VRIJE
UNIVERSITEIT
AN° AMSTERDAM

BACHELOR’S THESIS
(Course CopEg: XB_40001)

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

by

Benedict Rigler
(STUDENT NUMBER: 2744003)

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science
in
Computer Science
at the
Vrije Universiteit Amsterdam

August 20, 2024

Certifled Dy ..ot e
Jesse Donkervliet

PHD student

First Supervisor

Certifled DY ..ot
TBD

TBD

Second Reader

TABLE oF CONTENTS

Table of Contents

Abstract
Introduction
1.1 Problem Statement
1.2 Research Questions
1.3 Research Methodology
1.4 Thesis Contributions
1.5 Plagiarism Declaration
Background
2.1 Minecraft-like Games
2.2 What is Netcode?
Benchmark Design
3.1 Requirements
3.2 Design Overview (R3, R4, R5, R6)
3.3 Benchmark Workloads (R1, R2)
3.4 Key Performance Metrics (R2)
Implementation of Benchmark
4.1 Implementation of Game Prototypes
4.2 Implementation of Benchmark Workloads
43 Recoding of System Metrics
4.4 Implementation of Deployment system
Evaluation
5.1 Experimental Setup
5.2 MF1: NFGO demonstrates the best overall performance under resource load and client environmental
load workloads
5.3 MF2: Mirror uses substantially more bandwidth for RPCs
5.4 MF3: Mirror RTT suffers under RPC workloads
5.5 MF4: Fishnet struggles with large amount of block updates
Related Work
Conclusion
References
Artifacts
A.1 Artifact check-list (meta-information)
A.2 Description
A3 Installation
A4 Experiment Workflow
A5 Evaluation and Expected Results
A.6 Experiment Customization
A.7 Methodology

O O 00 00 O QA U1 U B R R W NN NN N R R e

—_
o

10
11
11
12
12
12
13
14
14
14
14
14
14
14
14

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

August, 2024, Vrije Universiteit Amsterdam

Envirostick: Benchmarking Enviroment-based MVE Workloads
For
Game Networking Libraries

Benedict Rigler
Vrije Universiteit Amsterdam
Amsterdam, NL
B.rigler@student.vu.nl

ABSTRACT

The gaming industry continues to experience rapid growth,
making the development of efficient multiplayer online games
increasingly critical, especially for smaller developers who
often depend on existing networking libraries due to limited
resources. However, there is a notable lack of established
benchmarks to evaluate the performance of these libraries,
particularly in the context of virtual environment workloads
typical of Minecraft-like games (MLGs). Existing research
has not sufficiently addressed this gap, necessitating further
investigation. This thesis tackles the problem by designing,
implementing, and conducting real-world experiments with
a benchmark specifically tailored to virtual environment
workloads within the Opencraft framework. The study pro-
vides a comparative analysis of various gaming libraries,
measuring key performance metrics to assess their opera-
tional efficiency and resource utilization. The results reveal
significant performance disparities among the libraries, un-
derscoring the importance of networking library selection in
managing game development costs and server resources. The
insights gained from this research offer valuable guidance for
both researchers and practitioners, aiding in the informed
selection of networking libraries for MLG development and
enhancing multiplayer gaming experiences.

1 INTRODUCTION

The gaming industry is one of the largest entertainment
sectors, boasting approximately 3 billion players worldwide
with a revenue of around $200 billion [11]. A significant por-
tion of popular video games today are multiplayer online
games. Among these, Minecraft-Like Games (MLGs) have
become particularly influential. MLGs feature expansive vir-
tual environments where players can freely interact with
and modify the world around them, often collaborating or
competing with other players in real-time . MLGs make up
a large aspect of video games, with the most popular MLG
being Minecraft itself with over 300 million copies sold world-
wide [8]. Minecraft still ranks as one of the most popular
video games, even 13 years after its release [7]. In MLGs,
one of the largest workloads on the network is the transfer
of environmental information between the server and the

clients that interact with this environment. In the case of
Minecraft, the server models a world consisting of millions of
individual, interactable blocks. Each block can have its own
properties and state, that the server must manage and update.
This large computational load significantly impacts perfor-
mance, as the server needs to handle not only the storage
and retrieval of block data, but also the physics, interactions,
and changes resulting from player actions. In addition, the
network load increases as the server communicates these
updates to all connected players in real time, ensuring a syn-
chronised and seamless gaming experience. The complexity
and scale of such tasks can strain server resources, leading
to performance degradation.

1.1 Problem Statement

While large game developers can afford to build their own
infrastructure network for their games, game developers of
smaller projects typically do not have the resources for this,
in terms of both monitary and technical know-how. This
means that most smaller developers opt not to build their
network infrastructure but instead rely on existing libraries
to manage the networking aspects. Despite the multitude of
options available, there is little to compare these libraries be-
yond their basic feature, since there is no established bench-
mark yet. This thesis aims to develop this benchmark to offer
a quantitative method for evaluating these libraries. More-
over, the resources that these libraries use and the service
they provide have a large impact on the developer, as a more
performance intensive network infrastructure will increase
the cost of running the game [16].

1.2 Research Questions

In this study, the objective is to investigate and compare
the performance of different networking libraries within
the specific context of environmental workloads in online
multiplayer gaming. To this end, we formulate and address
the following three research questions (RQ) in this work.

RQ1 How to design a comprehensive benchmark to effec-
tively evaluate the performance of various game net-
working libraries under environmental workloads?

RQ2 How to implement such a benchmark in practice?

August, 2024, Vrije Universiteit Amsterdam

RQ3 What are the performance characteristics of selected
gaming libraries when subjected to the implemented
benchmark, and how do these libraries compare in
terms of their performance under environmental work-
loads?

1.3 Research Methodology

To create a comparison of these libraries, we will design and
build a benchmark to test the multitude of such libraries.
Moreover, this paper will implement a subset of popular
libraries in this reference and draw a comparison of their
performance. To create a comprehensive comparison of these
libraries, we will design and build a benchmark to test a
wide range of libraries commonly used in this domain. This
benchmark will be carefully constructed to evaluate key
performance metrics. Moreover, this paper will implement
a representative subset of popular libraries, selected based
on their prevalence and relevance in the current industry.
Lastly, we will conduct an analysis of the benchmarking
results to ensure the reliability and validity of our findings.
This approach will provide an understanding of how these
libraries perform relative to each other and will offer valuable
insights to researchers and practitioners in the field.

1.4 Thesis Contributions
This work makes three main contributions:

C1 The design of a benchmark to test gaming networking
libraries against environmental workloads. this bench-
mark will ensure a fair comparison of the performance
of various gaming libraries.

C2 The implementation of that benchmark in Opencraft
to test a subset of gaming libraries.

C3 Experiments on that benchmark to analyse the perfor-
mance of a subset of gaming libraries and a discussion
of their performance

1.5 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied
from any other source (person, Internet, or machine), and
has not been submitted elsewhere for assessment

2 BACKGROUND

In this section we provide an overview of the essential back-
ground information relevant to the this thesis

2.1 Minecraft-like Games

Minecraft-like games (MLGs) utilize a traditional client-server
model, where the server handles most of the computational
tasks. Users install client software locally, which connects
to the server to interact with the game world. In this model,
the server is responsible for maintaining the state of the

Benedict Rigler

+
Terrain Simulation

Player Behaviour Entities
. - Movement __ - >|| Terrain Generation | __ Movement __
! Collision ' ! Collision '

Physics Simulation

P ————-—-—--- - " Lyt

Decision Making

Terrain Modification
Plant Growth
Simulated Constructs

+|Environment-Based Workload [x] Inefficient in MLGs

:-_-: Example of Workload —» Causes/Creates

—e

[#] Unique to MLGs

Figure 1: Workload components in MLGs, taken from
Meterstick[3].

game, managing the logic of the game, and ensuring that all
clients receive the necessary updates to provide a consistent
environment.

A key component in this architecture is the Network Man-
ager, which handles the incoming connections from clients.
It manages connection establishment, maintenance, and ter-
mination, ensuring secure communication channels through
encryption layers. The Network Manager also encodes and
decodes messages, exposing them to the game loop via a
message queue for processing. This setup allows the game
loop to update the game state based on client interactions
and maintain synchronised gameplay.

The game consists of a virtual world hosted by the server,
where players interact with the environment and each other.
This virtual world is composed of a terrain, represented by
a grid of immovable blocks, and various entities that can
move freely. Entities include player-controlled avatars and
non-player characters, each capable of interacting with the
environment and other entities. Players can build structures,
mine resources, craft items, and engage in combat, with the
server continuously updating and broadcasting the game
state to ensure a consistent experience for all participants.

The Minecraft Virtual Environment (MVE). In this con-
text, the environment refers to the intractable area with
which the player engages during the game. This environ-
ment varies significantly between games. Some games utilise
a static environment that is unmodifiable, where each client
stores the environmental data locally, and only player in-
formation is shared among clients. In contrast, other games
feature dynamic environments that players can modify, ne-
cessitating synchronisation between all players. In this paper,
we will focus on dynamic environments, as they can sub-
stantially impact network performance, since this needs to
be shared across all clients.

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

Frames Client

Rendering
Inputs Networking |

Player JR I
Player State ! o
Network Actions Updates;

Game Loop
Player Behavior
Terain Simulation

Figure 2: Overview of a simplified MLG.

Minecraft-like Games (MLGs) incorporate a virtual en-
vironment known as the Minecraft Virtual Environment
(MVE). The MVE represents one of the most significant com-
putational burdens on MLGs. This substantial impact is at-
tributable to two primary factors. Firstly, MVEs constitute a
considerable proportion of the workloads that MLGs must
process and manage, as illustrated in Figure 1 (Workload
Components). Secondly, many of these MVE-related tasks
are particularly resource-intensive due to the inherent archi-
tecture of MLGs. In this illustration, the sections highlighted
in red represent these resource-intensiv workloads.[3]

MLG system model. The MLG system model is quite sim-
ple, as it consists of a server and a client. Figure 2 represents
this.

The client (@) has two primary responsibilities. First, it
converts player input into in-game actions, speculatively
applying these actions to the local state while simultaneously
sending them to the server for validation. These actions are
sent over the network (@) by the client-side networking
script.

The server (®) is responsible for executing all in-game
environment simulations, maintaining the global state(@),
processing player actions, and sending state updates to sys-
tem clients. It consists of a network input and output queue
where incoming player actions are received and outgoing
state udates are sent out.

The game loop (@) performs simulations by applying state
updates to the global state in discrete steps, or ticks, at a fixed

August, 2024, Vrije Universiteit Amsterdam

Server RPCs
{Client | obj.MyServerRPC() N~ = == = == = === = === = === - -
""""""""""" " lpxgoution client iGET Ly pewern
client and server
___________________ MyServerRPC() =
Server executed on server version of obj

it obj exists on both!
i, client and server

Figure 3: RPC diagram taken from Unity’s Netcode for game
Objects documentation [15].

frequency. If a tick takes less than the fixed frequency, the
MLG waits until the next scheduled tick to start.

However, if any part of the server takes longer than a
tick to process, the tick frequency drops, causing the server
to enter an overloaded state. In this state, the game fails
to meet its quality of service requirements, leading to game
stuttering, visual inconsistencies, and increased input latency
for players.[17]

2.2 What is Netcode?

Game Networking, also known as multi-player networking
or ‘netcode’, involves synchronising the state of the game and
events among multiple players connected over a network.
Netcode provides the necessary information to make a game
multiplayer on the Internet, ensuring that all players have a
consistent and shared experience. Its primary focus lies on
addressing the complexities inherent in multiplayer online
games, such as latency, jitter, and packet loss. These chal-
lenges can significantly affect gameplay and are mitigated
by using advanced algorithms and techniques.

In addition to these core challenges, Game Networking
is intricately intertwined and integrated with various game
systems such as physics, animation, and game mechanics.
For example, the netcode must ensure that the physics en-
gine’s calculations are consistent across all clients, so objects
behave predictably in the game world. Similarly, animations
must be synchronised to ensure that all players see the same
character movements at the same time. Gameplay mechanics,
such as hit detection and game rules, also rely heavily on
accurate and timely data transmission to maintain fairness
and responsiveness in multiplayer interactions.

Advanced netcode implementations may include tech-
niques like server reconciliation, where the server periodi-
cally corrects the game state based on authoritative data, and
client-side prediction, which allows players to see immediate
responses to their inputs, even before the server confirms

August, 2024, Vrije Universiteit Amsterdam

them. These mechanisms work together to provide a seam-
less and immersive multi-player experience, overcoming the
inherent limitations of network environments.

Video games typically operate on a server-authoritative
model, where the server holds the primary authority to mod-
ify the game state. Clients request changes through Remote
Procedure Calls (RPCs), and the server processes these re-
quests. The structure of these RPCs is shown in figure 3. In
traditional video game architecture, the server manages a
queue of these client-sent changes, updates the game state
accordingly, and then sends the updated state to all con-
nected clients. This model ensures that the server has the
final say on the correctness of player movements and interac-
tions, maintaining the integrity and consistency of the game
environment.

3 BENCHMARK DESIGN

In this section, we present the design of the benchmark. First,
a set of seven requirements is defined. Secondly, the high-
level design of the benchmark is presented and the details
that help fulfil these requirements. Thirdly, we discuss the
proposed workloads to benchmark. Lastly, we discuss the
metrics used to analyse the results of the benchmark.

3.1 Requirements

Here we describe the seven requirements for the benchmark.
The first 2 are relevant for the use case of this benchmark,
while the last 4 are based on existing guidelines.[5][18]

R1 Validity of Workloads: The workloads utilized in
the benchmarking process should reflect real-world
usage scenarios. Workload validity ensures that the
performance measurements obtained accurately re-
flect the behaviour of networking libraries in practical,
everyday situations, enhancing the relevance and ap-
plicability of benchmarking results.

R2 Relevance of Metrics and Experiments: The bench-
marking system must be capable of accurately captur-
ing key performance metrics related to networking
libraries.

R3 Fairness: Fairness in benchmarking is crucial to en-
sure an unbiased assessment of networking libraries.
The benchmarking process should provide a level play-
ing field for all libraries, avoiding scenarios that may
favour or disadvantage any particular library unfairly.
Fairness promotes trustworthiness and reliability in
benchmarking outcomes.

R4 Clarity: The benchmarking system should adopt a
clear and structured approach to present results. Clear
presentation of results aids in understanding and in-
terpreting performance characteristics effectively, fa-
cilitating informed decision-making based on bench-
marking outcomes.

Benedict Rigler

R5 Reconfigurability:The benchmarking system should
offer easy reconfigurability to enable swapping of un-
derlying networking libraries. This feature allows for
the efficient testing and comparison of multiple net-
working libraries without significant overhead or com-
plexity in the benchmarking setup.

R6 Ease of use: The benchmarking system should pri-
oritize ease of use, configuration, and setup proce-
dures. User-friendly interfaces, clear documentation,
and streamlined processes contribute to making the
benchmarking system accessible to a wide range of
users, ensuring that obtaining performance results for
new systems remains straightforward and efficient.

3.2 Design Overview (R3, R4, R5, R6)

In this section, we present the design of the benchmark, the
goal of which is to measure the performance of the network
libraries with the environment workloads.

The benchmark comprises three distinct experiments; The
initial experiment assesses the resource load, examining the
network libraries under different loads. The subsequent ex-
periment concentrates on server-side environment modifica-
tion, evaluating how the net code handles a large amount of
data coming into the client. The final experiment investigates
client-side environment modification, specifically focusing
on the impact of remote procedure calls (RPCs) facilitated
by network libraries. Each experiment is carried out across
each library using different parameters.

Figure 4 presents the high-level design of the benchmark.
In our design, the user interacts primarily with the controller,
which is responsible for running the set of experiments. The
user configures the benchmark through the benchmark con-
figuration (@), allowing modification of aspects such as run-
time and repetition and parameters relevant to the bench-
marks. This setup makes it easy to add new Opencraft 2
builds in the future if more net code libraries are integrated
into the benchmark additionally one can easily change in-
built parameters to change the behavior of the experiments.
This also has the goal of satisfying the requirement R5 by
making the system easy to reconfigure.

After configuring the benchmark, the user initiates the
benchmark run, and the Initiator (@) is initialised. Its purpose
is to execute the benchmark using the provided configuration.
These arguments are passed when running the experiment
and are interpreted by the argument readers () in both the
client(s) and server, setting up the behavior for both sides
accordingly.

The server starts and runs with the given configuration
until terminated. The client operates similarly but has a set
timer for its run-time. Upon completion, the controller will
terminate the server and proceed to the next experiment. To

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

Client
Results __

. User
: _ 1Y Metric Client
Controller <--

Logger Loop
1 A
enchmark
configs

*

\4
.
Initiator
|
Data
Retrieval +
Preprocessing| —Benchma
v ’ System ----» Data
Data System
isualization U)r:der Test_) Control

Figure 4: Overview of the benchmark system.

collect data, the server and client have a metric logger com-
ponent (@) that records relevant system metrics at regular
intervals of half a second. This data is saved as a CSV file
upon completion and read by the data retrieval component
(®) of the controller. The data is then processed, and new
files with the relevant metrics are generated. Finally, the
data visualisation component (®) interprets the results and
produces a set of graphs for the user to analyse and interpret,
so satisfying R4.

This straightforward design ensures ease of use, thereby
meeting requirement R6. The experiments will be imple-
mented consistently across all libraries to ensure fairness,
thus satisfying R3.

3.3 Benchmark Workloads (R1, R2)

This section discusses the different workloads used to test
the benchmark and aims to address the requirements of R1
and parts of R2.

Workload: Resource load. The first experiment aims to mea-
sure the impact of network libraries on system resources
and how this scales with increasing environment size. It
will involve a single client and a server. The server will run
with progressively larger networked objects in the form of
blocks that will make up the virtual environment, and a
player will connect and remain on the server for a set period
for each world size. Information will be recorded on both
server and client performance to assess how the increase
in networked objects affects these libraries. This workload
will be implemented in the starting server state as seen in
figure 2 (®). This measurement is crucial because modern

August, 2024, Vrije Universiteit Amsterdam

MLGs must handle massive worlds with millions of objects.
Understanding the impact of the number of objects and how
each network library scales its resources is important, as
these resources are costly.

Workload: Environment Modification. The second experiment
focuses on terrain modification, aiming to analyze the per-
formance of the networking libraries under a heavy load
of environment updates. Specifically, it examines how the
client-side connection handles a large volume of block up-
dates. This experiment will consist of a single player receiv-
ing a large amount of state updates. In most MLGs, the server
sends information about updated blocks and entities to the
client, which can place a significant load on the clients net-
code, especially in large worlds with many users or when
large simulated constructs exist on the server that the server
must simulate and update for the client. Since Opencraft 2
lacks many of these features, the benchmark will simulate
this by sending new blocks to a single player at an increas-
ingly rapid rate. This workload will be implemented in the
servers game loop as seen in figure 2 (®).

Workload: Client Environmental Load. The last experiment
focuses on the sending and receiving of a large number of
state updates in the form of RPCs from the clients modifying
the MVE. Its goal is to examine the impact of multiple players
concurrently modifying the environment around them. This
experiment aims to simulate a busy server and client sce-
nario typical in many popular Minecraft servers, assessing
how networking libraries handle significant data traffic be-
tween server and client. This workload will be implemented
on the client side 2 (@) and will simulate a player placing
and removing a block. This experiment involves one server
being connected to by an increasing number of clients, each
actively modifying the terrain.

3.4 Key Performance Metrics (R2)

This section discusses the different metrics used to analyse
the results of the benchmark and aims to address the require-
ments of R2

RTT. Round-trip time (RTT), also known as ping, in net-
working, measures the time taken to receive a response after
initiating a network request. In our context, it specifically
refers to the time it takes between a dummy message being
sent from the client and a dummy response being received.
RTT measures how quickly the network library processes
a message and sends a response. Therefore, RTT serves as
a comprehensive metric for evaluating the network perfor-
mance of each library and is measured in milliseconds. Typ-
ically a good RTT is between 40-50 ms, a tolerable RTT is
between 50-100 ms and the RTT becomes problematic when
it reaches above 100 ms [13].

August, 2024, Vrije Universiteit Amsterdam

Bandwidth Usage. Bandwidth usage refers to the amount
of data transferred between network devices over a specific
period. In our context, it measures the volume of data ex-
changed between the client and server during gameplay.
Bandwidth usage is typically measured in bytes per second.
This metric is crucial for evaluating network performance
and efficiency, as it directly impacts the user experience,
especially in multiplayer games. Lower bandwidth usage
indicates more efficient data transmission, potentially reduc-
ing latency and improving overall network responsiveness.
It also allows for better scalability, as more players can be
accommodated within the same network capacity.

CPU Usage . CPU usage refers to the percentage of the CPU
capacity being utilized by a program or application at any
given time. It is a important metric for evaluating the perfor-
mance of networking libraries, as it reflects how efficiently
the library processes data and manages network requests.
The higher the CPU load compared to other networking li-
braries, the greater the additional load placed on the system
by the networking library. CPU usage is typically measured
as a percentage, where 100% indicates full utilization and
0% indicates that the CPU is idle.A higher CPU load will
lead to increased system requirements, which, in the worst
case, may incur costs for the client and game server provider,
as they will need to pay for more expensive hardware. In a
lesser case, it may cause a decrease in quality of service due
to the reduction in performance.

Memory Usage. Memory usage refers to the amount of sys-
tem memory (RAM) consumed by a program or application
during its operation. It is typically measured in megabytes
(MB). Lower memory usage generally indicates more efficient
resource management, allowing the system to allocate mem-
ory more effectively for other tasks. This metric serves as a
critical indicator of performance and efficiency for network
libraries, as higher memory usage can impact overall system
responsiveness and scalability. Additionally, the memory
capacity of an MLG server is currently one of the primary
factors influencing the cost of renting a private server. The
general rule is that the more RAM a server has, the better
the quality of service it can provide. This underscores the
importance of minimizing additional memory consumption
by a library; the lower the memory usage, the lower the cost
of renting the server will be.

4 IMPLEMENTATION OF BENCHMARK

In this section, we describe the implementation of the bench-
mark and the prototypes that we will utilize to analyze per-
formance through our benchmarking process.

Benedict Rigler

4.1 Implementation of Game Prototypes

The Game Prototypes where written in C# in the Unity game
engine. Unity is a cross-platform game engine developed by
Unity Technologies, first released in 2005. It is designed for
creating both 2D and 3D games and interactive simulations
across multiple platforms, including desktop, mobile, console,
and virtual/augmented reality devices. currently Unity is one
of the most popular game engines being used today especially
by smaller independent developers [19]. The prototypes can
be found on Github.

Networking Libraries in this paper. Networking libraries
simplify the creation of online games, as they abstract the
difficulty and let the developer interact with a simple inter-
face that manages the netcode aspect of their game. many
libraries exist on the market with many of them being open
source and free to use:

NFGO Net-code for Game Objects is a high-level networking
library built for Unity by Unity to abstract networking
logic. It is one of the most popular networking libraries
as it is the default library hence is a preferred option,
especially by people with limited networking know-
how [14].

Mirror Mirror Networking is a system for building multiplayer

capabilities for Unity games. It was created as a stable
and easy to use open source Networking for Unity and
was developed as an alternative to other libraries that
were either expensive, unstable or a closed source black
box. it is one of the most popular net-code libraries on
the Unity platform [6].

Fishnet Fishnet Networking is another library that focusses on

reliability, ease of use, efficiency, and flexibility. Fishnet
is less known than Mirror, but is still a popular option
among Unity developers [4].

OpenCraft 2. In this paper, we will focus on OpenCraft 2
as a base for our benchmark. OpenCraft 2 is a remake of
Minecraft, developed using Unity and written in C#, unlike
the original Minecraft, which was written in Java. It includes
the core features of Minecraft, focusing on a cube-based envi-
ronment with a simplified game loop, making it an excellent
test-bed for research on Minecraft-like games. OpenCraft 2
operates on a similar system model as mentioned in Section
2.1. OpenCraft 2 was created by Jerrit Eickhoff in his mas-
ter’s thesis[2]. We chose Opencraft 2 primarily because its
open-source approach allows us to modify the underlying
netcode. Additionally, since it uses Unity’s engine, there are
many supported and well-known libraries to choose from,
giving us a good selection of libraries to test.

Each game library was implemented within the existing
OpenCraft 2 framework. Unlike the original OpenCraft 2 that
used an entity-based approach to model the environment,

https://github.com/atlarge-research/Opencraft-2-Netcode-prototypes

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

vy Shared
g Network Server / Client Server
Helper Client

Initiates v
Netcode
! !

World
 Generator - Network | [Network
Player Game Manger +(_ Manger
Controller State I

Network Network
Transpon Transport
N

System Metrics Logging
Script

Figure 5: Simplified structure.

these implementations had to be made using GameObjects.
This change was necessary because most existing game li-
braries do not support an entity-based system, and there
are currently limited netcode libraries that do. Additionally,
this shift in environmental representation would make com-
parisons more challenging. This aspect will be addressed in
future research and further discussed in the conclusion.

As a result, we had to reconstruct much of the game loop
for OpenCraft. While a significant portion of the code is
based on the original, it differs substantially. We also removed
features not relevant to our benchmark, as reimplementing
these would not provide significant benefits for our study.

Instead of using the DOTS (Data-Oriented Technology
Stack) system, we now use Unity’s default object system,
which means that every block is a networked object. While
this approach has some performance disadvantages, it ben-
efits our focus on netcode by placing a larger load on the
network, allowing for more comprehensive testing of net-
working capabilities.

The New Game Loop. This implementation is based on the
work of a BSc student who partially implemented the initial
phase of the mirror system [12]. The revised game loop com-
prises several key steps. Initially, the Network Helper inter-
prets command-line arguments and initiates the server. Upon
activation, the server invokes the World Generator, which
constructs the virtual environment based on the specified
command-line parameters. Subsequently, the server enters
a waiting state, prepared to accept incoming client connec-
tions. Once connected, clients receive the current game state
from the server and render it for the user’s interface. The
clients then process player input and transmit these actions
back to the server. Figure 5 illustrates the general flow of in-
formation within this system. The components of this game
loop are explained in greater detail in the following sections.

Network Manager. The network manager is responsible for
overseeing client connections, network configurations, and

August, 2024, Vrije Universiteit Amsterdam

overall network behavior. The implementation of this com-
ponent varies across different networking libraries.

Network Transport. The network transport is tasked with
the fundamental operations of transmitting and receiving
data over the network. This layer manages network con-
nections, handling tasks such as establishing connections,
maintaining them, and addressing disconnections. It func-
tions analogously to a transport layer protocol but operates
at the application layer, utilizing UDP as its underlying trans-
port mechanism. The implementation of this transport layer
is specific to each networking library.

Network Helper. This script is responsible for the initiation of
the game and enables program execution via the command
line interface. It serves as the entry point, initiating both
server and client processes. Additionally, it configures the IP
address and port for the connection.

World Generator. The world generator is a server-side script
responsible for the generation and modification of the vir-
tual environment. Server-side workloads are implemented
within this component. The generated blocks are subse-
quently stored as part of the game state.

Player Controller. The player controller is a script that man-
ages the game loop on the client side of the system. Client-
side workloads are implemented within this component. The
player controller processes player input, modifies the local
environment, and then transmits Remote Procedure Calls
(RPCs) to the server to update the game state.

Loggers. These components are responsible for collecting
application-level metrics and recording them in logs, which
are subsequently used for performance analysis. To record
system metrics like frame time and memory usage we used
the Unity profiling library, This allows you to sample rele-
vant metrics at set time. Round-trip delay information was re-
trieved from the network managers, which maintain records
of this data. The network managers continuously monitor
and log the time taken for data packets to travel from the
client to the server and back. The logging system was de-
signed to minimize its impact on overall system performance
while still providing comprehensive data for analysis. The
collected metrics are stored in a structured format, allowing
for efficient post-processing.

Game Objects (Game State). Each object in the game con-
sists of a transform and relevant information. In the case
of blocks within the world, they possess a network object
(the nomenclature for which may vary slightly across dif-
ferent networking libraries). The role of the network object
is to inform the network manager that this object requires
synchronization across all connected users.

August, 2024, Vrije Universiteit Amsterdam

4.2 Implementation of Benchmark Workloads

Table 1: Values of the workload Parameters used in the bench-
mark. The workloads are Resource load (RL), Environment
Modification (EM), RPC Impact (RI).

Workload Parameter Value
RL World size (WS) Small (S) (7.5k Game objects)
Medium (M) (15k Game
objects)
Large (L) (40k Game objects)
Tick interval (TI) Float
EM Block Amount (BA) Integer
Tick interval change (TIC) Float
RI Tick Interval (TI) Float

Implementation of the benchmark controller was done in
Python. We chose Python as it is good for bench-marking
external programs because it offers powerful libraries like
sub-process that allow the trivial execution of external com-
mands. We implemented the workloads locally inside the
server and client scripts. The controller indicates what ex-
periments to run and with what parameters, thus passed to
it through arguments passed at the start of the application.
These allow the controller to easily run different benchmarks
with a variety of parameters.

Workload: Resource load. The resource load benchmark was
a straightforward addition, as it merely required the ability to
set the world size before starting the experiment. To achieve
this, the world generation script reads the command-line
arguments, checks for the relevant flags, and retrieves the
specified world size. These values then modify the param-
eters used to generate the world, resulting in the desired
size. The world sizes were preset to avoid exceeding Unity’s
maximum object count, which is crucial, as it is difficult to
determine when this limit is reached during bench-marking.
The names and object counts of the worlds are shown in
Table 1

Workload: Environment Modification. The environment mod-
ification experiment was implemented similarly to the re-
source load benchmark in the world generation script, but
instead of modifying the world only at the start, it runs
throughout the experiment. The script checks for the rele-
vant flag and reads the arguments following it.

The Environment Modification experiment uses three pa-
rameters: The start tick duration, which sets the initial time
interval between each step of the script; the number of ob-
jects to be placed per tick; and the change in tick rate, which
decreases the tick duration with each step, causing the block
generation to accelerate over time. These parameters make

Benedict Rigler

it simple to modify how the experiment runs through the
controller, allowing for various setups of this experiment.

At each update of the system, the script checks if enough
time has elapsed. If so, a set of blocks is placed above the
player in a grid, resulting in a large object being generated
above the world as the experiment progresses. After placing
the blocks, the script reduces the tick duration by the change
in tick rate and then waits for the updated tick duration
before placing another set of blocks. The parameters this
benchmark takes are described in Table 1

Workload: Client Environmental Load. The Client Environ-
mental load experiment(also referred to as RPC Impact) is
implemented within the player controller script, which han-
dles player-related logic. Similar to the other two experi-
ments, it takes parameters from arguments passed through
the command line, looks for the correct flags, and reads the
values provided. The client environmental load experiment,
requires x and y values to represent where the player will
place blocks, as well as a tick duration number, that sets the
interval between ticks of the experiment.

This experiment works by tracking whether the player’s
block is placed or not, and then toggling its placement each
tick to simulate player interaction with the environment. The
tick duration determines the time between each tick. To place
a block, the client sends an RPC that creates a new block at
the specified coordinates and spawns it in the environment.
To remove a block, the client sends a raycast above the block,
pointing downwards to locate the block’s object, and then
removes the block.

This setup allows for the simulation of player interac-
tions with the environment at regular intervals, providing a
controlled way to test the performance and behavior of the
RPC system under varying conditions. The parameters this
benchmark takes are described in table 1

Additional benchmark tools in open craft. To ensure minimal
graphics rendering load and compatibility with systems lack-
ing a graphical user interface (GUI), the benchmark executes
experiments with graphics disabled. This functionality was
inherited from the original Open Craft 2 and is activated by
passing the arguments -batchmode -nographics.

To manage the benchmark’s termination after experiments
are completed or after sufficient data is collected, a "close
after" function is implemented within the network helper. It
waits until the specified time is reached and then gracefully
closes the application.

4.3 Recoding of System Metrics

To enhance the reliability and comprehensiveness of metric
measurements important to the benchmark, we developed an
additional system metric recorder. This script utilizes Psutil
(Python System and Process Utilities) to monitor relevant

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

[Bash
Script
Loop

) et vt [server] [t |

Before
each

@ Setup nodes

Initiates (1)

. © Setup
client/
server

Run !

> server © Run

Run D

client|

|:T @ After each

Figure 6: Ansible playbook time line.

metrics of the Opencraft process, providing an external per-
spective on system performance. By focusing on the Open-
craft process, we can isolate its resource utilization from
other system activities, offering a more accurate represen-
tation of the application’s performance. This approach also
allows us to observe the communication between the server
and client components. Consequently, we added bandwidth
measurement to this script, giving us important information
about network usage. This is crucial for understanding how
efficiently data moves in networked systems.

4.4 Implementation of Deployment system

To execute the benchmark in a distributed manner, we devel-
oped a system utilizing a combination of Python scripts and
Ansible playbooks. Ansible playbooks, which are YAML files
defining a set of tasks and configurations for remote host
execution, facilitate the automation of the benchmarking
process. The structure operates as follows: The benchmark is
initiated by invoking a bash script, which first employs mini
Anaconda to ensure the requisite environment is configured
for the Python scripts in use. The bash script then proceeds
to execute the Ansible playbooks, passing relevant bench-
mark settings. These settings are contained within YAML
files that encompass instructions for each benchmark, in-
cluding parameters such as player count and command-line
arguments for both server and client sides.

Upon initiation, the Ansible playbooks execute the speci-
fied instructions. Figure 6 illustrates the sequence of instruc-
tions and their respective execution locations.

The process begins with the "Before Each" YAML file (@),
which ensures the existence of the output directory and estab-
lishes a series of variables pertinent to the entire experiment.

August, 2024, Vrije Universiteit Amsterdam

Table 2: Experiment overview (Abbreviations are defined in
Table 1)

Section Work- Focus Metric Parameter Player Dura-
load recorded values count tion
RL Server CPU Load & WS =S5, 1 70s
MF1
performance Memory M,L
RI consumption TR =0.2, 1-16 160s
WS =M
MF2 RI Server Bandwidth out TR=0.2, 1-16 160s
bandwidth WS =M
MF3 RI Client RTT RTT TR=0.2, 1-16 160s
under server WS =M
load
MF4 EL Client network RTT, WS =8, 1 220s
performance Bandwidthin TI=0.4,
under client BA = 300,
load TIC =
0.0040

Subsequently, "Setup Nodes" (@) is invoked to reserve nodes
on the server and await their availability for use. Following
this, the server and client are configured (&), which involves
creating temporary directories for log storage and transfer-
ring a copy of the Opencraft build to these directories.

Once the environment is prepared, the "Run" YAML file
(@) is executed. Its function is to initiate Opencraft and the
system logging Python script. It first launches Opencraft on
the server side, identifies its process ID (PID), and passes
this information to the system logger. This process is then
replicated on the client node, with the number of Opencraft
instances launched corresponding to the specified player
count. To mitigate system load, only one client instance
incorporates system logging.

The playbook then enters a wait state until the experiment
is completed. Upon completion, the "After Each" script (®)
performs environment cleanup. This involves transferring
relevant logs to the output folder and removing temporary
directories. Finally, it releases the node reservations and
concludes the process.

This sequence is iterated for each experiment until all are
completed. Subsequently, a data processing script is invoked
to perform initial preprocessing of the data and relabel all
logs to facilitate data visualization. These processed files are
then transferred to the results folder.

5 EVALUATION

This section presents the findings from our real-world ex-
periments using the benchmark to evaluate the performance
of NFGO, Mirror, and Fishnet networking libraries. The goal
is to address contribution C3 by providing an analysis of
the results obtained from our experiments. Table 2 presents
the experiment overview, outlining the experiments and

August, 2024, Vrije Universiteit Amsterdam

workload pertaining to each main finding. Below the main
findings of the experiments are described:

MF1 NFGO shows the best system performance under the
workloads tested. NFGO demonstrates significantly
lower CPU and memory usage compared to Mirror
and Fishnet, both in the baseline scenario and under
heavy environment modification stress.
Mirror uses substantially more bandwidth for envi-
ronment modification. The bandwidth consumption
analysis reveals that Mirror exhibits a much steeper
increase in bandwidth usage as the number of players
grows, along with greater fluctuations, compared to
the more efficient Fishnet and NFGO libraries. This
suggests that Mirror is less bandwidth-efficient, espe-
cially in scenarios with a large number of players.

Mirror’s RTT suffers under heavy environment modi-

fication workloads. The client-side Round-Trip Time

(RTT) analysis shows that NFGO offers the most consis-

tent and reliable performance as the number of players

increases, while Mirror’s RTT exhibits rapidly increas-
ing and highly variable behaviour.

MF4 Under write-heavy workloads, Fishnet trades off lower
bandwidth usage for increased round-trip time. Fish-
net’s round-trip time reaches 140 ms, whereas NFGO
and Mirror do not exceed 20 ms. However, Fishnet’s
bandwidth usage does not exceed 15 MiB/s, 4 and 7
times less than NFGO and Mirror, respectively.

MF2

MF3

5.1 Experimental Setup

In this section, we present the experimental setup used through-

out our study. Using a benchmark, we assess and compare
the performance of three networking library prototypes in
each experiment, running independently in the same envi-
ronment. The final benchmark with results discussed in this
paper can be found on Github.

System Under Test. As mentioned, the systems under test
in the benchmark will be three networking library proto-
types. As discussed in the implementation section, they will
consist of NFGO, Mirror, and Fishnet networking libraries.
Our experiment will utilize these libraries, each implemented
in their own Opencraft 2 prototype.

Experiment Environment. All our experiments use the
DAS-5 multi-cluster system [1]. To run the experiments, we
utilized three nodes:

One node is in charge of controlling the system and set-
ting up each experiment. It creates the necessary temporary
folders, moves the logs after each experiment, and performs
final processing of the logs afterwards.

Another node is designated as the server node and hosts
the server for each respective experiment. This node also

10

Benedict Rigler

° large | e —— Mirror
% » NFGO
© medium A i = —— Fishnet
o
= small; oI B

0 5 10 15 20

CPU Usage (%)

o large | y. — Mirror
% ' NFGO
© medium 1 | ! —— Fishnet
S '
= small; °

0 200 400 600 800

Memory Used (MB)

Figure 7: CPU Usage and Memory usage of Resource load
workload on the server.(Vertical axis shows the world size.
Box plot represents the quartiles)

runs its own system performance script to monitor the server
process.

The last node hosts the Opencraft clients. Depending on
the experiment, multiple Opencraft instances will run on the
node. Like the server, it also runs a script that monitors the
performance of the Opencraft process.

5.2 MF1: NFGO demonstrates the best overall
performance under resource load and client
environmental load workloads

Looking at the results of the Resource Load experiment,
we can observe substantial differences in the base system
resource consumption of the tested networking libraries.
Examining the data presented in Figure 7, we can see that
NFGO demonstrates the best overall performance, utilizing
significantly less CPU power and memory compared to the
other two libraries, Mirror and Fishnet. This trend is further
suported in Figure 8, which shows the resource load under
environment modification-induced stress. Even under this in-
creased load, NFGO continues to exhibit the lowest resource
consumption. Unlike Mirror, which displays fluctuating re-
source utilization, NFGO maintains a more consistent load
profile.

The consistently lower CPU and memory usage of NFGO,

both in the baseline scenario and under environment modification-

induced load, suggests that this library has a more efficient
architecture and resource management strategy compared to
its counterparts. This efficiency could translate to improved
scalability, reduced server costs, and better overall system
performance, particularly in resource-constrained environ-
ments or scenarios with high player counts.

https://github.com/atlarge-research/Envirostick_Opencraft2_NetworkBenchmark

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

5164 TS o — Mirror
Q ——
© 131 S NFGO
E 10 Iy —— Fishnet
o e e e Lt St s e e———
5 7 —E—
Q — T
E —C—
=} 1 I
=2 —

0 5 10 15 20

CPU Usage (%)

glﬁ- == —— Mirror
% 131 = NFGO
—-— L o = S
o 101 — —— Fishnet
& i
C 7 ——T
o) —{T
Q —
E —H
z1 P

0 200 400 600 800

Memory Used (MB)

Figure 8: CPU Usage and Memory usage of RPC impact work-
load on the server.(Vertical axis shows the amount of players
connected to the server. Box plot represents the quartiles)

wn T - M
2164 irror
E‘ 13 dEEmmrnr T NFGO
210y —— Fishnet
4 e S S
g 7P
o 41 S—
€ s
z 1

0 2 4 6

Bandwith Out (MBps)

Figure 9: Outbound bandwidth usage of RPC Impact work-
load.(Vertical axis shows the amount of players connected to
the server)

5.3 MF2: Mirror uses substantially more
bandwidth for RPCs

When examining the results from the RPC experiment, as
depicted in Figure 9, we can observe distinct trends in the
bandwidth consumption of the tested networking libraries
as the number of players increases.

Mirror exhibits a significantly more pronounced increase
in bandwidth usage compared to the other two libraries, Fish-
net and NFGO. As the player count grows, Mirror’s band-
width requirements escalate at a much steeper rate than its
counterparts.

Furthermore, Mirror also demonstrates a larger degree
of fluctuation in its bandwidth utilization. This inconsistent
bandwidth profile could introduce challenges in resource

11

August, 2024, Vrije Universiteit Amsterdam

o 161 Ll ey EELEE LR o] —— Mirror
c g AL LRAL LA ARRLEE o]
g 131 rETOR EFEOt
s 10 o
5 7 e i g
> oy S o e
© =3
E 1 O

o

0 100 200 300
RTT (ms)

Figure 10: Client RTT of RPC Impact workload. (The vertical
axis shows the amount of players connected to the server. A
good RTT is between 40-50 ms, a tolerable RTT is between
50-100 ms and the RTT becomes problematic when it reaches
above 100 ms [13].)

provisioning and potentially lead to suboptimal network
performance under varying load conditions.

In contrast, the best performer in this benchmark is Fish-
net, which consistently exhibits the lowest bandwidth usage
among the three libraries. NFGO, while not the absolute low-
est, also maintains a relatively modest bandwidth footprint,
only slightly more intensive than Fishnet.

The large differences in bandwidth consumption patterns
between the libraries suggest that Fishnet and NFGO have
more efficient Netcode and data transmission strategies com-
pared to Mirror. This efficiency could translate to improved
scalability, reduced bandwidth costs, and more stable net-
work performance, particularly in scenarios with high player
counts or variable load conditions.

5.4 MF3: Mirror RTT suffers under RPC
workloads

When examining the results from the RPC experiment on the
client-side, we can observe distinct trends in the Round-Trip
Time (RTT) of the tested networking libraries as the number
of players increases, as depicted in Figure 10.

As observed in the previous sections, Mirror appears to
perform quite poorly, with its RTT increasing rapidly as the
player count grows. This trend is concerning, as higher and
more variable RTT can negatively impact the user experience,
particularly in real-time applications.

In contrast, both NFGO and Fishnet exhibit a more consis-
tent RTT profile. The fluctuations in RTT are significantly
lower for these two libraries compared to Mirror, which
demonstrates a very high degree of variability in its response
times.

In this specific experiment, NFGO emerges as the best
performer, consistently outpacing Fishnet in terms of client-
side RTT. This suggests that NFGO’s networking architecture
and implementation are more optimized for handling the

August, 2024, Vrije Universiteit Amsterdam

m
E —e— Fishnet
21001 NFGO
g —»— Mirror
a
=
F 50
kel

c W

>

o
o T T T T T T T

0 5 10 15 20 25 30

= 801 ,

g —e— Fishnet
5 60 NFGO
c —»— Mirror
< 40

S

S

£ 20

S PUDUUSUPDS S o o aps

© o

m 0L oee®

0 5 10 15 20 25 30

Measure Index (every 0.5s)

Figure 11: Client RTT(ms) and inbound bandwidth us-
age(MBps) of Environment Modification workload (Horizon-
tal Axis represents the Measurement index where each mea-
surement is 0.5s apart)

increased load and maintaining low, stable latency for the
clients.

However, it is worth noting that when only a single player
was connected, Mirror actually outperforms both NFGO and
Fishnet. This observation indicates that Mirror’s networking
capabilities may be more efficient in low-load situations, but
its performance degrades more significantly as the player
count increases.

The client-side RTT results demonstrate that NFGO offers
the most consistent and reliable performance as the system
scales, making it a potentially better choice for applications
that require predictable and low-latency network communi-
cation. Addtionaly, the high variability of RTT observed in
Mirror’s performance will significantly reduce the quality of
service provided to client

5.5 MF4: Fishnet struggles with large amount of
block updates

Finally, when examining the results of the Environment Mod-
ification benchmark, we can observe interesting trends in the
Round-Trip Time (RTT) compared to the RPC benchmark,
as shown in Figure 11. Unlike the previous observations, in
this experiment, Fishnet appears to struggle the most with
RTT, reaching a high of approximately 140ms, while NFGO
and Mirror experience RTT in the 20ms range.

This finding suggests that while Fishnet may handle mul-
tiple requests well, a large amount of outgoing information
can cause it to suffer significantly earlier than the other two
libraries, NFGO and Mirror.

12

Benedict Rigler

In contrast, the other two libraries, NFGO and Mirror,
demonstrate much more promising performance, with both
exhibiting very consistent RTTs that are minimally affected
by the increasing block counts. This consistency is a desirable
trait, as it ensures a stable and predictable user experience,
even as the complexity of the environment increases.

An additional observation worth noting is the fact that,
as observed earlier, Mirror’s bandwidth usage struggles sig-
nificantly. While its bandwidth consumption is comparable
to the other libraries in the initial stages of the experiment,
it grows considerably in the later stages, far exceeding the
requirements of NFGO and Fishnet. Fishnet performs the
best here with its bandwidth usage not exceeding 15 MBps,
4 and 7 times less than NFGO and Mirror, respectively.

This divergence in bandwidth usage, coupled with Fish-
net’s higher RTT under the Environment Modification work-
load, suggests that NFGO may be the most well-rounded
performer, offering both consistent low-latency communica-
tion and efficient bandwidth utilization. This combination
of attributes could make NFGO a more suitable choice for
applications that require reliable and scalable networking
capabilities, particularly in complex and dynamic environ-
ments.

6 RELATED WORK

Closest to our work are the benchmarks of Yardstick and Me-
terstick [17][3]. Yardstick, an MLG benchmark, demonstrates
the limited scalability of MLGs. The authors employ Yardstick
to evaluate the scalability of various MLG services. However,
they do not extensively explore the network side of MLGs;
instead, their focus lies primarily on the performance im-
pact on systems running mlg environments and focus solely
on player-based workloads. Additionally, Meterstick focuses
on analyzing the performance variability of MLGs. While it
explores this aspect concerning environmental workloads
and player workloads similar to Yardstick, Meterstick does
not investigate the network aspects of MLGs. While there is
some research done on networking libraries, most focuses
on the feature set of the libraries. For example, there exists a
useful spreadsheet created by Unity community members to
compare the feature sets of networking libraries[9]. However,
there are only a few limited benchmarks and they focus on
extreme conditions, which are not representative of actual
workloads and lack scientific rigor. An example of this is
Netick, a benchmark that tests a library’s ability to handle
poor network conditions[10].

7 CONCLUSION

Online multiplayer video games constitute one of the largest
entertainment sectors and continue to grow rapidly. With
many developers seeking to outsource their netcode, the
abundance of options makes it challenging for them to select

Envirostick: Benchmarking Enviroment-based MVE Workloads For
Game Networking Libraries

the best networking library for their applications. In this
work, we present a tool to analyze the performance of these
libraries concerning virtual environment workloads.

We make a threefold contribution to better understand the
behavior of networking libraries in relation to MVEs. First,
we propose a novel design for this benchmark and outline
how it aims to evaluate the performance of networking li-
braries. Second, we implement this benchmark in OpenCraft
2 to assess the performance of various networking libraries
concerning MVEs. Lastly, we use this benchmark to analyze
the performance of a subset of networking libraries.

Our findings reveal differences in the performance charac-
teristics of the networking libraries analyzed. Some libraries
exhibit strengths in different areas; for instance, NFGO per-
forms well for large MVEs with fewer players, while Fishnet
shows the best performance for larger player counts. Inter-
estingly, we also find that some of the most popular libraries,
such as Mirror, while widely used, demonstrate the worst
performance.

In future work, we aim to analyze the quality of service
of these networking libraries concerning client experience,
as this is an area not adequately covered by this paper.

REFERENCES

[1] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank
Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A Medium-Scale Distributed Sys-
tem for Computer Science Research: Infrastructure for the Long Term. Computer
49, 5 (2016), 54-63. https://doi.org/10.1109/MC.2016.127

Jerrit Eickhoff. 2024. Polka A Differentiated Deployment System for Online and

Streamed Games, Meta-verses, and Modifiable Virtual Environments. Master’s

thesis. Delft university of technology.

[3] Jerrit Eickhoff, Jesse Donkervliet, and Alexandru Iosup. 2023. Meterstick: Bench-
marking Performance Variability in Cloud and Self-hosted Minecraft-like Games.
ICPE (2023).

[4] FirstGearGames. 2024. Fish-Net: Networking Evolved - Introduction. https://fish-
networking.gitbook.io/docs.

[5] Raj Jain. 1991. techniques for experimental design, measurement, simulation,
and modeling.

[6] Mirror. 2024. Mirror Networking. https://mirror-networking.gitbook.io/docs.
[7] newzoo. 2024. Most popular PC games by monthly active users.
https://www.theverge.com/2023/10/15/23916349/minecraft-mojang-sold-

300-million- copies-live-2023.

[8] Ash Parrish. 2023. Minecraft has sold over 300 million copies.

https://www.theverge.com/2023/10/15/23916349/minecraft-mojang-sold-

300-million- copies-live-2023.

Punfish. 2024. Free networking solution comparison chart. https://discussions.

unity.com/t/updated-free- networking- solution-comparison-chart/899755.

Punfish. 2024. Netick 2 - unity-network-library-benchmark-on-bad-network-

condition. https://github.com/StinkySteak/unity-network-library-benchmark-

on-bad-network-condition.

Felix Richter. 2021. Infographic: Gaming: The Most Lucrative Entertainment In-

dustry By Far. https://www.statista.com/chart/22392/global-revenue- of “selected-

entertainment-industry-sectors.

Elena Stroiu. 2024. Net-Celerity: A Benchmark for Player Activity Analysis of

Gaming Network Libraries. Bachelor’s Thesis. Vrije Universiteit Amsterdam.

Bandwidth Place Team. 2023. A Guide to Ping and Latency in Gaming. https:

//www.bandwidthplace.com/article/ping-latency-in-gaming.

Unity Technologies. 2024. About Netcode for GameObjects.

multiplayer.unity3d.com/netcode/current/about/.

Unity Technologies. 2024. Sending events with RPCs. https://docs-multiplayer.

unity3d.com/netcode/current/advanced- topics/messaging-system/.

telstra. 2024. New survey outlines network infrastructure challenges and

priorities for video game companies. https://www.telstra.us.com/en/news-

research/articles/network-infrastructure-challenges-and-priorities-for-video-
game-companies.

[2

[9

=

[10

[11]

[12]
[13]
https:/docs-
[15]

[16

13

August, 2024, Vrije Universiteit Amsterdam

[17] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. 2019. Yardstick: A
Benchmark for Minecraft-like Services. ICPE. ACM, 243-253 (2019).

[18] Reinhold Weicker. 2002. Benchmarking. In Performance Evaluation of Com-
plexSystems: Techniques and Tools, Performance.

[19] Zenva. 2023. What is Unity? — A Top Game Engine for Video Games. https:
//gamedevacademy.org/what-is-unity/.

https://doi.org/10.1109/MC.2016.127
https://fish-networking.gitbook.io/docs
https://fish-networking.gitbook.io/docs
https://mirror-networking.gitbook.io/docs
https://www.theverge.com/2023/10/15/23916349/minecraft-mojang-sold-300-million-copies-live-2023
https://www.theverge.com/2023/10/15/23916349/minecraft-mojang-sold-300-million-copies-live-2023
https://www.theverge.com/2023/10/15/23916349/minecraft-mojang-sold-300-million-copies-live-2023
https://www.theverge.com/2023/10/15/23916349/minecraft-mojang-sold-300-million-copies-live-2023
https://discussions.unity.com/t/updated-free-networking-solution-comparison-chart/899755
https://discussions.unity.com/t/updated-free-networking-solution-comparison-chart/899755
https://github.com/StinkySteak/unity-network-library-benchmark-on-bad-network-condition
https://github.com/StinkySteak/unity-network-library-benchmark-on-bad-network-condition
https://www.statista.com/chart/22392/global-revenue-of�selected-entertainment-industry-sectors
https://www.statista.com/chart/22392/global-revenue-of�selected-entertainment-industry-sectors
https://www.bandwidthplace.com/article/ping-latency-in-gaming
https://www.bandwidthplace.com/article/ping-latency-in-gaming
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/messaging-system/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/messaging-system/
https://www.telstra.us.com/en/news-research/articles/network-infrastructure-challenges-and-priorities-for-video-game-companies
https://www.telstra.us.com/en/news-research/articles/network-infrastructure-challenges-and-priorities-for-video-game-companies
https://www.telstra.us.com/en/news-research/articles/network-infrastructure-challenges-and-priorities-for-video-game-companies
https://gamedevacademy.org/what-is-unity/
https://gamedevacademy.org/what-is-unity/

August, 2024, Vrije Universiteit Amsterdam

A ARTIFACTS

A.1 Artifact check-list (meta-information)

Program: Unity

Compilation: C#

Run-time environment: Linux

Hardware: DAS 5

Metrics: CPU Usage, Memory consumption, Round Trip Time,

Bandwidth usage

Output: Graphs and files, example results included

How much disk space required (approximately)?: 10GB(due

to size of prototypes)

e How much time is needed to prepare workflow (approxi-
mately)?: 30min + time taken take to compile unity proto-
types(could be 15min per prtotype)

e How much time is needed to complete experiments (approxi-

mately)?: approx 3h

Publicly available?: yes

A.2 Description

How to Access. The code can be found on GitHub: Benchmark
and OpenCraft 2 Prototypes.

Hardware Dependencies. The software should be run on a
server that allows for access to separate nodes with Prun.

Software Dependencies. Required software includes Ansible
playbooks and Unity to compile.

A.3 Installation

Opencraft 2. To create the builds, open the projects with
Unity and build them for Linux. The builds are on different
branches, so this process needs to be repeated for each build.
Unity and the required build tools should be easy to install,
with plenty of information available online to assist.

Benchmark. Clone the repository on the server and place the
builds in your local scratch folder. You can customize the
location, but you would need to modify the ‘build_location
in the ‘experiment.yml’ file.

A4 Experiment Workflow

Once the setup is complete, you can run experiments by
first ensuring the output folder is empty and then running
the “./run.sh’ bash script with the desired folder name as an
argument:

./run.sh Results-Date-7-7-24

Results will be stored in that folder. Additionally, to visu-
alize results, first modify the input folder to your new data
and then run the ‘Data_Visualization.ipynb’ notebook, which
outputs the important graphs in the ‘Graphs folder. It also
contains a large number of other graphs, but these were not
used in the paper, so they are not automatically saved.

14

Benedict Rigler

A.5 Evaluation and Expected Results

To reproduce the results as seen in this paper, run the bench-
mark with the values described in the implementation sec-
tion. Results discussed in the evaluation of the paper are in
the ‘Results-Das-18-7-24° folder.

A.6 Experiment Customization

To modify experiment values, edit their respective ‘.yml" files.
More information about the parameters can be found in the

paper.
A.7 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-

badging
e http://cTuning.org/ae/submission-20201122.html
e http://cTuning.org/ae/reviewing-20201122.html

https://github.com/atlarge-research/Envirostick_Opencraft2_NetworkBenchmark
https://github.com/atlarge-research/Opencraft-2-Netcode-prototypes
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Table of Contents
	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.5 Plagiarism Declaration

	2 Background
	2.1 Minecraft-like Games
	2.2 What is Netcode?

	3 Benchmark Design
	3.1 Requirements
	3.2 Design Overview (R3, R4, R5, R6)
	3.3 Benchmark Workloads (R1, R2)
	3.4 Key Performance Metrics (R2)

	4 Implementation of Benchmark
	4.1 Implementation of Game Prototypes
	4.2 Implementation of Benchmark Workloads
	4.3 Recoding of System Metrics
	4.4 Implementation of Deployment system

	5 Evaluation
	5.1 Experimental Setup
	5.2 MF1: NFGO demonstrates the best overall performance under resource load and client environmental load workloads
	5.3 MF2: Mirror uses substantially more bandwidth for RPCs
	5.4 MF3: Mirror RTT suffers under RPC workloads
	5.5 MF4: Fishnet struggles with large amount of block updates

	6 Related Work
	7 Conclusion
	References
	A Artifacts
	A.1 Artifact check-list (meta-information)
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Results
	A.6 Experiment Customization
	A.7 Methodology

