
Vrije Universiteit Amsterdam

Bachelor Thesis

Benchmarking the performance impact of
mods on Minecraft-like games

Author: Guivari Dzar Amri (2723271)

1st supervisor: Jesse Donkervliet
2nd reader: Alexandru Iosup

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 23, 2024

ii

Abstract

Community created mods are important in extending the usability of an MVE,

and the Minecraft modding community shows the huge size of people using and

creating mods (60.9 Billion mod downloads for Minecraft in curseforge.com).

The lack of research into Minecraft modding, and the disorganization of the

modding community makes it a challenge for people to evaluate the perfor-

mance impact of mods. By finding performance impact, people may use the

data to improve their mods, and better conduct empirical research into mods.

In this work, we create a benchmark for Minecraft mods by designing, imple-

menting and conducting experiment using the created benchmark. We found

that mods that introduce new entities affect performance the most. We found

that mods produce lower performance impact in parallel as compared to indi-

vidually, with a decrease of 0.28%. Lastly, we find that mods that introduce

a new dimension have a noticable higher performance impact than mods that

introduce single-dimension features.

iv

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Research Questions . 2

1.3 Research Methodology . 3

1.4 Thesis structure . 3

2 Background 5

2.1 Minecraft as an MVE . 5

2.2 Minecraft Modding and Mod Loaders . 7

2.3 Curse Forge Platform . 9

3 Design 11

3.1 Requirements . 11

3.2 Design Overview . 13

3.3 Benchmarking Process . 13

3.3.1 Pre-configuration . 13

3.3.2 Benchmarking . 15

3.3.3 Post-processing . 15

3.4 Performance Metrics . 15

3.4.1 Tick Duration . 16

3.4.2 Lag Spikes . 16

3.5 System Under Test . 17

3.5.1 Modded Minecraft Version . 17

3.5.2 Mods for Benchmarking . 17

3.6 Workload . 18

3.6.1 Player Simulation . 18

3.6.2 Server and World configuration . 18

i

CONTENTS

4 Implementation 21

4.1 Overview . 21

4.2 Forge Mod Loader . 22

4.3 Implementing Player Emulation . 22

4.4 Collecting Performance Metrics . 23

5 Experiment Results 25

5.1 Experiment Setup . 25

5.2 Main Findings . 28

5.2.1 MF1: Entity-related processes have more performance impact than

managing chunks . 29

5.2.2 MF2: Performance impact higher in mod-implemented dimension

compared to base Vanilla dimension when considering average per-

formance . 30

5.2.3 MF2: Increase in MSPT higher in sum of mods run individually

compared to mods run in parallel . 31

5.2.4 Spark profiler overhead . 32

5.3 Limitations and/or threat to validity . 33

6 Related Work 35

7 Conclusion 37

References 39

A Appendix 41

ii

1

Introduction

Online Modifiable Virtual Environments are a popular modern way for individuals to

connect with each other. They provide a simulated space people may use to interact with

each other, regardless of distance. These spaces can be used for socialization, education,

and general recreational use. The ability to modify the virtual space can give users a sense

of belonging to the MVE, creating a bond and possibly fostering a community. This is

especially useful in situations where people cannot meet each other in-person, such as the

case during the Covid-19 pandemic where a popular MVE, Minecraft, assisted people to

socialize.(1). In 2023, Minecraft reached 300 million sales (2). It is one of the most popular

MVEs, and has also facilitated education (3).

Modding is an important activity in MVEs. Minecraft allows the use of modification

(mods), which are extensions to the system that can add, optimize, and modify features.

Modding in Minecraft is popular, and there is a massive community that uses Minecraft

mods. Mods have been used for education (4), health (5) One of the most popular Minecraft

mod distribution websites, Curse Forge, lists over 179.4 thousand mods, and 60.8 billion

mod downloads (6). This does not include mods that have been de-listed, nor private

user-created mods.

1.1 Problem statement

Although popular, the impact of mods on system performance has not yet been thoroughly

investigated. Though regular mod creators and mod users might have an intuitive under-

standing on how mods affect performance, there is little empirical research on how mods

affect MVE performance. Moreover, without official recognition from Mojang, there is no

1

1. INTRODUCTION

definitive framework for modding. There are numerous different standards and conven-

tions, and a large number of created mods are one-off passion projects.

Research into the performance impact of mods in Minecraft may provide insight into the

common performance effects user-created mods have, and possibly assist in finding common

areas of weakness in user created mods that cause a significant performance impact. A

benchmark would provide the tools to facilitate this type of research.

This thesis proposes the design and implementation of a benchmark for mods in Minecraft-

like applications. The designed benchmark should evaluate performance impact of user-

created mods within Minecraft.

1.2 Research Questions

RQ1. How to design a benchmark for comparing Modded MVE performance

between different mods?

Mods can vary very differently in regards to features, implementation and intended

use. With this concern in mind, how can we fairly compare mods? Similar mods may

provide identical functionalities, but require the player to do different actions. This

concern impacts the design of the benchmark workload. The designed benchmark

should eliminate as much overhead as possible, outside of use of the mod. This

applies to the design of player simulation, experiment procedure, and the system

used to run the mods.

RQ2. How to implement such a benchmark? To fairly compare the performance

impact of mods in an MVE, the implementation following the design addressing RQ1

should be implemented. However, with little research into Minecraft mods, there is

not a readily available set of tools to use to create a fair benchmark. There exists

tools to facilitate player simulation, and tools to collect Minecraft system metrics,

but they are rarely used with mods in mind. Another concern is the implementation

of a fair player simulation workload. At which point does the implemented workload

have enough features that covers a "sufficient" number of mod features? The design

will have to take into consideration a tradeoff between the ability to use all mod

features, and the fairness of the workload given to each mod being benchmarked.

RQ3. How to use the benchmark to compare the performance of mods on

MVEs? Comparisons between performance impact would need collected metrics

from experiments using the benchmark implented to address RQ3. Such metrics

2

1.3 Research Methodology

should give insight onto the severity of the performance impact. Additionally a pro-

filer should be used on the MVE to obtain information about system processes, giving

further insight onto the areas of interest in the MVE which impacts performance.

For studying the performance impact of a single mod, it would be best to compare

it with a base version of the MVE with the same workload. The design should allow

such comparisons with an unmodded version of Minecraft.

1.3 Research Methodology

To answer the research questions, we will design and implement a suitable benchmark,

which will then be used to compare the performance impact of mods in the Minecraft

MVE.

Addressing RQ1, the benchmark will be designed for use on a modded version of

Minecraft, supporting a popular mod loader, the Forge Modloader. Modloaders are ex-

plained in detail in Section 2.2. The benchmark will support automated testing environ-

ments, increasing consistency while conducting experiments.

Addressing RQ2, we will make use of automation and workload emulation tools available

for Minecraft. These tools will be modified to support a modded Minecraft system.

Addressing RQ3, experiments using the implemented benchmark will be conducted to

compare the performance impact between Minecraft mods within a mod category. A metric

collector and profiler will be used to obtain relevant metrics.

1.4 Thesis structure

The background section will provide information on how the Minecraft system operates, the

common modding methods and problems regarding Minecraft modding, and an explanation

of Mod Loaders which is an essential part of using and creating mods. It also provides a

brief background of the Curse Forge platform which will dictate how this thesis categorizes

mods and chooses mods for experimentation.

The design section will explain the thought process behind the decisions made in creating

the benchmark, sections of benchmarking relevant to Minecraft modding, the reasoning

behind choosing relevant metrics, and the intended way to use the benchmark.

The implementation section will explain the tools used to implement the benchmark,

what configurations were conducted to facilitate mods, and the profilers concerned with

collecting metrics.

3

1. INTRODUCTION

The evaluation section will show the benchmark in use. Experiments regarding evalu-

ating the performance impact of world-generation related mods are conducted. And the

main findings from said experiments are explained.

Lastly in the conclusion section, the lessons learned from creating the benchmark are

explained. It also discusses the shortcomings of the benchmark, and possible future works

related to the thesis.

4

2

Background

This section describes Minecraft as an MVE, Mod Loaders, the Forge Mod Loader, and

the Curse Forge Platform.

2.1 Minecraft as an MVE

Minecraft allows users to interact with its environment consisting of blocks. Similar to

most MVEs, Minecraft uses a client-server architecture. The client handles presentation

of the game to the user such as rendering, particles, and GUIs. The server handles the

main game system: game events, calculations, registering, and file handling. In the case

of a singleplayer session, a local server is used. Mods are implemented using Mod Loaders

(MLs), which injects mod jar files into a Minecraft class launcer, explained in Section 2.2.

The Minecraft game loop is referred to as a tick. Figure 2.1 depicts how the Minecraft

tick operates. Under optimal conditions, the maximum length of a game tick is 50ms, which

results in a constant 20 ticks per second, resulting in a smoother gameplay experience. This

period of 50ms is referred to as the tick interval.

Within a tick, all server tasks such as game computations, file handling, game events,

and communication with players, is handled. The time taken to process these tasks are

referred to as the tick duration. As shown in 2.1, when the tick duration is shorter than

the tick interval, Minecraft makes the server wait for the full tick interval. This interval is

referred to as the tick wait duration. In some cases, scheduled tasks are done specifically

under this wait time.

Sometimes, the server is overloaded with tasks and takes more than 50ms to complete

its tasks. This is when the tick duration is longer than the tick interval. In this case, the

optimal 20 ticks per second is not met. This term is referred to as a server lag. Under

5

2. BACKGROUND

Tick Wait DurationTick Duration

Tick Interval

Figure 2.1: The Minecraft Game Loop.

34 34 34 34 34 34 34

34 33 33 33 33 33 34

34 33 32 32 32 33 34

34 33 32 31 32 33 34

34 33 32 32 32 33 34

34 33 33 33 33 33 34

34 34 34 34 34 34 34

Figure 2.2: Example of load levels re-
spective to a player in the center.

server lag, the game freezes and waits for the tick to process. No matter how long the tick

takes, Minecraft makes no attempt to abort and re-process the tick. Therefore bugs in the

system may fully cause the game to freeze for an infinite amount of time and cause the

server to time out.

In a less extreme case, the server is simply taking a longer time than usual to process a

tick. Very small server lag may not be noticeable to the player. But under cases where the

server struggles to keep up with the workload, a lag spike may occur where for a period

of time the server takes a significantly longer time to process a tick. Lag spikes are an

important application level metric as players do not enjoy playing a game which does not

run at the optimal rate. Lag spikes will be one of the metrics considered during benchmark

design in section 3.4.

Chunks are how Minecraft handles processing. Minecraft sections its processes per-

chunk. A chunk is a 16-by-16 area of the game. Within each chunk events may trigger

which sends "tickets" to the server, which it has to process. The amount of tickets a chunk

can send to a server is restricted by its load level. Figure 2.2 depicts an example of chunk

load levels respective to a player in the center. Understanding how Minecraft prioritizes

chunks are important in this thesis, as it affects the workload a server has to process.

Each chunk has a load level, which is inverse to the priority a chunk is given. The more

important a chunk is, the lower the load level. Chunks with a lower load level, levels 31

and lower, have all their game aspects available. When a chunk has a lower priority, such

6

2.2 Minecraft Modding and Mod Loaders

as when there is no player nearby, it is assigned a higher load level up to a point where no

game aspects are available. This is the case for chunks with a load level of 34 and higher.

As depicted in 2.2, load levels typically increase the further away a chunk is from a

player. The lower the load level, the more priority a chunk has, and the more ability for

it to give large workloads on the server. Therefore, performance impact is affected by how

the system processes chunks, and chunk levels.

2.2 Minecraft Modding and Mod Loaders

Minecraft has 2 editions - Java and Bedrock, written in Java and C++ respectively. While

the Bedrock edition supports more platforms (7), there is a lack of modding APIs and

support for Bedrock. Most mods are developed in Java, where even the developer of

Minecraft has given notes on how the Java edition works (8)].

Mods are usually in the forms of Java jars. These jars contain classes to be injected into a

Minecraft instance. Mods may introduce, add and modify new Java classes. Running mods

in parallel may have compatibility issues. Mods may overwrite each other’s classes or just

fully delete a class that another mod may rely on. If Mod developers do not communicate

upon a set of systems and rules, mods will not run in parallel. This problem is addressed

with Mod Loaders. Mod Loaders are further explained in the next section.

Mod Loaders (MLs) are modding frameworks that assists with the managing and loading

of mods. They are usually similarly structured to the MVE they’re based on, but with

the addition of a standardized system that assists with mod compatibility and dependen-

cies - introducing standardization previously mentioned missing. When loading mods for

Minecraft, they ensure mod dependencies are met and that the mod is compatible with the

Minecraft version. From a non-developer standpoint MLs also allow easy mod management

mainly: updating mod versions, turning mods on and off, solving dependency errors.

Essentially Mod Loaders follow the following steps:

1. Refers to a base Minecraft .jar for base classes.

2. Discovers .jar files in the mod folder.

3. Manages dependency injection of mod .jars, in reference to the base Minecraft .jar.

4. Managed jars are loaded in the ML’s custom class loader for implementation during

loading of the modded Minecraft system.

7

2. BACKGROUND

Mod jar

Custom
Mod Loader

jar

provides
mod classes

Base MC
jar

provides
base classes

Custom
Class Loader

MC
Launcher

delegates
to

delegates
to

Legend

Base Minecraft Mod Loader User-created mods

Figure 2.3: Simplified system model of a modded MVE.

Once this is done the new class objects are available to the Minecraft game environment.

There are multiple Mod Loaders available for Minecraft. That number may increase, it

is common for developers to attempt to develop a mod in a way that existing Mod Loader

systems do not support, and they end up making their own Mod Loader to facilitate their

needs. As mods were never officially recognized, the community surrounging mods lack

a standard or framework. Developers often clash when implementing Mod Loaders, to

the point where there is an oversaturation of frameworks available for Minecraft modding

(9). The ever increasing amount of Mod Loaders means that casual players may have to

constantly switch between systems, and that some mods may never be run simultaneously

as they were developed in different Mod Loaders.

Modding is further simplified with community-created mod libraries. They are mods

that act as an API to assist other mods, and do not add functionality by themselves. If a

mod developer used a mod library, they would have to rely on the library to support the

Minecraft version they want to develop their mod in.

8

2.3 Curse Forge Platform

Mod Downloads Mod Category
Just Enough Items 340.3M Map & Information, API & Library
Mouse Tweaks 253.6M Utility & QoL, Storage, Miscellaneous
Journey Map 233.8M Map & Information
Bookshelf 214.3M Server Utility, API & Library, Miscellaneous
Appleskin 214.3M Food, Map & Information
Controlling 213.0M Utility & QoL, Cosmetic
AutoRegLib 186.1M API & Library
Clumps 184.8M Utility & QoL, Storage, Server Utility
Mantle 179.4M API & Library
Storage Drawers 170.5M Storage, Cosmetic

Table 2.1: A list of the top Minecraft Versions listed in Curse Forge.

2.3 Curse Forge Platform

Curse Forge is a mod distribution platform providing an extensive collection of mods for

games. As of writing, Curse Forge hosts over 500,000 mods for 89 games. The biggest

Mod collection in Curse Forge is Minecraft with 177.3 thousand mods, and 59.8 billion

Mod downloads. Curse Forge is the most popular Minecraft mod distribution platform.

Regarding Minecraft, Curse Forge also lists other MVE extensions aside from Mods.

These include shaders, data packs, resource packs, worlds, and Modpacks. This paper will

solely focus on mods.

For each mod a developer lists on Curse Forge, they may also give their mod a category

tag, upload several versions of the mods which can be labelled with the Minecraft and

Mod Loader version they support, list the mod dependencies, and provide important links

to external sites such as the mod’s source repository or documentation. Curse Forge is

practical for both developers and players.

In this paper, most of the decisions regarding mods are made with Curse Forge in Mind.

This affects selection of Mods to benchmark, the selection of a Mod Loader and analyzing

user mod categories.

9

2. BACKGROUND

10

3

Design

This section answers RQ1. It details the main components of the modding performance

benchmark. This benchmark allows for automation of experiments to produce semi-

replicable results. The benchmark uses a client-to-server system, with configuration fea-

tures that allow the user to modify the benchmark environment to imitate an actual use

case.

3.1 Requirements

The common requirements for a benchmark are considered, following requirements com-

monly found in the design of any benchmark. Extended requirements are added in relevant

to this paper, chosen in accordance to the Benchmark’s intended use case and aim.

The requirements listed below are applicable to the benchmark being designed. The

descriptors of these requirements explain how they are relevant to the benchmark developed

in this thesis. It also explains why it is difficult to address these requirements.

R1. Fairness The benchmark should limit bias from factors outside of the testing envi-

ronment. Any overhead present, from profilers or other processes running from the

machine conducting the benchmark, should not introduce unaccounted variance in

performance impact measured by the benchmark. If there is unaccounted overhead,

the measured performance impact may not be representative of the mod being bench-

marked. If the overhead varies depending on the mod used, it may give affected mods

unintended advantages in the performance impact it produces. This is difficult as

low-overhead profilers have to be used, a consistent and replicable experimentation

process will have to be designed, and a machine capable of automating processes

with little variance will have to be used.

11

3. DESIGN

R2. Representative Workload The benchmark should be able to replicate an average

user. In a normal use case, a real player will be able to understand the mod function-

alities and the different actions they have to take to use those functionalities. The

player simulation used will have to be able to simulate actions of that player and

provide a workload representative to a real use case.

R3. Relevant metrics The benchmark should be able to collect metrics that give in-

formation about performance impact relevant to the user. This is difficult as simple

metrics, such as CPU and memory usage, may not be of concern to players. Play-

ers would be more concerned with whether Minecraft is running smoothly, or if it

has a lot of lagspikes. Formulating these application-level metrics is important in

determining performance impact relevant to the user.

R4. Parallelizable The benchmark should support the testing of multiple mods within

one environment. In a typical use case, players may use multiple mods at once. The

benchmark should be able to support the use of multiple mods, even with the same

workload. This is important as using multiple mods at once is common with players,

and is one of the common areas where negative performance impact is a concern.

This requirement can be a challenge as the player simulation used has to take into

account the features all the mods being used provides.

R5. Replicable Repeating tests done by the benchmark should show a similar out-

put. Allowing replicability of benchmark experiments increases the credibility of

the benchmark. If a benchmark would produce a very different metric with the

same experiment, then the benchmark would be unreliable. Some Minecraft features

are randomized, such as the world’s procedural generation, and the generation of

game entities. This randomness will have to be reduced as much as possible by the

benchmark.

R6. Configurability The benchmark should provide the user with configurations to

change the desired experiment environment relevant to the mod tested. With the

large variance in mod features, a configurable workload is necessary to sufficiently

test the features of mods under experiment. This may be difficult as the benchmark

will have to allow user configurations to player simulation and world data, while

keeping the experiment fair and consistent.

12

3.2 Design Overview

3.2 Design Overview

The mod benchmark is designed around giving the user as much flexibility as possible in

creating a benchmarking environment. This can mean creating their own player script,

choosing the system environment, choosing a specific server configuration, and even choos-

ing a pre-loaded world the server loads in.

It’s unproductive to create one experiment that tests every single functionality a mod

can affect - it would be a very long lists of experiments, all of which would have to be

accompanied by a player simulation script that takes into account the intended player

interaction with the mod. Instead, the freedom for the user to create a testing environment

allows for a more personalized benchmarking process.

Specific mod features can be tested for performance impact, refining the benchmarking

process. Users can choose to implement a player script and world scenarios that test every

single feature in a mod. Users may also simply choose a more general set of player scripts

applicable to several mods at once, allowing for a replicate benchmarking environment and

a fair comparison between performance impact of mods.

To answer the requirements listed, the next sections will detail the design of the bench-

mark along with a reference to the requirement they fulfill.

Figure 3.1 depicts the design for the benchmark. The user provides configuration for

two main sections, the system configuration and the workload. The server includes the

Minecraft game loop, the Mod Loader used to load the server with mods, and the World

Data of the game. The Player Simulation includes the simulation script, which creates and

controls simulated clients. Each of these clients communicates with the server, and send

packets an actual player-controlled client may send, apprearing to the server as regular,

player-controlled client. Both these sections are profiled and metrics collected clients, which

are processed and given to the player.

3.3 Benchmarking Process

There are three stages of the benchmarking process. The pre-configuration phase, the

experiment phase, and the post-processing phase.

3.3.1 Pre-configuration

Here users may configure the desired workload for benchmarking. The configurable work-

load is listed below, and is explained in further detail in section 3.6. Each of these work-

13

3. DESIGN

User

Benchmark

Benchmark
Configurations

Player Sim. Script

Server Config

Mod Selection

Pre-Loaded
Environment

Player Simulation

Player Simulation

Client
Client

Client
Client

Collected
Metrics

Data
Processing

Server

World Data

Game
System

Mod
Loader

Profiler

Metric
Collector

Legend

System Under
Test Data

Workload Metric
Collector Results

Figure 3.1: Design overview of our Benchmark for modded MVEs.

load configurations can be tweaked to the user’s intended benchmark leading to an infinite

amount of available workload to the user.

• Loaded Mods: Multiple mods may be chosen at the same time for benchmark-

ing. User will have to make sure mods are previously compatible, and that Mod

dependencies are met - the benchmark will not check this

• Player Simulation: Simulated players, multiple may run in parallel, each with

different behaviours. User may use the provided player simulation library to create

their own player workload.

• Server Configs: Basic server configurations any Minecraft server uses. World seed,

gamemode, port number, and more. This may be a necessary tweak in case any

Mods require a specific server configuration to work.

• World Data: Players may instruct the benchmark to start an experiment with a

14

3.4 Performance Metrics

new world - forcing the server to perform world procedural generation immediately.

Alternatively, users may load their own world in. This may include a personalized

testing world, a popular community-created world, or any mod that is compatible

with the mods in use.

3.3.2 Benchmarking

Once the user has decided their configurations, the Benchmark fully handles the Mod

Benchmarking. The user does not need to do anything except start the benchmark and

wait for it to complete.

An automation software application will be used for this phase, for RE5. Automation al-

lows for as fair a benchmark as possible by making sure actions taken to run the server, run

player simulation and data collection are consistent. This reduces unaccounted variability,

addressing RE1.

During this phase profilers are used to obtain metrics from the server. These profilers

will collect as much metrics as possible, including Ticks Per Second, CPU usage, Memory

usage and packets sent. These are collected in several formats, but will all be compiled

and presented in the post-processing phase.

3.3.3 Post-processing

In this phase the Benchmark uses the metrics collected to present the data to the user.

Relevant metrics are picked and put into graphs as a presentable format. The data is

presented in graph format, which makes it easier for users to analyze the data and interpret

performance impact. Each graph addresses a relevant Benchmark metric. This addresses

RE3. During the tests, performance is monitored and collected. Output of all the server

and client readings are available after the test.

3.4 Performance Metrics

System level metrics refers to measurements derived from the system, such as CPU usage,

Memory usage, Packets sent and received. Application level metrics are more specific, and

refers to measurements relevant to the success of the system’s goals, such as server ticks

per second, number of lag spikes, duration of lag spikes (both explained in section 3.5.2),

and number of supportable players.

15

3. DESIGN

Metric Name Description
Tick length Time taken for server to process a tick
Tick per second Number of Ticks per second
Player count Number of players connected to server
Lag Spike count Number of times a tick takes longer than 50ms
Lag Spike duration Duration of time lag spikes occur
RAM usage RAM usage of the server
CPU load CPU load total
Network usage Rate of incoming and outgoing bytes

Table 3.1: Chosen metrics for the Benchmark

3.4.1 Tick Duration

Ticks refer to the Minecraft game loop. Within a tick the server performs processes within

the environment, updates the environment, and sends updates to the client.

An optimal Minecraft environment has 20 ticks per second, each tick lasting 50ms.

Servers deliver processing every tick. If a server has processed a tick before the tick

interval, the server waits until it is time to process the next tick.

3.4.2 Lag Spikes

As explained in Section 2.1, lag spikes are when the game runs well above the acceptable

tick rate of 20 ticks per second.

There are two main types of lag spikes. The first is when a single tick takes abnormally

much longer to calculate than usual, making the game freeze for a few seconds. This is

typically caused by resource intensive events such as player disconnects and reconnects.

The second type of lag spikes are when the game takes a slight but noticeable increase

in time to process several ticks. This is typically caused by a consistent amount of large

workload being demanded of the server. This causes the game to play slower than usual

until the source of the large workload is no longer needed to be processed. An example

event that causes this is a large amount of game entities within a game region, causing the

server to process a large amount of workload until the respective entities do not need to

be processed anymore.

16

3.5 System Under Test

Mod Num. of Downloads Mod Category
Mouse Tweaks 253.6M Utility & QoL, Storage, Miscellaneous
Appleskin 214.3M Food, Map & Information
Controlling 213.0M Utility & QoL, Cosmetic
Clumps 184.8M Utility & QoL, Storage, Server Utility
Storage Drawers 170.5M Storage, Cosmetic
Iron Chests 163.4M Storage
Quark 159.6M Ores & Resources, Cosmetic

Tinker’s Construct 157.9M
Mobs, Technology, Processing,
Armor, Tools & Weapons

Nature’s Compass 147.5M
Map & Information, Biomes,
Armor, Tools & Weapons, Technology

Just Enough Resources 147.3M
Ores & Resources, Mobs, Biomes,
Map & Information, Addons

Table 3.2: Most downloaded Minecraft mods, excluding API & Library mods.

3.5 System Under Test

3.5.1 Modded Minecraft Version

The player may choose from one available version of Modded Minecraft to be modded,

and if using a Mod Loader, then the used Mod Loader also has to be consistent. This

means users can benchmark mods from any Minecraft versions, but it is strongly rec-

ommended that comparisons of benchmarked mods be done between mods in the same

Modded Minecraft version.

Choosing a consistent modded Minecraft version makes sure the system mods are com-

pared in is similar, minimizing external factors such as varying overhead between systems.

This addresses RE1. The benchmark is not responsible for addressing performance incon-

sistencies between Minecraft versions.

3.5.2 Mods for Benchmarking

The user may refer to the Curse Forge website for a selection of Mods. The benchmark

will at the very least support mods using the most popular Mod Loader, to satisfy RE3.

Additionally, the benchmark will allow the user to benchmark multiple Mods at once in

accordance to RE2.

However the benchmark will assume that the chosen mods will already be compatible for

17

3. DESIGN

use with each other and will not fix compatibility issues already present. This is acceptable

according to RE2, as in a real use case users will not use Mods in conjunction that are not

compatible with each other. RE2 does suffer as player simulation features may be missing

to replicate an accurate use case of the Modded feature. This negative impact to Accuracy

can be minimized by choosing Mods which features can be replicated using player actions

available in Vanilla Minecraft. Table 3.2 shows the most popular, non-API mods. The

most popular mod categories are Utility & QoL, Storage, and Cosmetic.

3.6 Workload

For workload, the user selects the system environment to run the mods in, mods for bench-

marking, the intended player simulation, and optionally server and world configurations.

These features are designed to adhere to RE6 to give Benchmark users as much options

as possible to trigger mod features.

3.6.1 Player Simulation

Next the user configures the player simulation. The player simulation should at the least

be able to imitate player behaviour in Vanilla Minecraft. As stated when addressing RQ1,

a lot of mod features are close to if not the same as Vanilla features, so bot simulation that

can be done in Vanilla should sufficiently trigger most mod features.

The Benchmark will provide users the option to manually create player simulation. It will

allow most Vanilla player functionality. The user may program their player configuration,

but common player simulation scripts will be provided for the player to use.

3.6.2 Server and World configuration

Server configurations are available to the user. This may be necessary when mods require

the user to further modify the server configurations to enable features. It also provides the

user to configure the server to imitate a typical use case, such as memory allocation, world

generation seed, spawning mechanics. Otherwise, the only necessary world configuration

would be to enable JMX monitoring for the profilers to work, and to enable server offline

mode, allowing player simulation to work.

The Benchmark further allows the user to choose the game world the server uses. This

may include pre-made user worlds specific to mods, or even user-created worlds designed

to be paired with the player simulation script to trigger and test mod features. A suitable

world map can be manually created to create particular stress situations for mod testing. It

18

3.6 Workload

is also possible to download player-created worlds to emulate a map an average user would

use. Lastly a blank world may be used, making the server immediately start generating a

procedurally generated world.

19

3. DESIGN

20

4

Implementation

This section answers RQ2, it describes the tools used to implement this benchmark fol-

lowing the design described in Section 3. Subsections will each describe the tool used, their

role in the benchmark, and the justification of using that tool.

4.1 Overview

This benchmark implementation implements the design’s focus towards replicability and

fairness. the implementation is intended for use on the Distributed ASCI Supercomputer

6 (DAS-6) machine, and uses Ansible for automation. We decided to use the DAS-6 for its

computation power, useful when using the machine as a distributed sytem to run multiple

experiments at once. The machine’s ability to use several distributed systems, referred to

as nodes, allows for the execution of the benchmark server and client in separate systems.

This reduces the impact server and client processes may have on each other, and allows us

to measure more accurate metrics in the server.

The most complex part of the implementation is implementing player emulation in Sec-

tion 4.3. The player emulation tool we used, Mineflayer, is well documented and updated,

but does not inherently support mods. A module was found that allowed the player emu-

lation program to work with the Forge Mod Loader version of modded Minecraft. However

troubleshooting of the module had to be done as it was not as well updated as the main

player emulation program.

To implement metric collectors and profilers, a JMX metric collector software called

Jolokia was used to collect game metrics from launching the server and throughout the

experiment. To collect process metrics, a Minecraft profiler called the Spark profiler was

used. It allows us to examine which processes in the server took up the most rick duration.

21

4. IMPLEMENTATION

4.2 Forge Mod Loader

This implementation uses the Forge Mod Loader (FML). FML is the most popular Mod

Loader available in Minecraft. It was one of the earliest Mod Loaders created for Minecraft,

supports Minecraft versions as early as version 1.0.0, (10) and has 10,000+ available Mods

for Minecraft version 1.19.2 alone (6). As such it has an older and larger community and

mod selection wider than other Mod Loaders such as Fabric or Quilt.

Acting as an API FML provides developers with hooks and tools to simplify Mod devel-

opment. Developers can easily register new features such as new game mobs and blocks.

Developers can use FML’s event bus to create mod features, and intercept Vanilla events.

It allows for developing side-specific mods, either client-side or server-side mods, or both.

It provides mod versioning which enables developers to simplify mod updating processes

for players (11).

While FML has a much more extensive list of Mods, its development team has slowed

down with most members migrating to a new Mod Loader project called NeoForge , and

updates are slow. Additionally FML has a higher overhead than more modern Minecraft

Mod Loaders, and is overall less efficient (12). Its core functionalities were developed during

Minecraft versions, comparably inefficient compared to Mod Loaders developed recently.

As such, using the Forge Mod Loader is a trade-off, gaining between a wider selection of

mods, but sacrificing efficiency.

4.3 Implementing Player Emulation

Mineflayer is a high-level JavaScript API to create Minecraft bots (13). By itself, Mineflayer

does not run an actual instance of a Minecraft client. It instead sends a server packets a

typical client would send to communicate, thereby simulating players. The server does not

know that these are not real players and such treats them like normal. Mineflayer sends

acknowledgements, player inputs, data requests, and anything that a player using a Vanilla

client would send. Mineflayer does requires servers to work in offline mode, as it does not

request account authentication from clients. Mineflayer cannot simulate Minecraft account

authentications, which are usually kept private with purchased Minecraft accounts.

Mineflayer works with multiple Minecraft versions. It has authentication handling that

recognizes the Minecraft handshake protocol, and can handle requests such as ping and

status requests. With the Forge Mod Loader, Mineflayer requires an addon called the

Minecraft-Protocol-Forge (MPF). FML has a different authentication protocol that ensures

22

4.4 Collecting Performance Metrics

Player Simulation
Script

Mineflayer

Operator Bot

Worker Bot(s)
Worker Bot(s)
Worker Bot(s)

C
reates &

Schedules

Instructs

Assists R
equests

Functionality

Simulated Clients

Minecraft System

Send/R
eceive packets

Legend

Process Client sim. instance

Figure 4.1: Implemented system of the player simulation script using Mineflayer.

clients have any required client-side mods. Using auto-versioning, MPF sends back a

response that lists the same mods the server requests from the client, even though no

client or modded client is actually present (11).

Therefore as an API that provides player simulation and compatability with FML, this

implementation will use Mineflayer as its main Player Simulation tool. As of writing,

Mineflayer supports Modded Minecraf up to versions that use the FML3 protocol. That

is, Mineflayer works up to FML version 1.19.4 - 45.3.0.

4.4 Collecting Performance Metrics

Several profilers are used in this benchmark. These profilers each are chosen to obtain spe-

cific system-level and application-level metrics from the machine, server, and the Minecraft

process. This section will describe each profiler and what metrics they collect.

The Spark Minecraft profiler (Spark) is a mod for Minecraft that profiles metrics

from the server, including the process’ CPU usage, Millisecond Per Tick (MSPT), Ticks Per

23

4. IMPLEMENTATION

Figure 4.2: Example usage of the Spark profiler to diagnose cause of lag.

Second (TPS), Player count, Game Entity count, and active chunks count. Spark profiler

also provides a viewer of the profile as an extendable tree, letting users see which part of

the Minecraft process is taking the most computing time per tick on average. Figure 4.2

shows an example of using Spark profiler to diagnose lag of a tick taking longer than 50ms.

It shows that the EntityTickList method is taking up the most ms and could be causing

the negative performance impact.

This profiler provides a lot of important application-level metrics relevant to the bench-

mark. It covers most of the metrics needed in the benchmark. However, Spark processes

its data in average metric per minute, and does not provide per-second or per-tick metrics.

Therefore it is difficult to justify the use of Spark profiler when the user is concerned about

a short lag spike lasting 2-3 seconds, barely affecting overall metrics.

Spark Profiler is used to mainly acquire application-level metrics from the Forge Server.

Metrics most notable are Ticks Per Second (TPS) and Milliseconds Per Tick (MSPT).

Jolokia is a JMX-HTTP bridge which assists JMX monitoring and management tools.

Here, Jolokia is used to access application-level metrics related to the Minecraft JVM (14).

It is launched alongside the Minecraft launcher, and provides access to the JVM operation

during execution.

From Jolokia, each individual tick can be monitored, and MSPT can be collected. Jolokia

means to cover application-level metrics that Spark profiler cannot accurately obtain.

24

5

Experiment Results

This section addresses RQ3. We explain the use of the Benchmark in an experiment. The

experiment centers around finding the performance impact of Mods categorized as World

Generation, and runs in the modded Minecraft version 1.19.2 - 43.4.0. The first section

explains the experiment setup. The second section explains the experiment results.

5.1 Experiment Setup

This section describes the chosen Minecraft version, mod choice, player simulation, and

world choice for the experiment. This follows the intended implementation, and gives

justification on the choices made to create the benchmarking environment.

Selecting a Minecraft Forge Version

The Modded Minecraft version 1.19.2 is chosen for expriments. Referring to Table 2.1,

the Minecraft version 1.20.1 has the most mods available for use. But since Mineflayer

does not support this Modded Minecraft version, this experiment will use the next best

option 1.19.2. This version has a sufficiently large amount of mods available for testing,

and is the most updated version compatible with Mineflayer. Versions higher than 1.19.4

are not considered as at the time of writing, the Mineflayer-protocol-forge handshake tool

detailed in section 4.3, does not yet support them.

Choosing a mod category

As specified in Section 3, for a fair comparison between mods, it is recommended to

compare mods within a specified category. For the experiments done in this thesis, the

World Generation mod category is chosen for evaluation. This mod category do not

often require the user to perform special interactions, other than traversing the newly

generated areas. This can be emulated using Mineflayer.

25

5. EXPERIMENT RESULTS

MC Version Mods listed
1.20.1 >10,000
1.19.2 >10,000
1.18.2 >10,000
1.16.5 >10,000
1.12.1 5,927
1.19.4 5,709
1.17.1 3,991
1.15.2 3,870
1.16.4 3,789
1.18.1 3,612

Table 5.1: A list of the top Minecraft Versions listed in Curse Forge

World Generation mods affect how Minecraft generates and populates the game world.

Methods to do this might include modifying world generation mechanics, adding new areas

to the existing available areas to generate, adding new blocks and structures for generation,

adding new mobs to populate areas, and even adding a whole new dimension complete with

its own unique areas and mobs.

Choosing mods with varying implementations

For this experiment three mods will be tested, each with an identical workload regarding

player simulation, game world, and server configurations. These three mods are chosen for

their popularity, and their intended features. Table 2.1 shows the three mods chosen. All

these mods are within the World Generation category listed in CurseForge.

These three specific mods were chosen for the different features they provide to modify

Minecraft’s world generation. We chose to pick mods with different functionalities to

specifically compare the performance impact of these new functionalities that all implement

a new world generation feature.

Biomes O’ Plenty introduces new blocks and 50+ new areas for the game to generate.

This includes ares within different dimensions in the game. Biomes O’ Plenty does not

introduce new game mobs, and focuses on enhancing Minecraft world generation. Areas

from the base game are still allowed to be procedurally generated.

Naturalist introduces new game mobs intended to replicate real-life animals. These

mobs are given complex behaviour, such as having different interactions with the player

depending on the current in-game time. The workload Naturalist produces is related di-

rectly to mob or entity behaviour and events. These events are related to world generation,

26

5.1 Experiment Setup

Mod name Downloads Features
0 Vanilla n/a Base game system
1 Biomes O’ Plenty 139.3M New Areas & Blocks
2 Naturalist 24.5M New Mobs
3 The Twilight Forest 130.5 M New Dimension, Mobs, Areas & Blocks
4 All mods n/a All of the above

Table 5.2: Chosen systems to be tested for experiment.

Experiment Walker CL Walker CL Mods
Overhead Test 4 2 0 0 0 0 *
PG Emulation 0 4 0 2 0 1 2 3
Full Emulation 2 2 1 1 0 1 2 3 4

Table 5.3: Chosen Mod workload for World Generation benchmarking.

as the mobs exist to enrich the areas they appear in, and are spawned in relation to the

procedurally generated area.

The Twilight Forest introduces a new dimension into the game called The Twilight

Forest, where only new areas occur, is filled with new mobs, and is totally separate from

the three existing vanilla dimensions. This new dimension is accompanied with new blocks

and game mobs. It is surmised that Twilight Forest most affects performance when players

are within the new dimension.

Game world

To keep procedural generation as fair as possible, a constant world seed will be used.

Some mods will require a knowledge of the world, such as places of interest such as mod-

introduced areas. A minimally pre-loaded world will be used. This world would have

previously been examined by the user, to find areas of interest. For example, for The

Naturalist mod, knowledge of the generated areas is needed to teleport Walker bots to

appropriate areas they cannot get stuck in. Additionally, since the chosen Twilight Forest

mod implements a new dimension, bots will be deployed within the mod’s introduced

dimension. This is illustrated in Table 5.3 where the green column illustrates the base

Overworld dimension, and the red column illustrates a separate dimension relevant to the

mod being tested.

To keep fairness in workload, during experiments using mods that do not introduce a

new dimension, identical bots will be sent to an existing base Minecraft dimension to even

out the workload. For example, in the case of the full emulation experiment: When testing

27

5. EXPERIMENT RESULTS

Twilight Forest a Walker and CL bot are deployed in the Twilight dimension. When testing

Naturalist, Biomes O’ Plenty and Vanilla, a walker and CL bot will be sent to the Nether

dimension.

Player Simulation Within World Generation mods, what is most likely gives the most

stress is during world generation, and players roaming or interacting with the generated

areas. The player connected amount will be kept consistent in this experiment, as testing

for performance impact is intended to test mods with a consistent workload. Table 5.3

details the experiments that will be run, showing a constant 7 players being connected per

experiment, with an Operator bot not being shown in the table. The bots used will be

detailed below:

Operator bot: Only one bot of this type is used per experiment. It is not included in

table, for its purpose is to facilitate experiments and not to emulate an actual bot. This

bot is given admin permission. It is responsible for starting the Spark profiler and giving

permissions and commands to other bots. The operator bot would communicate with the

other bots through in-game chat. In the chat, worker bots would as the operator bot for

permissions, items, or to teleport them to a certain area.

Chunk Generator bot: A bot that flies at constant pace around the world randomly

to constantly generate new chunks. This workload is sufficient to evaluate procedural

generation.

The Chunk Generator bot would require a special gamemode "spectator" that allows

it to fly around the world and phase through blocks uninterrupted, while still generating

chunks and spawning mobs in the viscinity.

Roamer bot: A bot that roams around generated areas in a fixed radius. This bot

would have to be given the "survival" game mode, so that mobs within generated areas

can interact with the player. This workload is sufficient to evaluate game mob and block

interactions.

The Roamer bot would require tools to interact with the game environment, such as a

Sword or a Pickaxe item. It would also have to be given an infinite amount of health, as

having the bot die in-game would stop it from generating a constant roaming workload.

5.2 Main Findings

The detailed experiments were performed with the system implemented in 4. Each exper-

iment followed the setup explained, and spanned a total of 6 minutes. The first minute of

each experiment was reserved to allow time for bot simulations to connect to the server,

28

5.2 Main Findings

entityTickList serverChunkCache
0

5

10

15

20

25

M
illi

se
co

nd
s

16.05

14.2714.04 13.82

17.14

13.46

18.85

13.46

16.57

12.79

Comparison between server processes
Vanilla
BoP

Naturalist
Twilight

All mods

Figure 5.1: Processing entities show a higher performance impact than managing environ-
ment chunks.

and the bots to be set up. For each experiment, two separate DAS-6 nodes were used: one

to run the server, and one to run player simulation. After each experiment, process logs

were analyzed to make sure the experiment ran without problems. In the case where a

client abruptly disconnected due to timeout issues, the experiment was reconducted.

The following sections describe the main findings from each experiment. A section is

reserved to show the overhead the Spark profiler imposes on the system.

5.2.1 MF1: Entity-related processes have more performance impact
than managing chunks

During server execution, Spark profiled the processes conducted, providing the amount of

time each process took per tick on average. Two important processes, the entityTickList

and serverChunkCache were collected. The entityTickList process iterates over entities

in the game environment, updating their status and behaviours. The serverChunkCache

iterates over chunks in the game environment, performing tasks to managing and updating

29

5. EXPERIMENT RESULTS

the tasks. Some tasks are as listed: block updates, entity spawning, chunk generation. In

short, entityTickList processes entities and serverChunkCache processes chunk behaviour

and rules.

When comparing the two processes, entityTickList shows a higher millisecond required

compared to serverChunkCache. It is most apparent in the Twilight mod, where entityT-

ickList takes up 5 more milliseconds to process than serverChunkCache. Looking at Figure

5.2.1, the mod with the closest amount between the two processes is Biomes O’ Plenty.

This might be due to the new areas Biomes O’ Plenty introduces. These new biomes

may not have registered themselves to allow game entities to generate on them. This can

reduce the amount of entities generated in the game world, since these new areas do not

allow the normal amount of entities to generate there. As a result, there is less time needed

to process entityTickList. This may also explain the reason why the experiment with All

Mods have lower process times than the experiment with just Twilight Forest, despite them

both having Twilight Forest, the mod with the most performance impact.

Despite the reduction in entities, the entityTickList still shows a higher time required to

process.

5.2.2 MF2: Performance impact higher in mod-implemented dimension
compared to base Vanilla dimension when considering average per-
formance

The figure 5.2.2 shows the boxplot of the distribution of tick length taken from the ex-

periment with only Chunk Loader bots. Twilight Forest has the highest MSPT during

experiments, consistently going over the 50 MSPT threshold after players are connected

and sent to the Mod’s dimension. The boxplot shows that when compared individually,

the Twilight Forest mod shows the highest distribution of tick lengths when compared to

the other mods.

Looking further into the collected metrics, when looking at Figure 5.2.2, the Twilight

Forest mod shows a less number of lag spikes as compared to the Naturalist mod. This

means that although the Twilight Forest mod has a higher distribution of tick length, it

still performs more consistently than the Naturalist mod, which only introduces new game

entities.

Despite introducing its own entities, dimensions and blocks, Twilight Forest performs

at a more stable rate than the Naturalist mod. From this finding we can assume that

mods that add new dimensions do increase performance impact the most, but it does not

necessarily have a negative impact on tick consistency and the number of lag spikes.

30

5.2 Main Findings

10 20 30 40 50
Milliseconds Per Tick

Vanilla

Biomes O' Plenty

Naturalist

Twilight Forest

Only Chunk Loader bots, outliers removed

Figure 5.2: Twilight Forest shows highest tick length distribution individually.

5.2.3 MF2: Increase in MSPT higher in sum of mods run individually
compared to mods run in parallel

Figure 5.2.3 shows the difference in mean MSPT accross mods run individually compared

to mods run in parallel, in reference to a Vanilla Minecraft experiment. When added

together, the mean milliseconds per tick across all three mods add up to an increase of

13.34ms compared to the Vanilla instance. However when all mods are run in parallel, the

mean mspt only shows an increase of 9.63ms, which is 72% of the sum of the increase in

MSPT in mods run individually.

To explain this, it could be that the mods run in parallel have overlapping features. For

example Biomes O’ Plenty introduces new areas to the game that are not recognized by

Naturalist, and no entities from Naturalist will be generated in the areas generated by

Biomes O’ Plenty, thereby reducing the server process needed to process game entities.

Another reason for this performance impact difference is the maximum amount of game

entites a Minecraft instance allows. Within a chunk, Minecraft generates entities in respect

to the amount of already existing entities within the chunk. As such, when each mod is run

31

5. EXPERIMENT RESULTS

Vanilla Biomes O' Plenty Naturalist Twilight Forest
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

. t
ick

s o
ve

r 5
0m

s

Number of lagspikes during experiment
Vanilla
Biomes O' Plenty
Naturalist
Twilight Forest

Figure 5.3: Twilight Forest shows highest tick length distribution individually.

individually, there could be a higher number of entities present summing all experiments.

This is in comparison to the one experiment with all mods. And as seen in main finding

5.2.1, entities induce a higher performance impact than other chunk processes.

5.2.4 Spark profiler overhead

A simple experiment was conducted with identical bots, world and server configurations.

As shown in figure 5.2.4, little difference is seen between the tick length distribution.

Jolokia produced metrics that showed systems with and without the Spark profiler had an

average of 21.27ms and 21.30ms respectively. Therefore, the Spark profiler is within the

acceptable amount of overhead for use in the experiment.

32

5.3 Limitations and/or threat to validity

Vanilla Biomes O' PlentyNaturalist Twilight Forest All mods
0

10

20

30

40

50

M
SP

T

30.36

34.54
31.46

36.96
39.45

mean MSPT during experiment

Figure 5.4: Sum of individual mod performance impact smaller than mods run in parallel.

5.3 Limitations and/or threat to validity

A limitation of this experiment is the inconsistency with the connection stability of Mine-

flayer. As mentioned at the start of experiment setup, simulated clients would randomly

time out from the server. This would cause lagspikes irrelevant to the mod being tested.

This could be the result of the mineflayer-forge-protocol not accounting for a mod request

from the client. As a result the client would not send the correct response packet, and

the server would disconnect them. This could potentially be solved in the future as the

mineflayer-forge-protocol gets improved.

Another limitation is inconsistencies during the Minecraft game process. Though this

benchmark has limited variability as much as possible, Minecraft still uses randomness to

generate entities and their behaviour, along with game events. As such, experiments may

not produce the exact same results when replicated. This is a concern especially when

comparing mods that have a similar performance impact. The inconsistency in workload

33

5. EXPERIMENT RESULTS

10 20 30 40 50
Milliseconds Per Tick

Vanilla

Spark

MSPT during experiment

Figure 5.5: Tick length comparison between experiments with and without the spark profiler.

might cause a mod to produce higher or lower performance impact randomly. A possible fix

is to implement, or modify an existing modded Minecraft version, such that all randomness

aspect of the game is based on the server seed, so that a predictable set of events happens

during the experiment. Another more extreme fix is to completely remove randomness

from the game except world generation. This would also concern the random generation

of entities.

Another limitation is that the benchmark is only compatible for Minecraft Forge versions

up to 1.19.4. This prevents us from experimenting on mods from other Mod Loaders. This

is especially a concern as the Forge mod loader is decreasing support, with most of its

development team moving to a new, more modern Mod Loader project called NeoForge

(15). The main problem to this is that as more modern Mod Loaders develop, this bench-

mark will become increasingly irrelevant. This is unless the mineflayer-forge-protocol team

develops support for newer versions of Forge.

34

6

Related Work

As far as we are aware, this thesis is the first attempt to benchmark the performance

of user-created mods for Minecraft, in an academic work. There is a lack of research

concerning the technical aspect of Minecraft modding. There exists works that conducts

benchmarking on MVE systems similar to Minecraft.

An empirical study of the characteristics of popular Minecraft mods (16).

This study conducts empirical research into the characteristics of Minecraft mods accross

1,114 popular and 1,114 unpopular Minecraft mods from the CurseForge mod distribution

platform. It analyzes mod relations regarding mod characteristics and popularity. Our

paper uses this study when choosing a mod category for experiments, and to gain better

understanding of why some mods are popular and others are not.

Yardstick: A Benchmark for Minecraft-like Services (17). This paper developed

a benchmark for a Minecraft-like MVE. It investigates the performance and scalability

of a Minecraft server in relation to player count. It finds that Minecraft-like MVEs are

poorly parallelized. The Yardstick benchmark implemented influenced the design and

implementation of the benchmark used in this thesis.

Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games (18). This paper also uses a benchmark for a Minecraft-like MVE

similar to Yardstick. It expands upon the Yardstick paper, investigating if performance

variability is the cause of poor paralellization of Minecraft-like services. It finds that

environment-based workloads such as chunk loading contribute greatly to performance

variability.

35

6. RELATED WORK

36

7

Conclusion

The creation and use of mods in MVEs are only getting more popular, and it is thanks to

the dedication of users and developers who enjoy the MVE. Keeping a consistent standard

of mods is challenging as these developers and users are mostly independent, with a lack

of knowledge useful when creating and optimizing mods to run in an affordable machine.

The mod benchmark serves as a tool to assist in investigating the performance impact

of user-created mods, serving as a tool for research. With this, we answer the research

questions listed at the start of the thesis.

RQ1. How to design a benchmark for comparing Modded MVE performance

between different mods? In Chapter 3, we designed a benchmarking model that

provides users with the ability to configure a benchmark workload suitable to the

mod being tested. The design focuses on replicability and the collection of metrics

relevant to the user. We designed a model that allows the user to configure a workload

applicable to mods with similar functionalities.

RQ2. How to implement such a benchmark? In Chapter 4, we implemented the

designed benchmark model for use with the Forge Mod Loader and Minecraft versions

1.19.4 and older. We implemented a player simulation program that works with

modded Minecraft servers. We used profilers and metric collectors that collected

system and application metrics that are relevant to the user. We designed a workload

that was applicable to a Vanilla Minecraft instance, and modded Minecraft instances

relevant to World Generation.

RQ3. How to use the benchmark to compare the performance of mods on

MVEs?, In Chapter 5, the implemented benchmark was used to compare the per-

formance of mods with the World Generation functionality. We found mods affect

37

7. CONCLUSION

entity processing negatively, with all tested mods increasing the time taken to pro-

cess entities. We found that mods that implement a new dimension average a higher

tick length, but does not affect significantly the amount of lag spikes. We found

that the increase in performance impact is smaller when mods are run in parallel,

as compared to the sum of performance impact of the same mods run individually,

showing a 3.71ms difference.

38

References

[1] Richardson I. Hjorth L. Playing During COVID-19. Palgrave Macmillan, Cham,

Swizerland, 1st edition, 2020. 1

[2] Tom Gerken. Minecraft becomes first video game to hit 300m sales. BBC,

10 2023. 1

[3] Jonathan Delafield-Butt Omar Alawajee. Minecraft in Education Ben-

efits Learning and Social Engagement. In International Journal of Game-Based

Learning (IJGBL) 11(4), 2021. 1

[4] Ian Knight Reem Al Washmi, J Bana. Design of a Math Learning

Game using a Minecraft Mod. European Conference on Games Based Learn-

ing: ECGBL2014, pages 10–17, 2014. 1

[5] Ruck Thawonmas Satoko Ito, Marcel Wira. User Friendly Minecraft Mod

for Early Detection of Alzheimer’s Disease in Young Adults. In 2022 IEEE

Games, Entertainment, Media Conference (GEM). IEEE, 2023. 1

[6] curseforge. CurseForge website. 1, 22

[7] mojang. Java or Bedrock edition. 7

[8] Notch. Notch’s statement on modding. 7

[9] Peter Christiansen. Players, Modders and Hackers. In Understanding

Minecraft : Essays on Play, Community and Possibilities. McFarland, 2014. 8

[10] Aaron Mills. A Brief History of Minecraft Modding. 22

[11] Forge. Forge Mod Loader documentation. 22, 23

[12] Maddy Miller. Forge, NeoForge, and Fabric. Which should you use? 22

39

https://www.curseforge.com/
https://www.minecraft.net/en-us/article/java-or-bedrock-edition
https://web.archive.org/web/20110723210920/http://www.minecraft.net/docs/NBT.txt
https://web.archive.org/web/20160225042033/https://www.packtpub.com/books/content/brief-history-minecraft-modding
https://docs.minecraftforge.net/en/1.20.x/
https://madelinemiller.dev/blog/forge-vs-fabric/

REFERENCES

[13] PrismarineJS. Mineflayer Github. 22

[14] Roland Huss. Jolokia. 24

[15] NeoForged team. The NeoForged Project. 34

[16] et al. Lee D., Rajbahadur. An empirical study of the characteristics of

popular Minecraft mods. Empir Software Eng, 2020. 35

[17] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yard-

stick: A Benchmark for Minecraft-like Services. In Proceedings of the 2019

ACM/SPEC International Conference on Performance Engineering, ICPE ’19, page

243–253, New York, NY, USA, 2019. Association for Computing Machinery. 35

[18] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meter-

stick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games. In Proceedings of the 2023 ACM/SPEC International Con-

ference on Performance Engineering, ICPE ’23, page 173–185, New York, NY, USA,

2023. Association for Computing Machinery. 35

40

https://github.com/PrismarineJS/mineflayer
https://jolokia.org/
https://doi.org/10.1145/3297663.3310307
https://doi.org/10.1145/3297663.3310307
https://doi.org/10.1145/3578244.3583724
https://doi.org/10.1145/3578244.3583724
https://doi.org/10.1145/3578244.3583724

Appendix A

Appendix

The code used for the implementation of the benchmark can be found at https://github.com/atlarge-

research/Minecraft-Mod-Benchmark

41

	1 Introduction
	1.1 Problem statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis structure

	2 Background
	2.1 Minecraft as an MVE
	2.2 Minecraft Modding and Mod Loaders
	2.3 Curse Forge Platform

	3 Design
	3.1 Requirements
	3.2 Design Overview
	3.3 Benchmarking Process
	3.3.1 Pre-configuration
	3.3.2 Benchmarking
	3.3.3 Post-processing

	3.4 Performance Metrics
	3.4.1 Tick Duration
	3.4.2 Lag Spikes

	3.5 System Under Test
	3.5.1 Modded Minecraft Version
	3.5.2 Mods for Benchmarking

	3.6 Workload
	3.6.1 Player Simulation
	3.6.2 Server and World configuration

	4 Implementation
	4.1 Overview
	4.2 Forge Mod Loader
	4.3 Implementing Player Emulation
	4.4 Collecting Performance Metrics

	5 Experiment Results
	5.1 Experiment Setup
	5.2 Main Findings
	5.2.1 MF1: Entity-related processes have more performance impact than managing chunks
	5.2.2 MF2: Performance impact higher in mod-implemented dimension compared to base Vanilla dimension when considering average performance
	5.2.3 MF2: Increase in MSPT higher in sum of mods run individually compared to mods run in parallel
	5.2.4 Spark profiler overhead

	5.3 Limitations and/or threat to validity

	6 Related Work
	7 Conclusion
	References
	A Appendix

