
Vrije Universiteit Amsterdam

Bachelor’s Thesis

Net-Celerity: A Benchmark for Player
Activity Analysis

of Gaming Network Libraries

Author: Elena Stroiu (2731065)

1st supervisor: ir. Jesse Donkervliet
2nd reader: prof.dr.ir. Alexandru Iosup

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 14, 2024

ii

Abstract

The gaming industry is one of the largest segments of the modern entertain-

ment industry, with multiplayer games on high demand (1). Multiplayer online

games can make use of readily available networking solutions that promise

seamless gameplay experiences for large player bases. However, it is not al-

ways clear how different networking libraries compare to each other and which

one will be more appropriate for a specific use case. This study creates a

Net-Celerity benchmark to evaluate the performance of networking libraries,

specifically for Unity games, within prototypes simulating multiplayer game

scenarios on DAS-6, which was used to compare three networking libraries:

Netcode for Entities, Mirror KCP, and Mirror Telepathy. Key findings reveal

significant differences in performance metrics such as round-trip time (RTT),

server-side resource consumption, and network traffic patterns. DOTS-NFE

demonstrates higher RTT performance with a maximum observed decrease of

2.3x under increasing player loads compared to Mirror KCP and Mirror Telepa-

thy. It is not affected by different player behavior, while M-KCP and M-TP

have experienced a decrease of 2-4ms of RTT when player activity was intro-

duced. However, DOTS-NFE also exhibits higher server resource demands and

requires up to double the CPU and 18 times more memory at peak loads. In

contrast, both Mirror KCP and Mirror Telepathy maintain stable resource us-

age across varying player counts, with slight increases observed as player num-

bers rise. Network traffic analysis indicates that DOTS-NFE has predictable

data transmission rates compared to Mirror implementations, which can be

caused by its entity-state synchronization and client prediction model, but re-

quires further investigation for confirmation. These findings put emphasis on

the trade-offs between performance and resource efficiency among networking

libraries designed for multiplayer games.

iv

Contents

1 Introduction 1

1.1 Multiplayer Games in the Modern Era . 1

1.2 Problem Statement . 1

1.3 Research Questions and Methodology . 2

1.4 Thesis Contributions . 3

1.5 Plagiarism Declaration . 3

2 Background Concepts and Models 5

2.1 Networking Libraries for Online Games . 5

2.2 Unity Netcode for Entities . 6

2.3 Mirror Networking . 7

3 Design of Net-Celerity 11

3.1 Requirements . 11

3.2 High-Level Design Overview . 13

3.3 Metrics . 15

3.4 Workloads . 17

4 Implementation 19

4.1 Selection of Networking Libraries . 19

4.2 Integrating Networking Libraries . 20

4.3 Implementation of Net-Celerity Benchmark 21

5 Evaluation 25

5.1 Main Findings . 25

5.2 Experimental Setup . 25

5.3 Correlation Between Number of Players and RTT 27

5.4 Effects on Server-Side Resource Usage . 29

i

CONTENTS

5.5 Differences in Networking Traffic . 31

5.6 Effects of Player Activity on Networking Libraries 32

5.7 Limitations and Threat to Validity . 33

6 Related Work 35

7 Future Work 37

8 Conclusion 39

References 41

A Reproducibility 45

A.1 Abstract . 45

A.2 Artifact check-list (meta-information) . 45

A.3 Description . 45

A.4 Installation . 46

A.5 Experiment workflow . 46

A.6 Evaluation and expected results . 48

B Additional Experiments 51

ii

1

Introduction

In this section we discuss the relevance of the chosen topic - benchmarking networking

libraries, which problems developers face when using networking libraries, main research

questions, methodologies used to tackle the said questions, and contributions the research

makes.

1.1 Multiplayer Games in the Modern Era

The gaming industry is the largest part of the modern entertainment industry with more

than 3 billion players and $184 billion in revenue for 2023 (1). Apart from entertainment,

online gaming platforms, has proven effective in various domains such as education (2).

This work focuses on multiplayer games, a prevalent and highly interactive category, with

popular examples including Minecraft, Apex Legends, Fortnite, and Dota 2.

1.2 Problem Statement

Despite the wide of multiplayer feature in the field of digital entertainment and education,

developers still face issues when choosing a networking library for their project:

1. Performance ambiguity. Developing multiplayer features involves distinct require-

ments and constraints depending on the genre of the game (3). Large virtual worlds

or massively multiplayer online games (MMO) prioritize scalability and minimal

overhead due to the large amount of data processed (4). In contrast, competitive

games such as Counter Strike 2 and Valorant require a latency of less than 75 mil-

liseconds (5). Developers often utilize existing netcode frameworks to mitigate the

1

1. INTRODUCTION

labor-intensive nature of netcode development. However, integrating a network li-

brary can be risky if performance does not meet expectations, thus understanding

and fair assessments of its properties, such as scalability, reliability, packet overhead,

and syncing capabilities, is crucial.

2. Benchmark implementation availability. Several benchmarks, such as Yard-

stick (6) and Meterstick (7), evaluate Minecraft-like services and games, respectively.

However, no public benchmarks that could be used by developers and researchers for

networking libraries exist using similar principles. Furthermore, this gap highlights

the need to evaluate the performance and scalability of these libraries. Yardstick

captures system- and application-level metrics, while Meterstick focuses on perfor-

mance variability through specialized workloads and metrics. This work introduces

Net-Celerity, a benchmarking tool designed to address these needs by evaluating the

performance and scalability of networking libraries.

3. Workload availability. In order to effectively analyze the performance of networking

libraries realistic workloads must be utilized. Furthermore, in order to compare

several networking libraries the workloads must be the same for objective conclusions.

However, we discovered that majority of networking libraries do not provide any sort

of workloads or benchmarking tools, and if they do, they highly differ from each

other, making the comparison unfair.

Despite the widespread use of networking libraries, their capabilities and limitations

remain inadequately measured and compared. This study systematically analyzes the

performance of networking libraries in multiplayer games developed using Unity game

engine, filling this critical gap. Our work aligns with our vision on Massivizing Computer

Systems (8, P9, §6.3), informing the community about the current ecosystem and helping

smaller companies reduce costs for the development of online games.

1.3 Research Questions and Methodology

The aim of this work is to provide a scientific instrument, Net-Celerity, that can help to

fairly evaluate networking libraries. We ask three main research questions:

RQ1 How do different network libraries perform compared to each other when benchmarked

against new workload types within various game prototypes? This question addresses

2

1.4 Thesis Contributions

requirement 1 and 3 by providing developers with overview of how different bench-

marks handle different workloads and making it clear which ones will be more suitable

for their specific needs.

RQ2 What are the key performance metrics that effectively quantify the suitability of net-

work libraries for different game genres and workload intensities? In this question we

address requirement 1 and 2, by asking ourselves which metrics Net-Celerity needs

to utilize in order to provide insight to the performance of networking libraries.

RQ3 How do widely used network libraries perform in real-world scenarios setting? The

third question extends on requirement 1 and focuses on evaluation of individual

capabilities of networking libraries on a real world scenarios.

To satisfy the questions indicated above we developed Net-Celerity benchmark. We aim

to provide a framework for research and practical usage in the evaluation of prototype-

based networking libraries. In Section 5.2 we discuss the choices for the experiment setup

and further evaluate the results in Section 5.1.

1.4 Thesis Contributions

Previous research provides insights into networking features for multiplayer online games

(MLGs) and services (MLSs), but does not adequately address other game types and their

netcodes. Addressing this gap, we make three contributions:

C1 We propose a benchmark design for game network libraries (Section 3). The bench-

mark fairly assess multiple network libraries with different workload types which are

further discussed in Section 3.4.

C2 We implement the Net-Celetiry benchmark as illustrated in Section 4.1 which works

with game prototype builds.

C3 We use our prototype implementation to conduct a series of real-world experiments,

and derive insightful results from the analysis (Section 5).

1.5 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

3

1. INTRODUCTION

4

2

Background Concepts and Models

In this section, we firstly provide an overview on the state-of-the-art networking libraries.

Afterwards, we discuss the fundamental principles behind networking libraries in Unity.

Finally, we provide a detailed explanation of the differences for two highly popular net-

working libraries: Netcode for Entities and Mirror.

2.1 Networking Libraries for Online Games

Networking libraries are used in the development of online games, providing the infras-

tructure necessary to arrange communication between clients and servers. These libraries

consist of a collection of tools and protocols to manage data transfer, synchronization,

and player interactions across the network, see Figure 2.1. The main goal and features

of networking libraries varies widely as is discussed in Section 2.2 and Section 2.3, from

low-latency and high-reliability connections to ease of integration.

Networking libraries act as mediators between the game implementation and the lower-

level network protocols, for instance, such as Transmission Control Protocol (TCP) or

User Datagram Protocol (UDP). Since the underlying protocols operate on different prin-

ciples (9) networking libraries need to take into account the existing costs and benefits

and build on top a system that meets the needs of specific types of online games. TCP

provides reliable, ordered, and error-checked delivery of data but can introduce latency.

On the other hand, UDP does not guarantee the delivery of packets, but also does not wait

for acknowledgment is more suitable for real-time applications.

A network library integrated in the game implementation handles various tasks through

several components and processes. These include the transport layer or protocol that man-

ages the transmission of data packets over the network, and session management, which

5

2. BACKGROUND CONCEPTS AND MODELS

Game Implementation

Networking Library

Server

Client

Transport
Protocol

Session
Management

Data Serialization

Message Handling

Game Logic

Assets

Environment

...

 Legend Game
Component

Net. Lib.
Component Net. Lib.Process

Figure 2.1: Networking Library System Model.

handles connection establishment, maintenance, and termination. Data serialization con-

verts game state data into a format suitable for transmission. Message handling manages

sending and receiving messages between clients and servers. The game server hosts the

game world and synchronizes game states between clients which can be handled in different

approaches depending on the networking library. Consequently, networking library man-

age majority of networking related mechanisms and provide the developers with necessary

tools to integrate multiplayer functionality into their games or applications.

2.2 Unity Netcode for Entities

Unity’s Netcode for Entities, which is primarily used in Unity’s Data-Oriented Technology

Stack (DOTS) architecture, is designed for large-scale multiplayer projects that employ

data-oriented design principles (10). This netcode framework is transport-agnostic, allow-

ing it to operate with various transport protocols, including UDP and WebSocket. Netcode

for Entities supports both small-scale multiplayer games and large MMO games (11).

Netcode for Entities (NFE) is initially designed to work within the Entity Component

System (ECS), as illustrated in Figure 2.2. In multiplayer scenarios, this netcode library

handles both server-side and client-side networking tasks by making use of UDP for syn-

chronization and general communication between clients and servers. ECS structures, such

6

2.3 Mirror Networking

Netcode for Entities

Client Side
Server Side

Entity Data
SynchronizationInput Management

Prediction and State
Reconciliation Client Side Rendering

Transport Layer

Simulation
System

Entity Data
Synchronization

Prediction and
Correction

Client System

Server System

Entity

 Legend
ECS

ComponentInteraction Process

Component_1

...

Component_N

Figure 2.2: Netcode for Entities System Model.

as Entities, Worlds, and others, are serialized and transmitted over the transport layer.

Moreover, the netcode provides mechanisms for client- and server-side predictions, data

correction, and state reconciliation that reduce the the effects of latency and packet loss

and consequently enhancing the player experience.

Synchronization within Netcode for Entities is achieved using Remote Procedure Calls

(RPCs) (10). This allows game logic to be mirrored across the network, ensuring that

actions performed on one client are correctly displayed on others. By default, the netcode

synchronizes transform data, such as position, rotation, and scale, for Entities. However,

developers can extend the synchronized properties list as necessary. Furthermore, Netcode

for Entiteis uses custom serialization methods that optimize data preparation for network

transmission, which further can be studied in the official documentation (11).

2.3 Mirror Networking

Mirror (12) is an open source game networking library for Unity that supports Unity ver-

sions from 2019 to 2022 LTS. It has been used in games like SCP: Secret Laboratory,

Portals, and Inferna. One of Mirror’s standout features is its integration with the KCP

library, providing a reliable UDP transport layer (13). Additionally, it supports TCP

through Telepathy (14) and WebSockets via Simple Web Transport (15). Originally devel-

oped from the UNet framework, Mirror has addressed many of UNet’s issues and gained

7

2. BACKGROUND CONCEPTS AND MODELS

Mirror
Client Side

Server SideNetwork Messages
SynchronizationInput Management

Timing Client Side Rendering

Transport Layer

Network Messages
Synchronization

Prediction and
Correction

 Legend
Mirror

ComponentInteraction

Network Manager

GameObject

Player Controller

Netork Identity

Networked
GameObjects

Process

Figure 2.3: Mirror System Model.

popularity, with over 100,000 downloads annually (16).

Mirror is designed for ease of use and integration into existing single-player games (12).

It is built on top of the LLAPI (Low-Level API) (17) provided by Unity and allows direct

control over network functions and data serialization solutions. The functionality of Mirror

is similar to Netcode for entities with some differences in architecture that are illustrated

in Figure 2.3. Mirror makes use of GameObjects instead of Entities and has a Network

Manager that orchestrates all the networking logic.

For the transport layer, Mirror offers several options, including reliable UDP through

KCP (13), TCP via Telepathy, and WebSocket transport through Simple Web Transport.

In addition, it supports LiteNetLib (18), providing developers with the flexibility to choose

the most appropriate transport protocol for their needs. These transport components are

configurable within the Network Manager, which also manages GameObjects with Network

Identity components.

One of the significant advantages of Mirror is its extensibility. Developers can customize

and enhance its networking capabilities using callbacks and events, enabling the imple-

mentation of advanced features such as custom packet handling, network optimizations,

and latency compensation techniques. Compared to Unity’s Netcode for Entities, Mirror

offers more choices in transport layer. While Netcode for Entities typically uses UDP to

minimize latency, Mirror can make use of TCP through Telepathy or KCP for reliable

8

2.3 Mirror Networking

transmission and combine low latency with reliability. WebSockets is particularly useful

for browser-based connections over HTTP.

Consequently, Mirror is a user-friendly option with flexible networking solution for Unity

developers. Its integration with various transport protocols, ease of use, and extensibility

make it a popular choice for less experienced developers and smaller multiplayer games.

9

2. BACKGROUND CONCEPTS AND MODELS

10

3

Design of Net-Celerity

In this section, the design of the benchmark that uses Minecraft-like games for testing is

established. We define a set of requirements that the benchmark has to follow, as well as

general design.

3.1 Requirements

R1 Ease of use: the benchmark should have approachable and understandable design so

that obtaining results would not cause user confusion. The structure of the compo-

nents must be consistent and easy to navigate for the developers, without convoluted

design choices. The simplicity of Net-Celerity makes it accessible to a broader range

of users with varying levels of expertise. The primary challenge of this requirement is

that ensuring ease of use is not a straightforward process and might require balancing

simplicity with functionality. Consequently, a well-organized and consistent struc-

ture for the benchmark components, providing clear documentation, and avoiding

convoluted design choices are necessary.

R2 Fairness: the benchmark should assess the performance of gaming network libraries

fairly under the same conditions. Environment and the setup of the benchmark that is

going to test provided prototypes must be identical in order to eliminate the possible

outside factors. This requirement is important for making objective evaluations and

avoiding biased outcomes. However, ensuring fairness requires in-depth understating

and control of the benchmarking environment.

R3 Clarity: the chosen metrics must be displayed in clear and understandable manner

without ambiguity which includes being straightforward and easily comprehensible.

11

3. DESIGN OF NET-CELERITY

Additionally, visualization scripts will be provided for performance implications of

each metric. It is crucial that metrics are presented clearly and without ambiguity to

ensure users understand the performance implications of the networking library. Fur-

thermore, it enables developers to make well-informed choices based on the provided

results. Choosing clear and understandable metrics involves careful consideration of

how data is displayed. Avoiding ambiguity requires detailed explanation and devel-

opment of visualization tools that can effectively represent performance data.

R4 Relevance: the chosen metrics must be indicative of the performance of the networking

library and provide clear overview of relevant values. They should provide users with

valuable insights about prototype’s performance and load on the system. Relevance

is essential for offering a comprehensive overview of how well the networking library

performs, helping users in understanding the system’s behavior across different sce-

narios. The main challenge is identifying and selecting metrics that are reflective of

performance requires deep understanding of both the technical aspects of networking

libraries and the practical needs of developers.

R5 Realistic prototype: the game prototype in use must be close to a real world exam-

ple of the multiplayer game and have similar workloads for testing purposes. The

game world must be configurable to be able to fit large amount of player, and player

behavior must include actions similar to Minecraft-like games including first-person

movement and the ability to interact with the environment by putting or removing

blocks. The workload must be representative of the demands and challenges typically

encountered in real-world multiplayer scenarios. Developers would benefit from real-

istic prototype making the results applicable. However creating a realistic prototype

involves simulating complex behaviors and workloads similar to those found in real

multiplayer games, requiring considerable time and effort.

R6 Configurability: the benchmark must configurable by the user, so that different loads

that are relevant to different scenarios could be tested. Furthermore, new prototypes

can be added and tested in the same manner as the provided prototypes. This will

enable users to choose which scenarios to test the prototypes against and suit their

specific needs. Adding configurability to Net-Celerity might conflict with previously

indicated requirement: R1 ease of use. Keeping the balance of configurability and

simplicity requires additional effort and evaluation of several design approaches.

12

3.2 High-Level Design Overview

Client NodeClient Node

Server Node

NFS

Log
Storage

Head Node

 Legend

Component

Interaction

Process

Server

Metrics Data

Prototype
Buildsconfig

Configuration

Environment

Experiment
Script

Plot Script

File

Run
Experiment

Plot
Results

Experiment's
Results

Workload

Game

Library

Player
Emulation

Game

1

Game BuildGame BuildGame Build

Metric Collector

CPU usage

Memory usage

Data sent/recv

Client Node

ClientsClientsClient

Metric
Collector

RTT

Prototype

2 3

5

4

Experiment
Class

Server
Scalability

Server
Performance

Client
Performance

Server
Reliability

Figure 3.1: Benchmark Design Overview.

3.2 High-Level Design Overview

The overview is illustrated in Figure 3.1 where the execution logic of the experiment,

the components, and the processes are clarified. The design consists of several major

components: game prototypes 1 , benchmark configurations and execution scripts that are

located at the head node 2 , Network File System (NFS) 3 that stores game prototypes

and logs, and finally the metric collector scripts located in the server node 4 and the

client node 5 .

The game prototypes 1 are created by the user using the desired networking libraries.

The prototype must include basic player emulation in order for the Net-Celebrity to eval-

uate player activity. Each prototype build is stored in the NFS 3 that can be accessed by

other nodes for execution and metric collection. We chose the benchmark to utilize game

builds that are meant to be playable, contributing to R6 configurability and R5 realistic

prototype, which would not be possible if we chose to evaluate libraries within the unity

editor instead.

13

3. DESIGN OF NET-CELERITY

The head node 2 is responsible for the setup and running of the experiments, as well as

providing the user with the results and relevant visualization. To satisfy R6 configurabil-

ity, we decided to make the experiment setup modifiable specifically workload, the selected

prototype, and the environment in which the experiment will run. There are also several

major classes of experiments that developers can benefit from: server scalability, server re-

liability, server performance, client performance. Server scalability and reliability is tested

by increase the number of players and can be evaluated by evaluated introduced metrics

collected from the server node 4 and by checking how many players ended up spawning

in the results collected from all the client logs. Server performance can be measured by

conducting time-based experiments and evaluated with CPU usage, memory usage, and

data transfer/receive rates. Finally, client performance can be evaluated individually or

on average from the combined results log with the RTT metric. After the experiment is

complete and the metrics data are retrieved, the visualization script is run and plots are

stored in a separate folder, so that the user can evaluate the data relevant to them. The

configuration and execution of the benchmark were designed in accordance with R1 ease

of use, R2 fairness and do not require the user to modify the source code to set up the

experiments using our prototypes. Furthermore, each experiment will follow precisely the

configurations chosen by the user and will assess every prototype in the same conditions

and using the same workloads.

The server is run on a dedicated server node 4 and the clients on a dedicated client

node 5 , or multiple nodes if configured. Those could be separate machines or a single one,

depending on the user setup. Moreover, there are collector scripts for server metrics and

client metrics that would monitor the data during the experiment and after the experiment

is complete collect it and store in a separate results file that will be further used for plotting

and visualization. The chosen metrics are described in Section 3.3.

Each game instance produces a log file that is stored on the NFS 5 or if run on the

local machine, at the specified storage location. Prototype builds are also stored on the

storage system of the environment, which is necessary to run client and server instances.

The minimum storage requirements for the benchmark would depend on which tests the

user wants to perform, each prototype weighs approximately 200 Mb, and the weight of the

log files is determined on the implementation of the individual prototype and the duration

of the experiment and workload used.

For prototype builds which are stored in the NFS 3 , several approaches were attempted.

Initially, concept design did not include separate builds for each prototype, and instead

accounted for one unified build completely integrated in Opencraft 2.0, however, due to

14

3.3 Metrics

server

timestamp

timestamp

input queue

output queue

simulation
loop (60 hz)

client

Figure 3.2: Round-trip time (RTT) measurement.

the complexity of integration of network gaming libraries in the same game instance, which

was also discussed in section 2 and is apparent from Figures 2.3 and 2.2 it was decided

to use an alternative concept. Instead, the benchmark operates with prototypes that use

different networking libraries using the best practices specified individually. In order to

satisfy R2 fairness. With this approach, users can assess the performance of networking

libraries and observe the effects of various software design choices on the performance of

each prototype.

3.3 Metrics

Net-Celerity uses several metrics to provide constructive insight of the performance of

networking library under various workloads, that are further described in Section 3.4.

The metrics were chosen with respect to R3 clarity and R4 relevance and satisfy RQ2

which questions which metrics would effectively quantify the performance of the networking

libraries.

Round-trip time (RTT) is a measure of how long it takes a packet to travel from one

location on a network to another and receive a response packet back. We measure RTT

using build-in tools provided for chosen networking libraries, Mirror and NFE, and repre-

sent in milliseconds. This metric is influenced by the server’s update intervals (12, 19) as

well as the delay in queueing; see Figure 3.2. We configured both prototypes to update at

a frequency of 60Hz, which translates to network updates occurring every 16 milliseconds.

15

3. DESIGN OF NET-CELERITY

Table 3.1: Metrics Used for the Assessment.

Name Type Unit Description

Round-trip Time Application ms (milliseconds) Round-trip time for messages sent
between the client and the server.

CPU Usage System % (percents) System-wide CPU utilization
sampled by psutil library.

Memory Usage System Bytes ’Resident Set Size’, which is the
non-swapped physical memory a
process has used.

Data Sent System Bytes Number of bytes sent over net-
work of every network interface
installed on the system.

Data Received System Bytes Number of bytes received over the
network of every network interface
installed on the system.

RTT messages may arrive during an update or while waiting for the next 16 ms interval,

and the average wait time will be recorded to provide an accurate measure of latency. As a

result, RTT offers insight on the effectiveness of data transmission. Moreover, it is highly

sensitive to different types of player activity, such as movement, and real-time interactions,

which we are evaluating.

CPU and memory usage are useful indicators of a server’s performance under different

workloads. These metrics are collected using the psutil library, which is run on a designated

server node 3 . This library provides comprehensive system data, allowing us to monitor

how the server responds to varying levels of demand. By analyzing CPU and memory

usage, we can assess the efficiency and scalability of the networking libraries within the

prototypes under test.

The amount of data sent and received over the network is also gathered using the psutil

library. It is collected across multiple network interfaces, from eth1 to ethN. The values

collected by psutil are cumulative, which means that they either increase or remain constant

over time but never decrease. Monitoring these values helps us understand the network

load and bandwidth utilization done by each networking library which provides insights

into their efficiency and impact on overall network performance.

16

3.4 Workloads

3.4 Workloads

To effectively assess the performance of the system based on the metrics described in

Section 3.3, specific workloads need to be tested. With primary focus on player activity,

the workloads will involve player movement and actions including placing and removing

blocks. In Minecraft-like games, players often explore the environment, build, fight mobs,

or mine. Mirror and NFE prototypes allow us to focus on exploration and building aspects.

For fair and clear comparison, two scenarios will be used: idle players and active players.

For the workload with idle players, each metric listed in Table 3.1 will be collected and

subsequently evaluated by the benchmark. In this scenario, the environment and player

movements, as well as player positions, will remain static. The benchmark will conduct

multiple tests with an increasing number of concurrent players to observe how the system

handles varying levels of player presence without dynamic actions.

For the workload with active players, a realistic scenario will be used where players will be

spawned in a specific position and will perform certain activities, specifically jumping and

placing a block underneath them. Each player will continue to perform the said activity

until 10 blocks are placed. With such a workload, we hope to identify how each networking

library deals with complicated behaviors and player activities depending on the number of

players. The vertical movement of players was chosen because it will not cause the server

to generate more chunks of environments and will remove workload unrelated to player

activity, specifically terrain generation.

17

3. DESIGN OF NET-CELERITY

18

4

Implementation

4.1 Selection of Networking Libraries

Unity, being one of the most widely used game development platforms, offers a number of

networking libraries to simplify the integration of multiplayer functionalities. Specifically,

Unity provides two primary netcode solutions: Netcode for Game Objects and Netcode for

Entities, which will be discussed in more detail in Section 2.2.

Netcode for Game Objects is designed for games with a moderate number of networked

objects and less demanding networking requirements. It makes use of an object-oriented

approach which is suitable for less complex projects where the overhead of managing nu-

merous networked entities is not a significant concern.

On the other hand, Netcode for Entities utilizes a data-oriented approach, also called

Unity’s Data-Oriented Technology Stack (DOTS), which is intended for games that require

high performance and scalability. This method is advantageous for projects with extensive

networking needs, as it efficiently handles large amounts of data and numerous entities,

thus improving overall performance.

In addition to Unity’s built-in solutions, a wide range of networking libraries are available,

providing developers with alternative options that can be adjusted to specific needs and

further optimized. These libraries are summarized in the Table 4.1 in the decreasing order

of popularity.

From the Table 4.1 we identified that Kimo’s Connection Protocol (KCP) is the most

frequently used open-source networking library. KCP is a lightweight protocol specifically

designed for reliable UDP data transmission (13). It was initially developed in C and then

adapted for C#. KCP is applicable not only for game development but also for other real-

time applications where low latency and robust packet loss recovery are crucial, such as

19

4. IMPLEMENTATION

Table 4.1: Unity Compatible Networking Libraries.

Name GitHub Stars/Favorites Protocol

KCP (kcp2k) 13800 UDP
Photon (PUN2) 7554 TCP or UDP
Mirror 5611 TCP or UDP
MagicOnion 3400 TCP
GGPO 2900 P2P
LiteNetLib 2800 UDP
Enet 2500 UDP
yojimbo 2300 UDP
ForgeNetworking Remastered 1500 TCP or UDP
Telepathy 1100 TCP
RiptideNetworking 918 TCP or UDP
Networker 471 TCP or UDP
DarkRift 2 167 TCP or UDP

live streaming. Furthermore, because of KCP’s efficiency and reliability, it was integrated

into other networking libraries, such as Mirror, which is discussed in Section 2.3.

The focus of this study is to evaluate networking libraries that are applicable to real-

world scenarios, where connectivity can vary significantly, and the number of concurrent

players can scale to the hundreds. Consequently, Netcode for Entities and Mirror were

selected for their capability in handling high number of concurrent player and changing

network conditions. Specifically Mirror was chosen because of the ease of integration and

the possibility to swap low-level netcode components as is discussed in 2.3.

To account for the differences in code structures required by various networking libraries,

as discussed in Section 2, the implementation process was divided into two main parts: the

integration of networking libraries - Section 4.2, and the creation of the benchmark -

Section 4.3.

4.2 Integrating Networking Libraries

Opencraft 2.0 was designed using the DOTS data-oriented approach as ECS, which is fun-

damentally different from and not compatible with the object-oriented structure employed

by Mirror. To ensure that both prototypes function in a comparable manner, several design

decisions were made:

20

4.3 Implementation of Net-Celerity Benchmark

1. Decoupling Assets: Assets such as blocks, player entities, and scene generation must

be decoupled from the NFE netcode. Where full decoupling is not possible, assets

should be partially reused and recreated in a similar manner to ensure consistency.

2. Functional Equivalence: The game prototype must maintain the same functionali-

ties across both networking libraries, except for the netcode itself, to ensure fairness

in the evaluation as per R2 fairness.

3. Consistent Testing Conditions: Each implementation will be tested against the

same test cases and metrics outlined in Section 3, and the results will be compared.

It is crucial that the builds of both OG and ECS prototypes are not in development

mode, as this enables additional metric extraction methods via the Unity editor,

which could unfairly affect the results. Furthermore, using the same builds that

would be used in the end product is more valuable for real-world application and

environment.

4. Player Emulation: Both prototypes must support player emulation to simulate

realistic player interactions. This can be achieved by using input traces recorded

from individual players, which are then replayed to create consistent and repeatable

test scenarios. This method ensures that the performance evaluation accurately

reflects typical player behavior and interactions within the game environment.

Following these design decisions and implementation steps, the Mirror prototype and

DOTS-NFE prototype used in the benchmarking process were able to provide a compre-

hensive and unbiased comparison of the networking libraries. This allows Net-Celerity

to highlight their respective strengths and weaknesses under same workloads, and conse-

quently, ensures the reliability and validity of the benchmark results.

4.3 Implementation of Net-Celerity Benchmark

The benchmark integration must adhere to the design principles discussed in Section 3.2

and incorporate system metric collection scripts as indicated in Section 3.3. For the im-

plementation overview see Figure 4.1.

The core implementation of the benchmark is executed using Python scripts, making use

of both inbuilt and specialized libraries for various tasks. Specifically:

1. psutil is utilized for system metric collection, enabling the capture of detailed perfor-

mance data such as CPU usage, memory consumption, and network activity.

21

4. IMPLEMENTATION

Net-Celerity

Prototypes

Unity

DOTS-NFE M-KCP M-TP

Virtual Environment

Minicondaexperiment
scripts

plotting
scripts

monitoring
scripts

Python

Libraries

matplotlibresults.csv

seaborn

numpy

pandas

psutil

Figure 4.1: Net-Celerity Implementation Overview.

2. numpy and pandas are employed for data preparation. These libraries facilitate ef-

ficient handling and manipulation of large datasets, ensuring that the data is accu-

rately formatted and ready for analysis.

3. matplotlib.pyplot and seaborn are used for data visualization. These libraries allows

for the creation of comprehensive plots and graphs, which are crucial for interpreting

the benchmark results and presenting them in a clear, understandable manner.

Data collected from the experiments are stored in specified CSV files. The configuration

details, including paths to executables and logs, are managed in the config.cfg file. This

configuration file allows the user to adjust the benchmarking parameters, making the setup

adaptable to various testing scenarios.

22

4.3 Implementation of Net-Celerity Benchmark

The final plots are generated using the plot_results.py script, which processes the col-

lected data and produces visual representations of the benchmark results. These plots are

then saved as PDF files in the plots folder, ensuring that the results are easily accessible

and can be included in reports and presentations. Users can choose specific plots that can

be plotted for analysis by calling a respective function in the script.

For a smooth experimental setup, it is recommended to use a virtual environment, such

as miniconda. Using a virtual environment helps to manage dependencies and maintain a

clean, isolated environment to run the benchmarks. This approach minimizes the risk of

conflict between different software packages and ensures reproducibility of the experiments.

In addition, the setup includes automated scripts for initiating and terminating the

benchmarks and logging relevant performance data. These scripts are designed to stream-

line the benchmarking process, reducing the manual effort required and increasing the

overall efficiency and reliability of the tests.

By following this structured approach to benchmark creation, the performance of dif-

ferent networking libraries can be evaluated under controlled and repeatable conditions.

This methodology not only provides an adaptable framework for comparing networking li-

braries within different prototypes, but also ensures that the results are accurate, reliable,

and applicable to real-world scenarios.

Consequently, technical details of Net-Celerity can be found in the Section A.1. We

keep detailed documentation of Net-Celerity and prototype implementation in accordance

to R1 ease of use.

23

4. IMPLEMENTATION

24

5

Evaluation

5.1 Main Findings

We present here an overview of our main findings (MF), based on the experiments shown

in Table 5.1. The findings answer RQ1 and RQ3 which focus on evaluating how various

networking libraries perform compared to each other, and how a selected networking library

performs in a real-world scenario, respectively. In the following sections, we discuss each

main finding in detail.

MF1 The choice of networking library can significantly affect round-trip time (RTT) de-

creasing it from 1.6x starting with 20 players to up to 2.1x for 200 players, which is

discussed in Section 5.3.

MF2 The selected networking library affects server-side resource usage, utilizing approxi-

mately 19 times more RAM and increasing CPU utilization by up to 5 cores for 200

players, see Section 5.4.

MF3 The networking libraries vary in the amount of data clients send to the server and

display different patterns, which is further elaborated on in Section 5.5.

MF4 The performance of networking library can be affected by different player activity

and user can experience the increase of 1-2 ms for 20 players up to 4-6 ms for 80

players, which is illustrated in Section 5.6.

5.2 Experimental Setup

In this section, the setup of the experiments conducted is discussed. Net-Celerity bench-

mark as well as DOTS and Mirror prototypes are hosted and tested on DAS-6 which is an

25

5. EVALUATION

Table 5.1: Experiment Overview.

Prototype Behavior # Players Dur. [m]

DOTS-NFE, M-KCP, M-TP Idle, Active 20, 40, 60, 80 2
DOTS-NFE, M-KCP, M-TP Idle 20, 40, 60, 80, 100, 120, 2

140, 160, 180, 200

optimal environment to evaluate the performance and behaviors of large-scale applications;

see Table B.1. Furthermore, the summary of all the experiments conducted can be seen in

Table 5.1.

Firstly, we evaluated how much clients does a single DAS-6 node can run by measuring

CPU usage and RAM usage with the following amounts of players: 5, 10, 20, 40, 60, 80,

see Figure B.3. According to the results after 60 player mark client node reaches around

95%-99% CPU usage, which will affect the experiments results. Consequently, we decided

that 20 players per client node is the optimal amount for our experiment setup.

The experiments were conducted with intervals of 20, 40, 60, and 80 players with Idle

and Active workload to evaluate the difference player activity may introduce, as well as

intervals for 20, 40, 60, 80, 100, 120, 140, 160, 180 players with Idle behavior for scalability

testing. These intervals were chosen to simulate various server loads representative of real-

world scenarios. Each configuration provides insights into how different network libraries

handle increasing player counts and behaviors.

The duration of the experiments was established after the analysis of the RTT vari-

ance 5.1.

SRTT =

∑
x∈RTT (x−

∑
x∈RTT RTT

len(RTT))2

len(RTT)
(5.1)

In Figure B.4, it is evident that both the M-KCP and DOTS-NFE prototypes stabilize

their performance around 120 seconds. This period indicates that the server requires some

initialization time before achieving optimal operation. During this initialization phase,

the variance in RTT decreases, suggesting that the system is adjusting and optimizing its

performance.

However, for M-TP, the data do not show a clear time frame for server initialization.

Instead, the variance fluctuates without a distinct pattern. Consequently, the point at

which the variance is midway between its maximum and minimum values was used as a

26

5.3 Correlation Between Number of Players and RTT

20 40 60 80 100 120 140 160 180 200
number of players

0

20

40

60

80

100

ro
un

d
tri

p
de

la
y

[m
s]

mirrorTelepathy mirrorKCP entities

Figure 5.1: Round Trip Time of Prototypes for Extended Test.

reference for comparison, which is 120 seconds. For M-TP, although the variance does not

settle as clearly, the chosen reference point provides a basis for comparative analysis.

5.3 Correlation Between Number of Players and RTT

The benchmark results reveal significant insights into the scalability of networking libraries,

particularly in relation to round-trip time (RTT), a critical metric for real-time applications

like multiplayer games.

Figure 5.1 presents box plots that illustrate the RTT performance of three networking

libraries under varying player loads. The red and orange dotted lines represent the latency

threshold noticed by users in different game genres. According to the studies, players of

FPS (First Person Shooter) generally notice latency effects on 50 ms, and the accuracy

decrease of 50% is apparent after 75 ms (5, 20). On the other hand, for third person RPG

(Role-Playing Game) and racing games the noticeable latency for the players is around 100

ms (21, 22). Clearly, not all networking libraries perform within acceptable limits for user

experience. Furthermore, notable differences are visible when comparing their scalability

with increasing concurrent players.

Both DOTS-NFE and M-KCP performed within the set bound of 100 ms, however, at 120

players M-TP and 160 players M-KCP have crossed the 50 ms threshold. We mentioned

that Telepathy is a TCP-based netcode and KCP is a reliable UDP implementation in

Section 2.3 which might be the cause of the higher variance for M-TP with increasing

27

5. EVALUATION

players. Moreover, it was also apparent during experiment setup B.4, since only for M-TP

variance fluctuations did not stop over time.

DOTS-NFE has better scalability, with its RTT increasing from approximately 12 ms (20

players) to around 19 ms (200 players). This represents an increase of around 1.6 times. In

contrast, M-KCP and M-TP start with an RTT of about 19 ms (20 players) and increase

to approximately 35 ms and 45 ms (200 players), respectively. This considerable increase

of around times of 1.8-2.3 times indicates that these libraries experience more pronounced

latency under higher player loads, potentially impacting the real-time gameplay experience.

The lower RTT observed with Netcode for Entities (NFE) compared to Mirror, despite

potential differences in resource consumption, see Section 5.4, could be attributed to the

distinct time synchronization approaches implemented by each framework.

Mirror operates on a state synchronization model where data is synchronized from the

server to remote clients using SyncVars (23). This approach ensures that clients receive

the updates necessary to maintain the consistency of the game state. However, Mirror

does not synchronize data from clients back to the server unless using Commands, which

means that it primarily focuses on maintaining state consistency across networked entities

and does not have any way of predicting or optimizing in case of higher loads.

On the other hand, we discovered that NFE makes use of the authoritative server model

with time synchronization mechanism controlled by the NetworkTimeSystem. This system

calculates and adjusts server time estimates for clients based on round-trip times (RTT)

and received snapshots. It’s primary goal is to ensure that clients predict server states

accurately which helps minimize issues that could lead to synchronization issues or higher

RTT values. By managing prediction ticks and interpolation delays, NFE synchronizes

client and server states.

The efficiency in NFE’s time synchronization mechanism probably contributes to its

lower observed RTT compared to Mirror. By accurately predicting and adjusting server

ticks on clients, NFE reduces the need for frequent state updates, optimizing network

bandwidth usage and client-server interaction.

For developers, this finding provides valuable insight into which networking library is

best suited for their needs. Competitive games with large number of concurrent players

per session, such as battle royale shooters, could benefit from very low latency that DOTS-

NFE exhibited. Projects that might not require such optimizations and are made by a

team with less experience could value the simplicity of integration of either M-KCP or

M-TP, taking into account that they do not aim for best responsiveness and can sacrifice

latency, which is a common practice in turn-based games.

28

5.4 Effects on Server-Side Resource Usage

20 40 60 80 100 120 140 160 180 200
number of players

0
1
2
3
4
5
6
7
8
9

10
11
12
13

nu
m

be
r o

f c
or

es

DOTS-NFE M-KCP M-TP

Figure 5.2: CPU Usage of Server.

5.4 Effects on Server-Side Resource Usage

Analyzing the resource utilization depicted in Figure 5.3 and Figure 5.2, we noticed that

DOTS-NFE has higher demands on server resources compared to the Mirror prototype.

Specifically, DOTS-NFE requires approximately twice the CPU usage and up to 18 times

more memory when accommodating 200 players.

In contrast, both M-KCP and M-TP have relatively consistent resource requirements

across varying player workloads, with slight increases in both memory and CPU usage ob-

served as the number of players increases. This stability in resource consumption suggests

efficient resource management within these networking frameworks.

The noticed difference between DOTS-NFE and both Mirror prototypes requires further

investigation of potential factors. One possible explanation could be connected to the ar-

chitectural differences between DOTS and traditional object-oriented approaches. DOTS

optimizes data access patterns and emphasizes cache coherence, which can lead to more

efficient data processing but may require higher computational overhead initially. In con-

trast, Mirror’s object-oriented approach is simpler in design and may lower overhead, but

could struggle with scaling efficiently under heavier loads.

29

5. EVALUATION

0 2 4 6 8 10 12 14
average memory usage [GB]

20
40
60
80

100
120
140
160
180
200

nu
m

be
r o

f p
la

ye
rs

DOTS-NFE M-KCP M-TP

Figure 5.3: Memory Usage of Server.

Despite these observations, we cannot provide a definitive answer to these differences in

resource management. Hypothetically, differences in implementation techniques, memory

management strategies, or the handling of concurrent operations between DOTS-NFE and

the object-oriented Mirror prototype could contribute to these differences. We will further

discuss in Section 7 what possible aspect can be investigated to answer those questions.

The actionable insight of this finding suggests that there exists a trade-off of performance

vs. resource consumption. As we established in 5.1 in Section ?? that DOTS-NFE has

lower RTT values compared to M-KCP and M-TP and combined with a higher server-side

resource consumption, developers need to make a choice. If their resources are limited they

will highly benefit from M-KCP and M-TP if they are ready to sacrifice RTT of players.

On the other hand, if there are no restrictions for the server’s resource consumption or

they are comparable to our setup, we recommend the DOTS-NFE networking library.

In conclusion, while DOTS-NFE demonstrates superior performance in terms of real-

time responsiveness and network latency, as highlighted in previous sections, its increased

resource requirements underscore the trade-offs inherent in adopting more sophisticated

data-oriented architectures for networked applications.

30

5.5 Differences in Networking Traffic

20 40 60 80 100 120 140 160 180 200
Number of Players

0
5

10
15
20
25
30
35

Da
ta

 Tr
an

sf
er

 R
at

e
[M

B/
s]

DOTS-NFE M-KCP M-TP

(a) Data Sent from the Server

20 40 60 80 100 120 140 160 180 200
Number of Players

0
0
1
1
2
2
3

Da
ta

 R
ec

ei
ve

d
Ra

te
 [M

B/
s]

DOTS-NFE M-KCP M-TP

(b) Data Received by the Server

Figure 5.6: Data Transfer Rates of the Server.

5.5 Differences in Networking Traffic

During the benchmarking analysis of DOTS-NFE, M-KCP, and M-TP, we closely mon-

itored networking traffic patterns and observed distinct behaviors as player counts in-

creased, see Figure 5.6. Although all three networking libraries show an increase in data

rates with higher player numbers both sent and received by the server, DOTS-NFE has a

lower increase in traffic sending rates, despite its higher system resource consumption which

we previously discussed in 5.4. Furthermore, the increase for DOTS-NFE is predictable,

meanwhile, M-KCP and M-TP do not have distinct patterns for the data transmission and

received rates.

As discussed above, DOTS-NFE minimizes the amount of data that need to be syn-

chronized between clients and the server. This efficiency in data management significantly

reduces network traffic compared to the simpler but less efficient synchronization methods

employed by Mirror. Unlike game object approaches, DOTS-NFE serializes and trans-

mits only essential changes in entity state, and does not have to send redundant data of

the whole game object. This strategy reduces the amount of data sent over the network,

leading to lower transmission rates even under high player counts.

Furthermore, the stable nature of the data transmission and received rates can be also do

to DOTS-NFE’s client prediction implementation discussed in the Section 5.6. However,

this must be further investigated for a certain answer.

Developers can benefit from this result, since it clarifies which networking libraries will

have predictive sent/received rates for the server, especially for the cases when networking

31

5. EVALUATION

20 40 60 80
number of players

0
5

10
15
20
25
30
35
40
45
50

ro
un

d
tri

p
de

la
y

[m
s]

DOTS-NFE M-KCP M-TP

(a) Idle Players

20 40 60 80
number of players

0
5

10
15
20
25
30
35
40
45
50

ro
un

d
tri

p
de

la
y

[m
s]

DOTS-NFE M-KCP M-TP

(b) Active Players

Figure 5.9: Round Trip Time of Prototypes vs. Player Behaviors.

infrastructure cannot support inconsistent transfer rates.

5.6 Effects of Player Activity on Networking Libraries

After benchmarking specific types of behavior - idle and active, see 3.4 for further details,

we noticed that DOTS-NFE was not affected by the change of player activity, meanwhile

M-KCP and M-TP had experienced slight increase of RTT for all numbers of players.

If we compare medians of the boxplots from Figure 5.7 to Figure 5.8 there is always an

increase with at least around 2 ms as well as lower quartile. It becomes more pronounced

at the 60 and 80 player marks. Furthermore, variance of the boxes for with active playrs is

higher in comparison to the idle players, which is visible by the increase of sizes in whiskers.

Since the player activity behavior involved placing blocks, which are considered Network-

ing Objects, and M-KCP and M-TP have lower scaling capabilities compared to DOTS-

NFE, this can be the cause of a slight increase in RTT. To further confirm the cause of

the gain in ms for players, we will propose additional experiments in Section 7.

Since player activity is a key component of a multiplayer project, this finding will enable

developers to be better informed about the limitations of the networking libraries. Current

results suggest a negligible increase even for 80 players, and thus there are no trade-offs to

consider yet, however, it is important to take a note of current differences since there is a

possibility that with larger amount of player activity M-KCP and M-TP will have higher

32

5.7 Limitations and Threat to Validity

impact on RTT, and thus if the game involves a high number of player action DOTS-NFE

is the suggested option.

5.7 Limitations and Threat to Validity

In Section 5.2 we show why we chose a specific duration of the experiments; however,

taking into account that both M-KCP and M-TP have a higher round-trip time variance,

and, furthermore, M-TP has irregular variance over time, it is possible that the results

are affected by our choice. Alternative approach would have been experimenting with

different time frames and comparing the results to effectively estimate bias that might be

introduced.

In the late stage of the experiment we were able to identify a threat to validity from the

client nodes bottleneck, which is apparent from Figure B.1, however, we did not have the

opportunity to also investigate the DAS-6 networking environment which also introduced

bias. It could have been done by evaluating what are the data transmission rates when

there is only server launched and no client, which would indicate if the machine itself

transmits data. Additionally, it could have been evaluated if the transmission rates on the

network done by not client/server activity is irregular, since it would then greatly affect

the results.

Finally, player activity was emulated with input traces, which require mouse input and

camera movement. Although there are no issues with emulating pre-recorded behaviors

on clients with graphical mode, there might be inconsistencies with headless mode that we

have not checked. It could have been done by running the emulation and then connecting as

a user in graphical mode to see if the blocks were placed correctly. Alternatively, enabling

users in graphical mode is also an option, since DAS-6 has GPUs available, which would

be a valuable additional experiment for the future work.

33

5. EVALUATION

34

6

Related Work

The discussion of related work is essential to evaluate the research done within the existing

domain, identify gaps, and highlight contributions. In the field of online gaming, particu-

larly for Minecraft-like games, scalability and performance are critical areas of investigation

due to the massive player bases and complex virtual environments these games support.

Previous benchmarks and middleware solutions have aimed to address these challenges.

For instance, the Dyconits (24) focuses on scaling MVEs by bounding inconsistency dy-

namically and optimistically. Dyconits partitions the game world into units, each with

specific bounds, to manage data consistency and scalability more effectively. This system

integrates with existing game code bases with minimal modifications, supporting up to

40% more concurrent players and reducing the usage of network bandwidth by up to 85%

without significantly increasing latency.

Another significant effort was made by Yardstick benchmark (6) which provides a com-

prehensive performance analysis framework for Minecraft-like services. Yardstick captures

the operational characteristics of these services, using popular community maps as input

workloads and measuring both system- and application-level metrics. Through real-world

experiments, Yardstick has revealed the scalability limits and parallelization inefficiencies of

various Minecraft-like servers, including the official vanilla server, Spigot, and Glowstone.

Net-Celerity builds on these foundations, but takes a different approach by focusing on

prototypes and network libraries rather than Minecraft-specific implementations. Unlike

Dyconits, which optimizes data consistency and scalability within a Minecraft-like envi-

ronment, our benchmark evaluates the performance of different network libraries, Netcode

for Entities, Mirror KCP, and Mirror Telepathy, within Unity prototypes. This allows us

to analyze how these libraries handle RTT, CPU usage, and data reception under various

workloads and player activity levels specified in Section 3.3.

35

6. RELATED WORK

Furthermore, while Yardstick provides a benchmark for Minecraft-like services, our work

extends the scope of the benchmark to include the evaluation of network library perfor-

mance in Unity, a widely used game development engine (3). This is particularly relevant,

as Unity is increasingly used for developing a variety of multiplayer games beyond the

Minecraft genre, even if the prototypes use Minecraft-like features as an example. Our

benchmark measures key performance indicators offering a comprehensive assessment of

how these network libraries scale with increasing player counts and activity levels.

In summary, while Dyconits and Yardstick have significantly contributed to understand-

ing and improving the scalability and performance of Minecraft-like games, our research

introduces a novel benchmarking framework that focuses on Unity-based, but not limited

to, prototypes and network libraries. This expands the applicability of benchmarking tools

to a broader range of multiplayer games, providing valuable information to developers

working within the Unity ecosystem.

36

7

Future Work

In this study, we provided information on the performance of different network libraries

under varying workloads using specified metrics. However, there still are further research

to be done to cover unanswered questions and address identified limitations.

One area for future research is deeper investigation into the architectural differences

between DOTS-NFE and the Mirror prototypes. Understanding these differences could

provide clearer insight into the observed distinctions in server resource usage and network

traffic efficiency. The process of deep analysis is quite time consuming but necessary for

better understanding of technologies used. Existing experience with the networking library

aids greatly with this task, and was something that was missing in our study.

Furthermore, extending the scope of experiments to include additional network condi-

tions, workloads, and configurations would offer a more comprehensive evaluation of these

network libraries. For example, testing under different network conditions or exploring the

impact of the geographical distribution of servers on performance could provide valuable

real-world insights for game developers and network engineers. Specifically 5.1 could bene-

fit from higher player activity workloads to confirm the effects on the networking libraries.

One possible workload could be introducing emulated behavior for the players to move

around and continuously jumping and placing blocks under themselves to test for longer

amount of time, instead of requiring input traces that will be limited to a specific amount

and duration.

Moreover, conducting longer term studies to assess the scalability and stability of these

network libraries over extended periods of time would also be beneficial. Although we had

an attempt, see Section 5.2, the conditions did not allow us to conduct experiments for

more than 15 minutes during the working day on DAS-6. Monitoring performance metrics

over time could reveal interesting details about the long-term reliability and robustness of

37

7. FUTURE WORK

these libraries under sustained usage. We had already identified in 5.1 that M-KCP and

M-TP have an unpredictable data transfer / receive trend that can be attributed to the

total duration, so this can help prove or disprove this hypothesis.

Finally, utilizing user experience metrics and qualitative feedback from players in future

evaluations would provide a more in-depth assessment of network library performance.

Understanding how perceived responsiveness, gameplay smoothness, and overall player

satisfaction correlate with the quantitative performance metrics measured in this study

could help us validate the practical implications of using different network libraries in

real-world multiplayer gaming scenarios. This can be done by introducing such metrics as

jitter, frames per second (FPS) and other. The possible experiment could be done with

existing input traces by, for instance, rerunning the experiments under different conditions

and determining how many blocks ended up being placed.

38

8

Conclusion

In this study, we developed Net-Celerity, a prototype-based benchmark for network li-

braries, and have conducted a comprehensive evaluation of three network libraries, Netcode

for Entities, Mirror KCP, and Mirror Telepathy, in prototypes resembling Minecraft-like

multiplayer environments. Our experiments focused on measuring key performance met-

rics including round-trip time , CPU usage, and data reception under varying workloads

and player activity levels.

Our findings indicate distinct performance characteristics among the tested network

libraries. Netcode for Entities shows lower RTT compared to Mirror KCP and Mirror

Telepathy under moderate to high player loads due to it’s time synchronization architecture

and prediction tactics. Meanwhile, all networking libraries stay under 100 ms RTT makes

it still acceptable, M-TP and M-KCP have issues keeping up, and as a result crossed the

threshold of 50 ms at 120 and 160 players marks respectively.

Our study highlighted the importance of considering architectural differences and net-

work conditions when evaluating network library performance. Architectural details be-

tween DOTS-NFE and Mirror implementations can influenced resource utilization and

scalability, underscoring the need for deeper architectural analysis in future studies.

Furthermore, we identified that player activity has no effect on DOTS-NFE prototype

but causes a slight increase in RTT for M-KCP and M-TP. This can be attributed to

Mirror prototype’s sensitivity to the raise in number of Networking Objects which blocks

placed by the players are also considered to be.

While our experiments provided valuable insights into immediate performance metrics,

there are several possible for future research to improve our understanding in network

libraries comparison process. Deeper architectural analysis could explain the observed dif-

ferences and inform users about the optimizations specific network libraries might require.

39

8. CONCLUSION

Furthermore, extending experiments to take into account various network conditions and

conducting longer-term studies would provide a more insightful assessment of scalability

and stability that is closer to real-world scenarios.

As a result, our research contributes the Net-Celerity benchmarking framework designed

for any prototype, expanding on the network library evaluations in addition to tradi-

tional Minecraft-like environments. By bridging the gap between performance metrics and

real-world gameplay experience, our findings aim to assist developers in making informed

decisions when selecting network libraries for multiplayer game development.

40

References

[1] Newzoo. Newzoo Global Games Market Report 2023, 2023. [Online; accessed

1. Feb. 2024]. iii, 1

[2] Samad M.E. Sepasgozar. Digital Twin and Web-Based Virtual Gaming

Technologies for Online Education: A Case of Construction Management

and Engineering. Applied Sciences, 10(13):4678, jul 2020. 1

[3] Unity. Unity 2022 Multiplayer Report, 2022. [Online; accessed 8. Feb. 2024]. 1,

36

[4] Alexandru Iosup, Siqi Shen, Yong Guo, Stefan Hugtenburg, Jesse

Donkervliet, and Radu Prodan. Massivizing online games using cloud

computing: A vision. In 2014 IEEE International Conference on Multimedia and

Expo Workshops (ICMEW), pages 1–4, 2014. 1

[5] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-

manuel Agu, and Mark Claypool. The effects of loss and latency on user

performance in unreal tournament 2003®. In ACM Conferences, pages 144–

151. Association for Computing Machinery, New York, NY, USA, August 2004. 1,

27

[6] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yardstick:

A Benchmark for Minecraft-like Services. In Proceedings of the International

Conference on Performance Engineering, Mumbai, India, April, 2019, 2019. 2, 35

[7] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. Meter-

stick: Benchmarking Performance Variability in Cloud and Self-hosted

Minecraft-like Games. In Proceedings of the International Conference on Per-

formance Engineering, Coimbra, Portugal, April, 2023, 2023. 2

41

http://dx.doi.org/10.3390/app10134678
http://dx.doi.org/10.3390/app10134678
http://dx.doi.org/10.3390/app10134678

REFERENCES

[8] Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios An-

dreadis, Erwin van Eyk, Tim Hegeman, Sacheendra Talluri, Vincent van

Beek, and Lucian Toader. Massivizing Computer Systems: a Vision to

Understand, Design, and Engineer Computer Ecosystems through and be-

yond Modern Distributed Systems. CoRR, abs/1802.05465, 2018. 2

[9] Shie-Yuan Wang, Hsi-Lu Chao, Kuang-Che Liu, Ting-Wei He, Chih-Che

Lin, and Chih-Liang Chou. Evaluating and improving the TCP/UDP per-

formances of IEEE 802.11(p)/1609 networks. In Proceedings of the 13th IEEE

Symposium on Computers and Communications (ISCC 2008), July 6-9, Marrakech,

Morocco, pages 163–168. IEEE Computer Society, 2008. 5

[10] Unity. Unity Netcode for Entities | Netcode for Entities | 1.0.17, 2023.

[Online; accessed 2. Mar. 2024]. 6, 7

[11] Unity. ECS for Unity, feb 2024. [Online; accessed 22. Feb. 2024]. 6, 7

[12] Mirror Networking – Open Source Networking for Unity, 2024. [Online;

accessed 2. Mar. 2024]. 7, 8, 15

[13] KCP Networking Library, 2020. [Online; accessed 2. Mar. 2024]. 7, 8, 19

[14] GitHub - MirrorNetworking/Telepathy, 2023. [Online; accessed 8. Feb. 2024].

7

[15] GitHub - MirrorNetworking/SimpleWebTransport, 2021. [Online; accessed 8.

Feb. 2024]. 7

[16] vis2k. A Brief History of Mirror - Mirror, 2024. [Online; accessed 8. Feb. 2024].

8

[17] Unity Technologies. Unity - Manual: Advanced operations: Using the

LLAPI, March 2024. [Online; accessed 5. Mar. 2024]. 8

[18] LiteNetLib, March 2024. [Online; accessed 5. Mar. 2024]. 8

[19] Metrics | Netcode for Entities | 1.1.0-pre.3, November 2023. [Online; accessed

2. Apr. 2024]. 15

42

http://arxiv.org/abs/1802.05465
http://arxiv.org/abs/1802.05465
http://arxiv.org/abs/1802.05465
https://doi.org/10.1109/ISCC.2008.4625624
https://doi.org/10.1109/ISCC.2008.4625624
https://docs.unity3d.com/Packages/com.unity.netcode@1.0/manual/index.html
https://unity.com/ecs
https://mirror-networking.com/
https://github.com/skywind3000/kcp/blob/master/README.en.md
https://github.com/MirrorNetworking/Telepathy
https://github.com/MirrorNetworking/SimpleWebTransport
https://mirror-networking.gitbook.io/docs/trivia/a-history-of-mirror
https://docs.unity3d.com/Manual/UnityWebRequest-LLAPI.html
https://docs.unity3d.com/Manual/UnityWebRequest-LLAPI.html
https://github.com/RevenantX/LiteNetLib
https://docs.unity3d.com/Packages/com.unity.netcode@1.1/manual/metrics.html

REFERENCES

[20] Xiaokun Xu, Shengmei Liu, and Mark Claypool. The Effects of Network

Latency on Counter-strike: Global Offensive Players. In 14th International

Conference on Quality of Multimedia Experience, QoMEX 2022, Lippstadt, Germany,

September 5-7, 2022, pages 1–6. IEEE, 2022. 27

[21] Mark Claypool and Kajal T. Claypool. Latency and player actions in

online games. Commun. ACM, 49(11):40–45, 2006. 27

[22] Pedro Casas, Florian Wamser, Fabian E. Bustamante, and David R.

Choffnes, editors. Proceedings of the 4th Internet-QoE Workshop on QoE-

based Analysis and Management of Data Communication Networks, Internet-

QoE@MobiCom 2019, Los Cabos, Mexico, October 21, 2019. ACM, 2019. 27

[23] Synchronization | Mirror, June 2024. [Online; accessed 15. Jun. 2024]. 28

[24] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. Dyconits: Scaling

Minecraft-like Services through Dynamically Managed Inconsistency. In

41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021,

Washington DC, USA, July 7-10, 2021, pages 126–137. IEEE, 2021. 35

43

https://doi.org/10.1109/QoMEX55416.2022.9900915
https://doi.org/10.1109/QoMEX55416.2022.9900915
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
https://dl.acm.org/citation.cfm?id=3349611
https://dl.acm.org/citation.cfm?id=3349611
https://dl.acm.org/citation.cfm?id=3349611
https://mirror-networking.gitbook.io/docs/manual/guides/synchronization
https://doi.org/10.1109/ICDCS51616.2021.00021
https://doi.org/10.1109/ICDCS51616.2021.00021

REFERENCES

44

Appendix A

Reproducibility

A.1 Abstract

Net-Celerity is a benchmarking tool that is used to evaluate networking libraries of prototype-

based games. In this section, we will describe the details of the artifact, how to use it, and

how to reproduce the results.

A.2 Artifact check-list (meta-information)

• Data set: input traces for DOTS-NFE and Mirror prototypes are provided.

• Hardware: DAS-6, see specifications in the Table B.1.

• Experiments: see Table 5.1.

• How much disk space required (approximately)?: 2 GB.

• How much time is needed to prepare workflow (approximately)?: 5-10 minutes.

• How much time is needed to complete experiments (approximately)?: 1.8 - 2
hours.

• Publicly available?: Yes. https://github.com/atlarge-research/Net-Celerity

• Code licenses (if publicly available)?: MIT

A.3 Description

A.3.1 How to access

Net-Celerity is fully open source and is accessible on the github page: https://github.

com/atlarge-research/Net-Celerity.

Builds of prototypes used can be found here: https://drive.google.com/drive/folders/

1f9s32V-_nGZOcAA8TPbWQCMLxG817t8I?usp=sharing

45

https://github.com/atlarge-research/Net-Celerity
https://github.com/atlarge-research/Net-Celerity
https://github.com/atlarge-research/Net-Celerity
https://drive.google.com/drive/folders/1f9s32V-_nGZOcAA8TPbWQCMLxG817t8I?usp=sharing
https://drive.google.com/drive/folders/1f9s32V-_nGZOcAA8TPbWQCMLxG817t8I?usp=sharing

A. REPRODUCIBILITY

A.3.2 Hardware dependencies

Our experiment does not take into account the bias introduced by hardware, and thus is

recommended to run on DAS-6 or system with specifications similar to those of DAS-6,

which are indicated in Table B.1.

A.3.3 Software dependencies

Net-Celerity was designed with Linux systems in mind, it was tested on Rocky Linux

8.5 (Green Obsidian), and partially on Ubuntu 22.04.4 LTS- the builds and the script

execution, but not the full duration of experiments.

A.4 Installation

A.4.1 Setting up Virtual Environment

In order to simplify the installation process, we use miniconda3 virtual environment and

store all dependencies in the environment.yml file. Make sure to install it first. To create

conda environment do

conda env create -f environment.yml

and then activate it with

conda activate net-celerity-env

A.5 Experiment workflow

A.5.1 Editing config.cfg

Before running the experiments, config.cfg needs to be configured. The process is straight-

forward:

Path and execution related variables:

• prototype_name: the name of the prototype

• prototype_logs: location of the log folder for the prototype

• prototype_server_command: bash command to start the server

• prototype_client_command: bash command to start the client. The command can

be further edited in prototype_experiment.sh in case the ip address to which the user

needs to connect is not static and has to be configured once the server is initialized.

46

A.5 Experiment workflow

• collection_script: location of python script to execute log data collection.

Server/Client nodes related variables:

• server_node: name of a server node to ssh into. Can be only one.

• client_nodes_number: the amount of client nodes that need to be reserved.

• client_nodeN : name of the client node to ssh into. Replace N with a number. Add

as many as necessary by starting with 1 and incrementing the number. The number

of client nodes must be 1 to client_nodes_number for the script to work as intended.

A.5.2 Collection Script

The collection script is a Python script that is run at the end of the experiment to collect

all relevant metrics and store them in one <NAME>_results.csv file. Currently it works

by counting how many player scripts are available in the folder and then going individually

through them and storing the round-trip time in a common .csv file with dedicated ID for

the player. The headers of .csv are:

Player_ID;Total_Players;RoundTripDelay_ms

One drawback to this approach is that it is individual to a prototype since the logging is

done with different fields. However, for future prototypes if the field names are the same

as in one of the provided collector scripts, they can be reused.

In total we have three scripts: mirror_collect_script.py for M-KCP, mirror_t_collect_script.py

for M-TP, and entities_collect_script.py for DOTS-NFE.

A.5.3 Monitoring Script

System metrics monitoring is done using psutil Python script and is the same for every

prototype. It is attached to the server and monitors quite a few metrics. All of them can

be seen in the system_monitor.py. They are later stored in the following manner:

system_logs/${prototype_name}/system_log_${num_players}p_${benchmark_duration}s.csv

47

A. REPRODUCIBILITY

A.5.4 Running the Experiments

All the experiments provided can be reproduced; however, it is quite time consuming. To

analyze different player activities of a single prototype we would require: 2 * ((20 * 3 +

120) + (40 * 3 + 120) + (60 * 3 + 120) + (80 * 3 + 120)) = 2160 second or 36 minutes,

where 3 is a time for spawning a player and 2 is how many player activities we use.

In order to reproduce the experiments and not change the config.cfg too often, we rec-

ommend going through all the workload within the same prototype and then move on.

To make it even simpler, it is possible to copy the bash commands from prototype_experiment.sh

and into a separate script per prototype if there are several machines at your disposal to

run concurrently. We provide three examples: mirror_experiment.sh for M-KCP, enti-

ties_experiment.sh for DOTS-NFE, and prototype_experiment.sh applicable to any pro-

totype, and currently set up for M-TP. Once the values in config.cfg are configured, the

scripts can be run.

A.6 Evaluation and expected results

The expected results are similar to the results discussed in Section 5, or can be evaluated in-

dividually https://drive.google.com/drive/folders/1X1arvN_lzAPBwNt1CNTs1CAeNCinpzZa?

usp=sharing.

Each iteration will produce addtion to the common <NAME>_results.csv and several

logs for server metrics. The specific structure is the following:

system_logs_workload1/

DOTS-NFE/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

M-KCP/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

M-TP/

system_log_20p_120s.csv

48

https://drive.google.com/drive/folders/1X1arvN_lzAPBwNt1CNTs1CAeNCinpzZa?usp=sharing
https://drive.google.com/drive/folders/1X1arvN_lzAPBwNt1CNTs1CAeNCinpzZa?usp=sharing

A.6 Evaluation and expected results

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

system_logs_workload1_extended/

DOTS-NFE/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

system_log_100p_120s.csv

system_log_120p_120s.csv

system_log_140p_120s.csv

system_log_160p_120s.csv

system_log_180p_120s.csv

system_log_200p_120s.csv

M-KCP/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

system_log_100p_120s.csv

system_log_120p_120s.csv

system_log_140p_120s.csv

system_log_160p_120s.csv

system_log_180p_120s.csv

system_log_200p_120s.csv

M-TP/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

system_log_100p_120s.csv

system_log_120p_120s.csv

system_log_140p_120s.csv

system_log_160p_120s.csv

system_log_180p_120s.csv

system_log_200p_120s.csv

system_logs_workload2/

49

A. REPRODUCIBILITY

DOTS-NFE/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

M-KCP/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

M-TP/

system_log_20p_120s.csv

system_log_40p_120s.csv

system_log_60p_120s.csv

system_log_80p_120s.csv

workload1_results/

DOTS-NFE_results.csv

M-KCP_results.csv

M-TP_results.csv

workload1_results_extended/

DOTS-NFE_results.csv

M-KCP_results.csv

M-TP_results.csv

workload2_results/

DOTS-NFE_results.csv

M-KCP_results.csv

M-TP_results.csv

The structure can be different, depending on what paths are specified in the config.cfg.

50

Appendix B

Additional Experiments

The plots of the additional experiments conduced for experiment setup which were dis-

cussed in Section 5.2 as well as specification of the system used.

Table B.1: DAS-6 Specifications.

Component Specification

Nodes 34
Most common single 24-core
Speed 2.8 GHz
Memory 128 GB
Central storage 256 TB
Interconnect 100G Ethernet
GPUs 28×A400, 3×A6000, A100

51

B. ADDITIONAL EXPERIMENTS

0 20 40 60 80 100
 CPU usage [%]

5

10

20

40

60

80

nu
m

be
r o

f p
la

ye
rs

(a) CPU Usage of Single Client Node

0 5 10 15 20
 memory usage [%]

5

10

20

40

60

80

nu
m

be
r o

f p
la

ye
rs

(b) Memory Usage of Single Client Node

Figure B.3: CPU and Memory Usage for Client Node. Whiskers Represent Error Bars.

111 222 333 444 555 666 777
time [m]

0

20

40

va
ria

nc
e

of
 R

TT
 [m

s2] M-TP M-KCP DOTS-NFE

Figure B.4: Variance of Prototypes over Time.

52

	1 Introduction
	1.1 Multiplayer Games in the Modern Era
	1.2 Problem Statement
	1.3 Research Questions and Methodology
	1.4 Thesis Contributions
	1.5 Plagiarism Declaration

	2 Background Concepts and Models
	2.1 Networking Libraries for Online Games
	2.2 Unity Netcode for Entities
	2.3 Mirror Networking

	3 Design of Net-Celerity
	3.1 Requirements
	3.2 High-Level Design Overview
	3.3 Metrics
	3.4 Workloads

	4 Implementation
	4.1 Selection of Networking Libraries
	4.2 Integrating Networking Libraries
	4.3 Implementation of Net-Celerity Benchmark

	5 Evaluation
	5.1 Main Findings
	5.2 Experimental Setup
	5.3 Correlation Between Number of Players and RTT
	5.4 Effects on Server-Side Resource Usage
	5.5 Differences in Networking Traffic
	5.6 Effects of Player Activity on Networking Libraries
	5.7 Limitations and Threat to Validity

	6 Related Work
	7 Future Work
	8 Conclusion
	References
	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	B Additional Experiments

