controller; we found a requirement for workloads, and designed a workload that pushes the

complexity of the MVE world to its limits; we found a requirement for overhead when

collecting data, and found a solution with a light data collector and heavy data collector.

RQ2 How to implement the design of Chapter 3 was answered by Chapter 3,

where we implemented a prototype of the design. We successfully implemented Open-

craft2 for Android and Opencraft2-VR, we also implemented the experiment framework

infrastructure with the experiment controller, and the data collectors.

RQ3 How do MVEs perform on VR compared to traditional MVE platforms?

In 5 we found the newest VR devices (Meta Quest 3) handle our terrain workload as

well as a PC, but Opencraft2-VR has limitations. Performance problems involving world

synchronization between client and server worlds increase frame time and risk of motion

sickness. Additionally, we found the previous VR devices (Meta Quest Pro, Meta Quest 2)

37

7. CONCLUSION

perform worse than their newer versions. An attempt to improve performance by offloading

the server did not yield measured improvements worth the cost.

Limitations and future work

When writing this work, we found multiple limitations that restrict our ability in our

results. We stress and summarize them here to reduce the risk of incorrect interpretation

and conclusions.

No implementation of Application Spacewarp

We use Application Space warp(21) when defining par in 2.1.1, but Application space warp

has to be specifically enabled for VR applications built on Unity. Due to the late realization

of this fact, Application Space warp has yet to be implemented in Opencraft2-VR and KF1

may change depending on if application space warp is enabled.

Hardware limitations for PC

As described in 5.5, we used a PC with an outdated HDD and an unconventional Linux

Operating system as most gaming PCs use a faster SSD and Windows. As our application

barely interacts with storage, we do not expect the impact of these choices to be large as

Ubuntu is an established OS for other applications than games.

Terrain despawn mechanism

When implementing and designing our player flight workload in 3.6. We were restricted by

a feature despawning and reclaiming memory of spawned terrain, which went out of view

distance. This caused practically the same problems as a memory leak, and the workload

could not run for longer than 2.5 minutes on some render distances. This limited our

findings as smaller sample sizes may produce statistically insignificant results.

Experiment reruns

When running experiments, common to standard practice, the experiment was not run

multiple times, which restricts us in the same way. To increase statistical significance the

experiments should be run the common 5 times to increase and strengthen this statistical

significance.

38

Measured metrics

In 5.2 We find the script update component (a subcomponent of the player loop) still has

scripts increasing in time when render distance grows. From this, we concluded that more

work is needed to identify these scripts, as they may lead to problems when the Ghost

update problem is solved.

39

7. CONCLUSION

40

References

[1] Meta Platforms Has Spent $46 Billion on the Metaverse Since 2021, But

It’s Spending Twice As Much on This 1 Thing. iii, 1

[2] Precedence research. Video Games Market Size To Attain USD

664.96 Billion By 2033 — precedenceresearch.com. https://www.

precedenceresearch.com/video-game-market. [Accessed 11-08-2024]. iii

[3] Ghaliya Alfarsi. A Review of Virtual Reality Applications in an Educa-

tional Domai. International Journal of Interactive Mobile Technologies (iJIM), 15,

11 2021. 1

[4] Mohd Javaid and Abid Haleem. Virtual reality applications toward medical

field. Clinical Epidemiology and Global Health, 8(2):600–605, 2020. 1

[5] Meta. Meta quest 3: New mixed reality VR headset – shop now. 1

[6] Apple. Apple vision pro. 1

[7] The 10 Best-Selling Video Games of All Time. 1

[8] Yining Lang, Liang Wei, Fang Xu, Yibiao Zhao, and Lap-Fai Yu. Syn-

thesizing Personalized Training Programs for Improving Driving Habits

via Virtual Reality. In 2018 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR), pages 297–304, 2018. 1, 36

[9] Aurélie CONGÈS, Alexis EVAIN, Frédérick BENABEN, Olivier CHAB-

IRON, and Sébastien REBIÈRE. Crisis Management Exercises in Virtual

Reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Ab-

stracts and Workshops (VRW), pages 87–92, 2020. 2, 36

41

https://www.fool.com/investing/2024/04/01/meta-platforms-has-spent-46-billion-on-the-metaver/
https://www.fool.com/investing/2024/04/01/meta-platforms-has-spent-46-billion-on-the-metaver/
https://www.precedenceresearch.com/video-game-market
https://www.precedenceresearch.com/video-game-market
https://www.sciencedirect.com/science/article/pii/S2213398419304294
https://www.sciencedirect.com/science/article/pii/S2213398419304294
https://www.meta.com/nl/en/quest/quest-3
https://www.apple.com/apple-vision-pro/
https://www.ign.com/articles/best-selling-video-games-of-all-time-grand-theft-auto-minecraft-tetris

REFERENCES

[10] Annette Mossel, Mario Froeschl, Christian Schoenauer, Andreas Peer,

Johannes Goellner, and Hannes Kaufmann. VROnSite: Towards immer-

sive training of first responder squad leaders in untethered virtual reality.

In 2017 IEEE Virtual Reality (VR), pages 357–358, 2017. 2, 36

[11] Janne Heirman, Shivam Selleri, Tom De Vleeschauwer, Charles

Hamesse, Michel Bellemans, Evarest Schoofs, and Rob Haelterman. Ex-

ploring the possibilities of Extended Reality in the world of firefighting.

In 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality

(AIVR), pages 266–273, 2020. 2, 36

[12] Jonas Schild, Sebastian Misztal, Beniamin Roth, Leonard Flock,

Thomas Luiz, Dieter Lerner, Markus Herkersdorf, Konstantin Weaner,

Markus Neuberaer, Andreas Franke, Claus Kemp, Johannes Pran-

qhofer, Sven Seele, Helmut Buhler, and Rainer Herpers. Applying

Multi-User Virtual Reality to Collaborative Medical Training. In 2018 IEEE

Conference on Virtual Reality and 3D User Interfaces (VR), pages 775–776, 2018. 2

[13] Jacqueline M. Fulvio, Mohan Ji, and Bas Rokers. Variations in visual sen-

sitivity predict motion sickness in virtual reality. Entertainment Computing,

38:100423, 2021. 2

[14] Matthijs Jansen, Jesse Donkervliet, Animesh Trivedi, and Alexandru

Iosup. Can My WiFi Handle the Metaverse? A Performance Evalua-

tion Of Meta’s Flagship Virtual Reality Hardware. In Companion of the

2023 ACM/SPEC International Conference on Performance Engineering, ICPE ’23

Companion, page 297–303, New York, NY, USA, 2023. Association for Computing

Machinery. 2, 4, 7, 15, 21, 35

[15] Jerrit Eickhoff. Polka: A Differentiated Deployment System for Online

and Streamed Games, Meta-verses, and Modifiable Virtual Environments,

mar 2024. 4, 15

[16] Minxia Yang, Jiaqi Zhang, and Lu Yu. Perceptual Tolerance to Motion-

To-Photon Latency with Head Movement in Virtual Reality. In 2019 Picture

Coding Symposium (PCS), pages 1–5, 2019. 5

42

https://www.sciencedirect.com/science/article/pii/S1875952121000203
https://www.sciencedirect.com/science/article/pii/S1875952121000203
https://doi.org/10.1145/3578245.3585022
https://doi.org/10.1145/3578245.3585022
https://tinyurl.com/yuudw8ku
https://tinyurl.com/yuudw8ku

REFERENCES

[17] Kevin Boos, David Chu, and Eduardo Cuervo. FlashBack: Immersive Vir-

tual Reality on Mobile Devices via Rendering Memoization. In Proceedings

of the 14th Annual International Conference on Mobile Systems, Applications, and

Services, MobiSys ’16, page 291–304, New York, NY, USA, 2016. Association for

Computing Machinery. 5

[18] Jialin Wang, Rongkai Shi, Wenxuan Zheng, Weijie Xie, Dominic Kao, and

Hai-Ning Liang. Effect of Frame Rate on User Experience, Performance,

and Simulator Sickness in Virtual Reality. IEEE Transactions on Visualization

and Computer Graphics, 29(5):2478–2488, 2023. 5

[19] Jan-Philipp Stauffert, Florian Niebling, and Marc Erich Latoschik. Ef-

fects of Latency Jitter on Simulator Sickness in a Search Task. In 2018 IEEE

Conference on Virtual Reality and 3D User Interfaces (VR), pages 121–127, 2018. 5

[20] Jann Philipp Freiwald, Nicholas Katzakis, and Frank Steinicke. Cam-

era time warp: compensating latency in video see-through head-mounted-

displays for reduced cybersickness effects. In Proceedings of the 24th ACM

Symposium on Virtual Reality Software and Technology, VRST ’18, New York, NY,

USA, 2018. Association for Computing Machinery. 5, 9

[21] Jian Zhang, Neel Bedekar, Leonard Tsai, and Xiang Wei. Introducing

Application SpaceWarp, 2021. 5, 38

[22] Meta. Meta Quest Virtual Reality Check (VRC) Guidelines | Oculus De-

velopers. 6

[23] Alec Rohloff, Zackary Allen, Kung-Min Lin, Joshua Okrend, Chengyi

Nie, Yu-Chia Liu, and Hung-Wei Tseng. OpenUVR: an Open-Source Sys-

tem Framework for Untethered Virtual Reality Applications. In 2021 IEEE

27th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages

223–236, 2021. 6, 36

[24] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meter-

stick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games. In Proceedings of the 2023 ACM/SPEC International Con-

ference on Performance Engineering, ICPE ’23, page 173–185, New York, NY, USA,

2023. Association for Computing Machinery. 8, 9, 14, 35, 36

43

https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1145/3281505.3281521
https://doi.org/10.1145/3281505.3281521
https://doi.org/10.1145/3281505.3281521
https://developer.oculus.com/blog/introducing-application-spacewarp/URL
https://developer.oculus.com/blog/introducing-application-spacewarp/URL
https://developer.oculus.com/resources/publish-quest-req/
https://developer.oculus.com/resources/publish-quest-req/
https://doi.org/10.1145/3578244.3583724
https://doi.org/10.1145/3578244.3583724
https://doi.org/10.1145/3578244.3583724

REFERENCES

[25] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. Dyconits: Scal-

ing Minecraft-like Services through Dynamically Managed Inconsistency.

In 2021 IEEE 41st International Conference on Distributed Computing Systems

(ICDCS), pages 126–137, 2021. 8

[26] Anjul Patney, Joohwan Kim, Marco Salvi, Anton Kaplanyan, Chris

Wyman, Nir Benty, Aaron Lefohn, and David Luebke. Perceptually-based

foveated virtual reality. In ACM SIGGRAPH 2016 Emerging Technologies, SIG-

GRAPH ’16, New York, NY, USA, 2016. Association for Computing Machinery. 9

[27] Radu Apsan, Damla Ural, Paul Daniëlse, Vlad-Andrei Cursaru, Eames

Trinh, Jesse Donkervliet, and Alexandru Iosup. Towards a Workload

Trace Archive for Metaverse Systems. In Companion of the 15th ACM/SPEC

International Conference on Performance Engineering, ICPE ’24 Companion, page

204–210, New York, NY, USA, 2024. Association for Computing Machinery. 14, 15,

18, 24

[28] Sa Wang, Zhengli Mao, Changhai Zeng, Huili Gong, Shanshan Li, and

Beibei Chen. A new method of virtual reality based on Unity3D. In 2010

18th International Conference on Geoinformatics, pages 1–5, 2010. 15

[29] Alexander Novotny, Rowan Gudmundsson, and Frederick C Harris Jr.

A Unity Framework for Multi-User VR Experiences. In Conference on Com-

puters and Their Applications, 69, pages 13–21, 2020. 15

[30] Cosmina Cosmina. A Glance into Virtual Reality Development Using Unity.

Informatica Economica, 22:14–22, 09 2018. 15

[31] Jichao Wang, Lucas Phillips, John Moreland, Bin Wu, and Chenn Zhou.

Simulation and visualization of industrial processes in unity. In Proceedings

of the Conference on Summer Computer Simulation, SummerSim ’15, page 1–7, San

Diego, CA, USA, 2015. Society for Computer Simulation International. 15

[32] Jack Brookes, Matthew Warburton, Mshari Alghadier, Mark Mon-

Williams, and Faisal Mushtaq. Studying human behavior with virtual

reality: The Unity Experiment Framework. Behavior Research Methods,

52(2):455—-463, April 2020. 15

44

https://doi.org/10.1145/2929464.2929472
https://doi.org/10.1145/2929464.2929472
https://doi.org/10.1145/3629527.3651421
https://doi.org/10.1145/3629527.3651421

REFERENCES

[33] Diar Abdlkarim, Massimiliano Di Luca, Poppy Aves, Mohamed Maaroufi,

Sang-Hoon Yeo, R. Chris Miall, Peter Holland, and Joeseph M. Galea.

A methodological framework to assess the accuracy of virtual reality hand-

tracking systems: A case study with the Meta Quest 2. Behavior Research

Methods, 56(2):1052–1063, February 2024. 15

[34] Manuel Trinidad-Fernández, Benoît Bossavit, Javier Salgado-

Fernández, Susana Abbate-Chica, Antonio J. Fernández-Leiva, and

Antonio I. Cuesta-Vargas. Head-Mounted Display for Clinical Evaluation

of Neck Movement Validation with Meta Quest 2. Sensors, 23(66):3077,

January 2023. 15, 36

[35] Glowstone project. Glowstone. 16

[36] AtlargeResearch. Opencraft 1, October 2022. 16

[37] Minetest. Minetest. 16

[38] The Terasology Foundation. Terasology. 16

[39] jj unity. Other - XREarlyUpdate spikes any news?, 2020. 27, 28

[40] Jesse Donkervliet, Javier Ron, Junyan Li, Tiberiu Iancu, Cristina L.

Abad, and Alexandru Iosup. Servo: Increasing the Scalability of Modifi-

able Virtual Environments Using Serverless Computing. In 2023 IEEE 43rd

International Conference on Distributed Computing Systems (ICDCS), pages 829–840,

2023. 30, 33, 36

[41] Minecraft. 35

[42] Vivecraft. 35

[43] Andreas Haeberlen, Linh Thi Xuan Phan, and Morgan McGuire. Meta-

verse as a Service: Megascale Social 3D on the Cloud. In Proceedings of the

2023 ACM Symposium on Cloud Computing, SoCC ’23, page 298–307, New York, NY,

USA, 2023. Association for Computing Machinery. 35

[44] Youssef Samir Sadek Hosny, Mohammed A.-M Salem, and Ahmed Wahby.

Performance Optimization for Standalone Virtual Reality Headsets. In 2020

IEEE Graphics and Multimedia (GAME), pages 13–18, 2020. 35

45

https://glowstone.net/
https://github.com/atlarge-research/opencraft
https://www.minetest.net/
https://terasology.org/ModuleSite
https://forum.unity.com/threads/xrearlyupdate-spikes-any-news.1016095/
https://www.minecraft.net/en-us
http://www.vivecraft.org/
https://doi.org/10.1145/3620678.3624662
https://doi.org/10.1145/3620678.3624662

REFERENCES

[45] Nikola Rendevski, Konstantin Veljanovski, and Naile Emini. FPS Per-

formance Factors in Standalone Virtual Reality Applications. In 2023 58th

International Scientific Conference on Information, Communication and Energy Sys-

tems and Technologies (ICEST), pages 349–352, 2023. 36

[46] Sritrusta Sukaridhoto, Amma Haz, Evianita Fajrianti, and Rizqi Putri

Nourma Budiarti. Comparative Study of 3D Assets Optimization of Vir-

tual Reality Application on VR Standalone Device. International Journal on

Advanced Science, Engineering and Information Technology, 13:999, June 2023. 36

[47] Amma Liesvarastranta Haz, Muhtadin, I Ketut Eddy Purnama, Mauridhi

Hery Purnomo, and Sritrusta Sukaridhoto. Virtual Reality Application

for Co-Bot Training. In 2022 International Electronics Symposium (IES), pages

644–650, 2022. 36

[48] Ocean Hurd, Sri Kurniawan, and Mircea Teodorescu. Virtual Reality

Video Game Paired with Physical Monocular Blurring as Accessible Ther-

apy for Amblyopia. In 2019 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR), pages 492–499, 2019. 36

[49] Marc Herrlich, Ronald Meyer, Rainer Malaka, and Helmut Heck. De-

velopment of a Virtual Electric Wheelchair – Simulation and Assessment

of Physical Fidelity Using the Unreal Engine 3. In Hyun Seung Yang,

Rainer Malaka, Junichi Hoshino, and Jung Hyun Han, editors, Entertain-

ment Computing - ICEC 2010, pages 286–293, Berlin, Heidelberg, 2010. Springer

Berlin Heidelberg. 36

[50] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yard-

stick: A Benchmark for Minecraft-like Services. In Proceedings of the 2019

ACM/SPEC International Conference on Performance Engineering, ICPE ’19, page

243–253, New York, NY, USA, 2019. Association for Computing Machinery. 36

46

https://doi.org/10.1145/3297663.3310307
https://doi.org/10.1145/3297663.3310307

Appendix A

Code repository

The used code of Yardstick-VR can be found at https://github.com/atlarge-research/Opencraft-

2/tree/Opencraft2-VR. The code for the metric receiver can be found at https://github.com/atlarge-

research/measuring-the-metaverse/tree/opencraft2-VR-measurements.

47

	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Research methodology
	1.4 Thesis contributions
	1.5 Plagiarism declaration
	1.6 Thesis structure

	2 Background
	2.1 Virtual reality devices
	2.1.1 Motion sickness and performance requirements
	2.1.2 Common VR deployments

	2.2 Modifiable virtual environments
	2.2.1 System model
	2.2.2 Multi-user modifiable virtual environments

	3 Design of Yardstick-VR
	3.1 Stakeholders
	3.2 Use cases
	3.3 Requirements
	3.4 Design overview
	3.5 experiment controller
	3.6 Terrain workload
	3.7 Tracing workloads
	3.8 metric collector

	4 Implementation
	4.1 Implementation overview
	4.2 The experiment controller
	4.3 Opencraft2 and Opencraft2-VR
	4.3.1 Android version
	4.3.2 VR version
	4.3.3 Terrain workload
	4.3.4 Configurable render distance
	4.3.5 Terrain building bug

	4.4 Data collectors
	4.4.1 The selective profiler
	4.4.2 The Unity profiler
	4.4.3 The system profiler

	5 Evaluation
	5.1 Experimental setup
	5.2 KF1: Opencraft2-VR supports render distance up to 9
	5.3 KF2 MQ3 outperforms its predecessors and performs similar to PC
	5.4 KF3 Single-user Opencraft2-VR should not be offloaded to a server
	5.5 Limitations and/or threat to validity
	5.6 Conclusion
	5.7 Advice for MVE VR developers

	6 Related Work
	7 Conclusion
	References
	A Code repository

