
Vrije Universiteit Amsterdam

Bachelor Thesis

Duplicraft: Serverless Non-Persistent
Instances for Modifiable Virtual

Environments

Author: Sven Lankester (2668125)

1st supervisor: Jesse Donkervliet
2nd reader: Alexandru Iosup

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

May 24, 2023

ii

Abstract

Minecraft is the most sold online video game of all time, its main character-

istic being that it is a Modifiable Virtual Environment (MVE), meaning that

a player can change the in-game world in real-time. Within Minecraft, servers

that host a variety of minigames are among the most popular servers in terms of

concurrent player count. The problem with real-time alterations to an online

environment is that large amounts of data need to be transferred and pro-

cessed between players, causing MVEs to not scale well. A common solution

to this problem consists of a setup where players connect to a proxy server

which redirects players seamlessly from a hub world to individual servers host-

ing minigames to partition the workload each server has. However, this burdens

the server operator with a large management overhead, because these servers

need to be preemptively set up and actively managed. In this work we design,

prototype and evaluate Duplicraft: our serverless system which deploys game

instances on-demand, handles the switching of player connections, and allows

for the server operator to pay only for the resources used. Through analysis and

real-world experiments, we find that Duplicraft, depending on how often servers

are deployed, can compete with similar services with a monthly cost. We also

deduct that, even though the system meets performance and latency require-

ments, Duplicraft still suffers from large loading times due to the serverless cold

start problem, of which the majority of the loading time is due to AWS.

iv

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Research Questions . 3

1.3 Research Methodology . 4

1.4 Plagiarism Declaration . 5

2 Background 7

2.1 Minecraft-like Games . 7

2.2 Serverless Platforms . 8

3 Design of serverless non-persistent instances of MVEs 11

3.1 System Requirements . 11

3.2 Design Overview . 14

3.3 Workflows of Instance Creation and Destruction 16

3.4 Design Detail of the Harness and Container Manager 17

3.5 Design Decisions . 18

4 Duplicraft: serverless non-persistent Minecraft instances 21

4.1 Duplicraft Overview . 21

4.2 Selection of Cloud Services . 23

4.3 Game and Resource Configuration . 27

4.4 Low-Level Description of how Duplicraft Works 27

4.5 Implementation Alternatives . 30

5 Evaluation 33

5.1 Experimental Environment . 33

5.2 Experiment Design . 33

5.3 Experiment Results . 38

i

CONTENTS

6 Related Work 49

7 Conclusion 51

7.1 Answering Research Questions . 51

7.2 Limitations and Future Work . 53

References 55

A Experiment Configuration 59

B Additional Graphs 61

C Sanity Checks 63

ii

1

Introduction

Video games as a form of entertainment have been steadily growing in popularity and

revenue in all aspects throughout the years (1), which includes online gaming generating

an estimated 18 billion U.S. dollars in the year 2020 (2). Besides their use in entertainment,

games are increasingly used in the fields of education and social development, where games

have been shown to improve social and communicative skills (3). Minecraft is a canonical

example of this, with a separate version of the game existing for the sole purpose of

assisting in the education of kids. With Minecraft being the most sold online video game,

overshadowing the second most sold online video game Grand Theft Auto V by over 50

million sales (4), and the game being used for both entertainment and education, it benefits

society in several ways to have it function well in a large-scale multiplayer environment.

However, a Minecraft world is a Modifiable Virtual Environment (MVE), which means

that players can interact with and change parts of the world at will. These changes

have to be visible for all other players on the server with low-performance variability,

meaning that large quantities of players making changes to the environment and updating

their location in the environment increase the strain on the server significantly more than

players normally would in an online video game using a static environment. A wide variety

of research has been done on the scalability of games (5, 6, 7), but as opposed to most

games, large amounts of data to be processed and transferred cause Minecraft servers to

scale significantly worse and take significant resources to accommodate large amounts of

players in the same world (8). Because this processing of command streams and updating

the virtual world are a problem when put under intense workloads, the server ends up being

a bottleneck. Adding to or improving existing servers is challenging, this is due to servers

requiring maintenance in the form of continuous updates and the cost and availability of

1

1. INTRODUCTION

hardware, alongside the need for people to function as system administrators with certain

expertise.

A large percentage of the most concurrently played Minecraft servers are those

hosting minigames. It is hard to get scientific data for realistic concurrent and average

player counts, because they are easily misrepresented, but multiple sources of publicly

available data such as server lists and online articles often show minigame servers, namely

Hypixel and Mineplex, to be the most popular (9, 10). On these minigame servers the issue

of scalability is currently solved by having a central server where players cannot modify

the terrain and use it as a hub to connect the players in smaller groups to different servers

hosting minigames where the players can modify the terrain. Running a server this way

requires all the individual servers to be preemptively set up and managed, which adds a

layer of complexity for the server host and it does not permit paying for the resources used

on a fine-grained level, i.e., only when the resources are in use and players are connected

to the server.

Cloud computing allows for on-demand resources which can be used for more fine-

grained scalability, payment and simplification of system components because they can now

run independently on the network of a cloud service provider. This opens the possibility of

not having to preemptively set up many small servers, but deploy them as soon as they are

necessary on cloud computing infrastructure. Running the small servers on demand allows

the server host to pay on a fine-grained scale for the necessary resources and takes away the

complexity of the current mandatory management of the minigame servers, making cloud

computing an intuitive solution to the aforementioned issues of payment and management.

This solution does pose challenges, in that the minigame servers need to start up quickly

to not make the players wait for long periods of time. There are also latency requirements

and performance constraints that need to be met to keep an online game immersive and

enjoyable to play.

This thesis focuses on designing and prototyping a serverless approach to running

non-persistent instances of a Minecraft-like environment. The aim is to deploy servers

with non-persistent game states on-demand and connect players from the central hub

server to one of these freshly deployed servers. Because the on-demand deployment of

these servers removes the need for preemptive setup and allows for fine-grained payment

for resources, this could help in working towards a more user-friendly environment for

hosting these large-scale servers. This will be challenging because online games have strict

latency, performance and variability requirements, which are hard to consistently fulfill

when operating on cloud infrastructure.

2

1.1 Problem Statement

1.1 Problem Statement

The video game industry has consistently increased in market value for years, having an

estimated total worth of 178 billion U.S. dollars and over 2 billion gamers worldwide (11).

Online video games are among the most sold video games of all time, making the great

challenge of scalability in computer science a major point of concern for these games.

Especially challenging is the scaling of MVEs because they have to transfer every change

to the environment in real-time, to every player of interest, under strict consistency and

latency constraints. One of the solutions commonly used for this problem is to divide up

large quantities of players into smaller groups on different servers. However, this solution

can be refined, because it currently requires the server host to preemptively set up these

servers. This study aims to improve the existing system for this division of players by

designing and prototyping a serverless system to allow for fine-grained payment of resources

and lessen the work for the server host.

1.2 Research Questions

For this research, we aim to see whether it is possible and productive to develop a serverless

system for non-persistent instances of MVEs. To do this, we split the task up into the

following three research questions (RQs) to be answered throughout the paper:

RQ1: How to design a system for serverless multiplayer minigames in MVEs?

As mentioned in the background section, the serverless approach might be a way to

start finding a solution to making Minecraft-like environments scale well and allow

for fine-grained payment of server resources. However, designing a serverless system

for instances of modifiable virtual environments is challenging because there are strict

constraints that should be met to keep an online video game immersive and enjoyable.

After all, large latency and long wait times reduce the quality of experience a player

has.

RQ2: How to implement a prototype of such a design?

This implementation would provide a proof of concept if the system works and allows

us to evaluate how well the design works in practice. Prototyping the aforementioned

design allows us to see if this theoretical system is feasible to be used under realistic

workloads and if it can do so under strict performance constraints. The main reasons

which make the development of this prototype challenging would be not having proper

3

1. INTRODUCTION

mechanisms for hiding latency, attempting to create serverless instances in a short

enough period to keep the game engaging for the players and making the transition

to these instances seamless to a degree from the player’s perspective. Combining

several different technologies to tackle these challenges will be difficult to do.

RQ3: How to evaluate the design, through real-world experiments using the prototype?

To evaluate the efficacy of our design and implementation is crucial to see whether

the design is feasible for real-world use. There is no agreed-upon way to measure

game performance because there are many metrics to be taken into account, and

the quality of gameplay experience is the most important. It will be challenging

to find the correct metrics to determine if the prototype can function under the

given performance constraints, or even function at all. This indicates that latency-

related metrics will be of great importance but will need to be weighed against

the cost of reaching the measured performance, because not only finding the right

metrics is important, but also finding a balance between the importance of each

one of the metrics. An example would be that an instance could be created in a

location with optimal latency for all players, but finding this location took several

minutes which means the players were kept waiting for that duration, or whether the

implemented system is worth it to switch over to in the first place. Another challenge

will be determining and obtaining meaningful workloads which simulate a real-world

workload. Not only is determining these metrics difficult, but it is also challenging

to gather them. Because there is no industry standard for gathering metrics from

MVE instances, we will have to manually adapt existing tools to allow us to do so.

1.3 Research Methodology

1. (Matches RQ1) Good design is essential to identifying problems and ensuring these

are handled properly in the implementation. For the design, we will be working

with the AtLarge design framework (12). First, the requirements should be analyzed

in terms of functional and non-functional requirements to get a good overview of

what the system will need, with a focus on non-functional requirements such as

performance constraints and fault tolerance. We must also research and understand

what alternatives are available for the choices we end up making for the final design

to help us reason why the choices we made were the correct ones. Then once a good

idea of the system has been established, the interaction between its components will

4

1.4 Plagiarism Declaration

need to be laid out, followed by experiments on the cloud service provider of choice

we will use to tweak the design made up until this point for it to be realistic within

the boundaries imposed by the tools we are using. Once this realistic idea is properly

finished a high-level design can be made which will then lead to a detailed design for

the implementation.

2. (Matches RQ2) This research question builds directly upon the first, aiming to be-

come a working prototype of the initial design. The main goal of this implementation

is to see whether or not we can allow for fine-grained payment of server resources

and lower the amount of setup required for a server owner. To build a prototype, we

work with tips described in The Pragmatic Programmer (13). This prototype will

be built using containers on AWS, because it is a very popular and widely available

cloud service provider, and using a modified server image to start the container with

to allow us to perform the necessary customizations, such as world management. In

the approach to solving this research question, there will be hands-on experience in

working with AWS, which will require the knowledge gained in the process of solving

research question 1.

3. (Matches RQ3) For evaluation we will use a tool called Yardstick (14), an existing

benchmarking tool for Minecraft-like environments that has been used to evaluate

modifiable virtual environments in the past. The prototype will be tested under

various workloads to see if it can function under the strict performance constraints

of real-time online video games. Yardstick will most likely have to be tweaked to see

if desired results can be reached and to produce a realistic enough workload under

which the prototype can be evaluated.

1.4 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source(person,

Internet, or machine), and has not been submitted elsewhere for assessment.

5

1. INTRODUCTION

6

2

Background

This section details the technologies that this thesis uses as a foundation. First, §2.1 Pro-

vides a high-level understanding of Minecraft-like games and discusses an existing solution

to the scalability problem. Following, §2.2 mentions existing serverless platforms, explains

common deployment strategies and elaborates on how they can benefit the user.

2.1 Minecraft-like Games

A client-server architecture is popular in massively multiplayer online games, Minecraft-

like games generally being no different. It is also common for online games with many

players from around the globe connecting at once to have individual servers for specific

regions of the world to lessen the workload of each individual server for the purpose of

meeting non-functional requirements such as low latency. Due to Minecraft-like games

providing the player with a sandbox experience, where every modification a player makes

to the virtual environment has to be forwarded to every other player of interest, the server

becomes an even larger bottleneck than in most other types of online games.

Client

Client

Key presses
Cloud/In-house

Proxy
server

Hub world
(Main server)

Instance 1

Instance 2

Player
actions

State
updates

Player
Actions

State
updates

Network
traffic

Direct
interaction Component Machine hosting

Instance

1 2

3

4

4

Player
Frames

Player

Figure 2.1: Model of a common method to connect Minecraft-like servers.

7

2. BACKGROUND

Users

Cloud Service Provider

 Containerized Application

Cloud
storage

Public Internet

3. Container Image

Container
Registry

2. Deployment

Container
orchestrator

1. Event indicating the desire to use a container

5. Session

4. Persistent
Data

Figure 2.2: Overview of the Container as a Service deployment strategy.

As was shown in §1, a large portion of Minecraft’s players are interested in minigames.

The concept of partitioning the server workload among smaller servers can apply here as

well to solve a part of the scalability issue, as is displayed in Figure 2.1, where the smaller

servers (4) are hosting non-persistent instances of a Minecraft-like server with the selected

minigame as its world. This is a commonly used solution in Minecraft’s largest minigame

servers, where, for example, a modified Minecraft server called Spigot is often used along-

side BungeeCord (15) which acts as a proxy (2) between the client (1) and server (3) to

connect different servers (3,4) together seamlessly, shown in Figure 2.1. This allows for the

minigame server to have the main host on a single IP address to function as a hub world (3),

where players cannot modify the terrain to allow for more players to be connected at once.

The players then maneuver through the hub world and can connect to these non-persistent

instances through in-game actions such as chat commands or interacting with an in-game

object in a way that avoids having to notify all other players (e.g., clicking on an object

in the game without having it visually represented to other players). This construction of

having many servers connected seamlessly allows server hosts to provide a large number of

players with many different minigames through what is perceived by the individual players

as one singular server they only have to manually connect to once.

2.2 Serverless Platforms

Figure 2.2 depicts a common deployment strategy in serverless computing. Serverless

computing is an execution model in which a cloud provider dynamically allocates cloud-

computing resources without the user requesting them having operational concerns, such

as the maintenance of the server. The requested resources execute the code requested by

the user in an environment specified by the user, and only the used resources are paid

8

2.2 Serverless Platforms

for on a fine-grained scale (i.e., the user pays only for those resources that are used as a

result of their request). Besides the specifics of the request made by the user about the

environment and what code should be executed, all other concerns such as management of

the host’s operating system by means of updating it and scaling the resources needed are

managed by the selected cloud service provider.

Popular deployment strategies when working with serverless platforms are Function

as a Service (FaaS) and Container as a Service (CaaS). This work focuses mainly on

CaaS. With FaaS you host a bit of code on cloud computing infrastructure which gets

triggered based on an event, and once it is completed will return a result. The cloud

computing service provider will automatically scale and manage the resources allocated for

the program when necessary, which is one of the main benefits of serverless computing. In

contrast, CaaS deploys containers on cloud infrastructures, of which a simplified overview

is depicted in Figure 2.2. This overview shows a workflow where a user wants to use a

container, this container is then deployed and it retrieves the container image and persistent

data from additional resources on the cloud. This workflow is simple because, in reality,

many more cloud components are often working in collaboration, most of which are optional

based on the user’s needs. Containers are software packages that include the code and all

its dependencies so it will be able to function without the programmer having to concern

themselves about the infrastructure it is running on. When using CaaS, the cloud service

provider will deploy the specified container as an isolated environment on the computing

resources, allowing the user to host software packages (e.g., a Minecraft-like game server)

and only pay for the amount of resources allocated for the amount of time they are in use

while having none of the operational concerns. Popular examples of CaaS services would

be AWS Fargate and Azure Container Instances.

To deploy a serverless system, one needs access to cloud-computing resources, gen-

erally provided by a cloud service provider. Many such providers exist on the market, the

largest one by market share at the time of writing this paper is Amazon Web Services,

followed by Microsoft Azure and Google Cloud(16).

9

2. BACKGROUND

10

3

Design of serverless non-persistent
instances of MVEs

In this section, we introduce and explain the design of Duplicraft in detail. Duplicraft is

our serverless system for non-persistent instances of modifiable virtual environments. It

enables on-demand access to server resources and allows for fine-grained payment for the

allocated resources.

3.1 System Requirements

This design focuses on the following requirements:

R1: Duplicraft should support at least 50 players playing concurrently on the same in-

stance.

An important feature of the non-persistent instances that Duplicraft aims to deploy

is that they host worlds that are of interest to groups of players. Supporting at

least 50 players is important because several Minigames depend on more than 30

players interacting with each other in real-time, meaning that supporting more than

50 players would allow Duplicraft to host a large variety of minigames. Supporting at

least 50 players is difficult, as simply always providing excess resources to an instance

would lead to an increase in cost, which is an undesirable property for a serverless

system to have. So designing a system with this in mind requires a component to

be able to specify to the cloud provider how many resources each specific instance

needs and for this component to be integrated well with the other components in the

system.

11

3. DESIGN OF SERVERLESS NON-PERSISTENT INSTANCES OF
MVES

R2: Latency to an instance should meet latency requirements of real-time MVEs during

play.

Seeing that our main concern is minigames in MVEs, which often rely on fast reac-

tions to in-game events for their gameplay, we see meeting latency constraints as a

very important property for the system to have. The experience a player has in a

game can be heavily influenced by high latency. Not receiving the environment state

within the time a server sends a game state update to other players could cause incon-

sistencies between players, which negatively impacts the quality of experience (17).

R3: Duplicraft should manage instances in a way that allows for fine-grained payment of

resources used without paying for reserved but unused resources.

As one of the main advantages of serverless infrastructure is the fine-grained payment

scale of resources used, it is important to design a system that allows for fine-grained

payment. One of the current flaws we identified with existing solutions was the issue

of having to pay for the non-persistent instances even when the resources are not

being used. This makes it important for resources to be allocated on-demand and

deallocated when they are no longer in use. The challenge in this requirement comes

from designing the system to manage instances efficiently. That implies that the

system should be designed to be able to ensure resources are used efficiently and

unused resources are stopped as soon as a stopping condition is met to avoid having

the user pay for an unused instance.

R4: Duplicraft should allow for an instance to be initialized with a world selected from a

library of worlds.

A large part of the appeal to hosting non-persistent instances which often only run

for several minutes is the variety of choices. Minigames are a prime example of

the appeal of variety, with the most popular Minecraft minigame servers advertising

choice between upwards of 30 different minigames. To ensure this variety, Duplicraft

must support instance creation with a dynamically chosen world, in this case using

a minimum of five worlds.

R5: Duplicraft should be easy to use.

A large motivator for this research was lessening management overhead from the

server host. For that reason, we wish to design a system that is nearly plug-and-

play at its core and requires little manual adjustments to the existing infrastructure

12

3.1 System Requirements

needed to host a system. The only alterations made to pre-existing components of the

MVE should be limited to allow it to communicate with the system we design. This

is challenging as we are designing a system that seamlessly needs to integrate with

an existing system to introduce new features. Doing so will require well-thought-out

methods to circumvent limitations imposed by the existing infrastructure, such as

the seamless world switching R4 aims to achieve that is not inherently provided by

many existing games.

R6: Duplicraft should be compatible with multiple MVEs.

To make this research appealing to the largest group possible and broaden its use, we

wish to design a system that does not specifically target a single MVE. Similarly to

R5, this is challenging because it implies that we will have to design around existing

infrastructure without making it game-specific. It will require an understanding of

common multiplayer infrastructures in MVEs and thorough consideration in regard

to building a system around the existing components of such an infrastructure.

It is notable that many, if not all, requirements related to distributed systems are important

to online video games. However, addressing each one individually is far beyond the scope

of this research. Consistency, for example, is highly important for real-time multiplayer

video games. In the case of minigames in MVEs, players experiencing the same in-game

environment at the same time can be integral in a scenario where real-time interactions

are of high importance. However, consistency in real-time multiplayer games, especially

in MVEs, can be particularly challenging and often requires intricate mechanisms such

as situation-specific consistency policies. This can introduce far more complexity to a

design, placing it beyond the scope of this research. Other examples of such requirements

are reliability and availability. There are several reasons why these requirements are not

addressed. The main reason is once again similar to why we do not address consistency;

the complexity that this requirement would introduce exceeds the scope of this research.

However, we also wish to design this system to work with a cloud service provider, in which

case it is hard to control variables such as availability as it is now a concern for the cloud

provider instead of the server host. Mechanisms could be designed to, for example, switch

between cloud providers if one becomes unavailable. However, such a system once again

can quickly become very complex and require significant time to design and potentially

prototype. These requirements are only a few examples of common system requirements

to consider when designing a distributed system.

13

3. DESIGN OF SERVERLESS NON-PERSISTENT INSTANCES OF
MVES

User Device

The Cloud/Self-hostedThe Cloud

Hub World

Harness

Client machine

Game
Client Proxy

Cloud service provider

Container

World Notifier

2

65

Game Instance

Persistent
Data

0'
Player

1,2,8

4

Network packet Function call File transfer Existing interactions

Game InstanceWorld
Manager

Persistent World
Storage

Container
Manager

5

9

2

3

7

Component Sub-Component Container

A

BC

D E

F

G

H

I

J

KL

Pre-existing
Sub-Component

M

0

0''

Resource
Location

Figure 3.1: Design overview of Duplicraft.

3.2 Design Overview

Depicted in Figure 3.1 is an overview of the design of Duplicraft. It shows how the compo-

nents introduced by Duplicraft work together with the existing client-server architecture

of an MVE. For our design, we mainly look at a set-up using three machines: A client

machine (A) which takes player input and hosts the game client that the player sees, a

Hub World (B), which is a server that is constantly running (either self-hosted or rented

from some provider of computer resources), and the machine on the cloud (C) (i.e., the

resources allocated by the cloud service provider). In our design these machines are sepa-

rate, but the Hub World could also be running on the same cloud service provider as the

deployed containers or could be self-hosted on the client machine.

The Game Client (D) needs to be able to have its connection switched from the Hub

World’s game instance (F) to a Game Instance deployed on the cloud (M) with a world

of the player’s choice. To make this possible, the Proxy (E) runs on the client machine

and the game client connects to the Hub World through the proxy. The proxy can then

seamlessly switch connections by forwarding the packets to the location of another Game

Instance.

14

3.2 Design Overview

To allow the Game Client to switch connections, the Proxy needs to know where

the container is. The Hub World’s Game Instance informs the Proxy of the location of the

requested Game Instance because it is the main point of handling communication with the

Proxy from the Hub World. To handle this connection switch we specify a user input, a

chat command for example, of the developer’s choice to be handled in the Game Instance

which serves as a request to deploy a container, to which the Game Instance can respond

with a message to the Proxy with a location of the deployed container. First, we need

to make sure that multiple containers can join the same Game Instance so they can play

together, so we add a Container Manager (G) which keeps track of existing containers and

if they are accepting new connections.

To address R1 (support up to at least 50 players) and R2 (low latency), we need

to communicate with the cloud service provider for a container (I) to be deployed on the

cloud with specific requirements. For supporting up to at least 50 players, this implies we

need to dedicate an amount of memory and computational power to reach performance

requirements under the expected workload for the container. The necessary amount of

resources a container is deployed with can be specified either for each type of container or for

the number of players the container should be deployed for. For the latency requirement, we

specify the location the server will be deployed in, chosen as the hosting location having the

lowest mean latency for each player connecting to the instance, to achieve a latency lower

than 50 milliseconds during play. For players who inherently have a latency higher than

50 milliseconds due to being geographically far apart, two separate instances are started in

different regions. For this, we add a Harness (H), which handles all communication with

the cloud service provider, to have control over the container specifics, and the deployed

container so that the location of the container can be forwarded to the Proxy through the

Game Instance of the Hub World. This harness is the most complex part of our design,

which we discuss more in-depth in §3.4.

To meet R4 (Switching between a library of worlds), the container should be able to

be started with a variety of worlds. To avoid being reliant on downloading these worlds from

the public internet, which may be slow, we store them in a Persistent World Storage (L)

provided by the cloud service provider in the form of a blob or bucket storage for example,

so that we have easy access to worlds we store ourselves. The image with which the

container is started is a slightly altered MVE server. Two components are added to the

container image. To allow for the retrieval of the world specified by the Harness from

the Persistent World Storage, we provide the container image with a World Manager (K)

15

3. DESIGN OF SERVERLESS NON-PERSISTENT INSTANCES OF
MVES

to handle communication with the cloud service provider’s Persistent World Storage from

inside the container.

To satisfy R3 (fine-grained payment), the container will need a way to notify the

Hub World of its IP address when it has finished deploying or notify the Hub World of it

soon being stopped. To only pay for resources that are used, containers must be released

when either no players are connected to the world or a stopping condition, such as the

minigame being finished, has been reached. To achieve this, a second component, the

Notifier (J), is included in the container’s image to handle the network traffic between the

container and the Hub World from inside the container.

In a common client-server setup for an MVE all traffic would be sent directly from

the client to the server. To allow these existing interactions (0, 0’, 0”) to function prop-

erly, we must adjust them to fit our system’s components. Player inputs, such as mouse

movements and key presses, are processed by the game client as it normally would and the

game’s visual output to the player works the same way as in a regular setup. However, the

Game Instance must now connect to the server through the Proxy running on the local

client, which forwards these client and server messages to the correct location.

We satisfy R5 (easy to use) and r6 (compatibility) by having designed all our

components to exist outside of the pre-existing ones, with the pre-existing components

being based on a typical client-server configuration to account for compatibility. In doing

so, we allow the system to seamlessly integrate into a typical MVE client-server setup

without the need for complex alterations of the existing infrastructure. The only direct

alterations needed in this design would be to the Hub World’s game instance (F) to allow

for it to communicate with the components we introduce, which is in the form of function

calls.

3.3 Workflows of Instance Creation and Destruction

To create an instance, the player performs an in-game action that shows the intent to play

on a non-persistent instance (e.g., sending a chat command). The Proxy forwards this

interaction to the Hub World (1). The Game Instance checks with the Container Manager

whether or not an instance of the selected world already exists and is still accepting players,

and if it does, informs the Proxy of the location of the container so that the game client’s

connection can be swapped correctly (2). If an instance of the requested world does

not exist yet, the Container Manager informs the Harness that a new container should

be deployed (3). The Harness requests the cloud provider for enough resources to be

16

3.4 Design Detail of the Harness and Container Manager

allocated to ensure performance and a container to be deployed with a specified world (4)

in a region close to the player. Upon creation, the container’s World Manager retrieves

the world from the persistent cloud storage (5) so that the container deployment can be

completed and the server will be functioning as intended. Upon completion of the creation

process, the Notifier informs the Hub World’s Harness of the location of the container (6),

which proceeds to pass this onto the Game Instance (7). Once the Game Instance forwards

the location of the container to the Proxy (8), the game client’s packets can be successfully

forwarded to the MVE server running in the container.

To avoid paying for resources currently not in use, the container should be shut down

upon reaching a final state or having all players disconnect. To achieve this, the Notifier

informs the Hub World that the container is being stopped by sending a message to the

Harness (6). The Harness forwards this to the Game Instance (7) in a similar fashion as

is done for the instance creation, so that the Game Instance can notify the Proxy of the

need to change the connection back to the Hub World (8). Upon successful completion of

the connection switch, the game client will be connected to the Hub World again and the

container will be destroyed as it is no longer in use.

3.4 Design Detail of the Harness and Container Manager

The Harness acts as the interface for the Hub World to interact with the cloud service

provider, so it is necessary to have this component be highly configurable to meet several

of our system requirements. To meet latency requirements, the Harness can be configured

by the Hub World operator to deploy containers in several regions provided by the cloud

service provider, so that a Game Instance can be started in a location close to the user

requesting it. This can be achieved dynamically by having an algorithm decide on the

location where the server should be hosted based on the location of the players requesting

the container to be used. Another important requirement that is met by the Harness is

supporting up to at least 50 players. To support enough players in certain worlds, the

Harness can be configured to request varying amounts of resources from the cloud service

provider, such as CPU units and the amount of memory, based on the number of players

and the type of world that will be requested. The final important configuration requirement

that the Harness helps to meet is to support a library of worlds. The Harness must have

a way to inform the container with which world it needs to be started.

Players should be redirected to existing containers if an instance with the correct

configuration for their request already exists and is in a waiting state. For this to be

17

3. DESIGN OF SERVERLESS NON-PERSISTENT INSTANCES OF
MVES

possible, it is important for the Container Manager to store the relevant data for each

running container, acting as a database of deployed containers. To ensure players can only

join instances that are still waiting for players, the Container Manager should only keep

track of the instances that are still in an awaiting state. Players should not be connected

to containers located on the other side of the world to prevent large amounts of latency,

so the Container Manager should also store the location of the container. To properly

redirect new player requests to the correct instances, it is also important for the Container

Manager to know which world each instance is using.

3.5 Design Decisions

The Proxy could run on the Hub World instead of the client machine, where in contrast

to the proposed design, all Game Clients would connect to a single proxy on the Hub

World rather than each Game Client having their own. This would allow for centralized

management of all connected players, but we do not do this for the following reason. We

identified in §1 that the server handling many clients at once is a big bottleneck for MVEs,

thus we would like to avoid processing all player packets in a single location (i.e., the

Proxy server running on the Hub World in this example). Having the single Proxy handle

too many connections at once could be a cause for performance issues and packets being

delayed, potentially violating R1 and R2.

To handle client requests for instances to be deployed, we propose that the game

instance handles a chat command or other interaction of the developer’s choice to be used

as a deployment request. However, if the Game Instance is not easily modifiable to do so,

a way to circumvent it is as follows. A proxy server would be running as the Hub World’s

Game Instance, and the actual Game Instance would run in a container to avoid two

applications trying to listen on the same port. The proxy server then forwards all game-

related packets to the port the container is listening on through a self-feedback loop, so

that the actual Game Instance can process them as it normally would, but the proxy server

can then be configured to request a container to be deployed based on certain packets. This

consideration, however, adds extra complexity whilst achieving the same requirements as

processing the commands directly in the Game Instance, and was thus omitted from the

final design.

Rather than having a library of worlds hosted by the cloud service provider, each

world could be packaged into its own container image with predefined settings specific to

the world. This allows for faster load times, because the world does not have to be retrieved

18

3.5 Design Decisions

separately anymore, and for optimization of container images on a per-world basis. How-

ever, this consideration is not in the final design, because this design is partially proposed

to solve the amount of management required for the user hosting the servers. Creating each

server image individually for every single world would both take up more storage space on

the cloud, increasing consistent cost and requiring more extensive preparations by the user

who manages the Hub World and its interactions with the cloud service provider.

19

3. DESIGN OF SERVERLESS NON-PERSISTENT INSTANCES OF
MVES

20

4

Duplicraft: serverless non-persistent
Minecraft instances

In this section, we discuss the details, considerations and challenges of a Minecraft-based

implementation of the design shown in §3.2. We focus mainly on the implementation of

components E, H, I and L and their interactions with existing components D and F.

4.1 Duplicraft Overview

Depicted in Figure 4.1 is an overview of Duplicraft, our Minecraft-based prototype which

connects several AWS services to deploy non-persistent Minecraft servers, which the Du-

plicraft proxy then can switch the connected client’s connection to once it has finished

deploying. Duplicraft is based on Minecraft because it is the most popular MVE it has a

large community that offers many resources to aid the development of third-party appli-

cations. Given that Duplicraft is based on Minecraft, and Minecraft is written in Java, we

chose to develop Duplicraft in Java to ensure compatibility.

To configure Duplicraft, the user is required to configure Duplicraft to utilize AWS

resources and specify the details an instance should be deployed with (detailed in §4.3).

For the use of AWS, an AWS account and three separate services in the regions in which

they will be deploying containers is required, the reason for selecting these services and

their use is detailed in §4.2.

After the setup is completed, the user can start the prototype, which initially only

runs a proxy server. The proxy server connects to a Hub World specified in the configura-

tion. Once a user connects to the proxy server all packets essential for the communication

between a Minecraft client and server are forwarded from the connected game client to the

21

4. DUPLICRAFT: SERVERLESS NON-PERSISTENT MINECRAFT
INSTANCES

User Machine AWS Cloud

Region

Availability zone

User

Task Definition Amazon
ECR

Amazon
CloudWatch

Amazon S3

Step 1:
Configuration

Step 2:
Proxy Start

Step 3:
Game

Connection

Duplicraft

User Configuration

Proxy ServerHub World

VPC

Public subnet

Containerized
Minecraft Instance

ECS Cluster

Step 4:
Deployment

Step 5:
Connection

Switch

Minecraft
Client

User Machine
or Cloud

Figure 4.1: Duplicraft usage by step.

Hub World. The proxy intercepts two specific chat messages, if the user types "/swap"

in the in-game chat, the proxy request for a container to be deployed on AWS. Once the

container deployment is finalized and the Minecraft server is accepting connections, the

proxy will forward the game client’s packets to the container. If the user types "/hub"

in the in-game chat, the user will be reconnected to the Hub World and if a container is

running, it will be destroyed.

One of the most challenging and complex parts of the implementation is the proxy

server. The proxy server was difficult to make because the seamless swapping of servers

comes with many issues when taking an intuitive approach, such as indefinitely getting

stuck on the screen indicating that a world is loading, and discovering how to properly

set up a new connection, then swap from the existing connection to the new one without

disconnecting the player. We detail the issues and solutions in §4.4.

The other difficult part to implement is the AWS interface Duplicraft. There are

two main reasons for this being challenging. We want the system to be highly configurable

so each server instance can be configured depending on the expected workload, you would

not need the same amount of resources for a 2-player minigame as you would for a 16-player

minigame. This directly relates to the second reason it was difficult to implement, being

the required understanding of AWS services and how they can interact with each other. To

make the system configurable, we need to know what AWS allows us to configure and what

22

4.2 Selection of Cloud Services

steps are required to configure our AWS services. To reduce complexity for the user, we

then need to implement components that are simplified interfaces for the user to configure,

which we elaborate more upon in §4.4.

4.2 Selection of Cloud Services

In §2.2 we mentioned several cloud service providers. For this prototype, we have decided

to make use of Amazon Web Services for various reasons. One of the primary reasons for

it is that similar to Minecraft in the MVE game genre, it is currently the most popular

cloud service provider and thus it has a large number of users, meaning there are many

resources and helpful communities online making it more accessible. AWS also has a

large variety of tools that make container deployment widely accessible to new users, most

importantly their Elastic Container Service (ECS) combined with their Elastic Container

Registry (ECR). Finally, AWS has many available regions and availability zones all across

the globe, with the ability to deploy containers on them dynamically based on your needs.

This is important because deploying a container close to a user allows you to meet latency

requirements.

AWS has several services for the deployment of containers, such as their Elastic

Kubernetes Service (EKS), Amazon Lightsail, Fargate and Elastic Compute Cloud (EC2),

the latter two being services offered under ECS. Lightsail is a service based on a fixed,

monthly price and thus does not meet our fine-grained payment requirement. We deem

Kubernetes to add too much complexity for this prototype, thus EKS is also taken out of

consideration. EC2 is a server-based service in which you use a virtual machine image to

host virtual machines on your AWS account. Fargate, on the other hand, is a serverless

service that allows for payment on a per-minute scale where you only get charged for the

amount of virtual CPU (vCPU) and memory your container ends up using. For these

reasons, we end up using AWS Fargate for this implementation.

Step 4 of Figure 4.1 displays how Duplicraft combines several AWS services to deploy

a container, and Figure 4.2 shows the cost at the time of writing this thesis of Duplicraft

compared to other services, which we further discuss in §4.2.1. ECS allows Docker images

to be run by defining them as tasks, with tasks being instances of Docker containers. All

container configurations, such as how many vCPU units the container should have, the

amount of memory it can use and the environment variables are specified in the Task

Definition.

23

4. DUPLICRAFT: SERVERLESS NON-PERSISTENT MINECRAFT
INSTANCES

Service How payment is calculated Price

Duplicraft
(Fargate)

Billed per second, per resource used +
Monthly cost for additional services

€0.046 per vCPU/hour
€0.005 per GB memory/hour
€0.62 per GB of logs/month
€0.03 image on ECR/month
€0.024 per GB on S3/month

EC2
on-demand

Billed per second, based on instance

2vCPU, 4GiB memory:
€0.082/hour
4vCPU, 8GiB memory:
€0.15/hour

Lightsail Monthly cost based on container type

2 vCPU, 4GB memory:
€39.45/month
4 vCPU, 8GB memory:
€156.80/month

Minecraft
Realms

Set monthly cost €7.19/month

Table 4.1: Payment details per service.

The container is started using the specified Task Definition as the container configu-

ration, where we download the container image from ECR rather than the public internet,

so we are not depending on downloads from the public internet as a means to shorten the

deployment time. World files are subsequently retrieved from Amazon’s Simple Storage

Service (S3) for the same reason. In this case, we store objects in a bucket on S3 and

assign a publicly accessible URI to them, so we can use this URI later to retrieve the files

we need.

4.2.1 Cost Analysis

Figure 4.2 displays the costs we showed in Table 4.2 compared to each other based on

the cost to run a certain amount of minigames, each lasting 10 minutes. For the AWS

services that are not Fargate, we show the prices of a selection of the computing resources

the respective services offer, which have comparable resources to the containers we deploy

using Duplicraft. Besides the individual pricing pages for each service, we used the AWS

Pricing Calculator to assist us in determining accurate prices for the other services. We

omit supplemental monthly costs from non-Duplicraft services as they are optional for a

bare-bones system in the other services, but included in the cost for Duplicraft for reasons

24

4.2 Selection of Cloud Services

0 1000 2000 3000 4000

0
50

10
0

15
0

Games

C
os

t p
er

 m
on

th
 [€

]

Duplicraft
2vCPU 4GB

Duplicraft
4vCPU 8GB

EC2 on−demand
2vCPU 4GB

EC2 on−demand
4vCPU 8GB

Lightsail
2vCPU 4GB

Lightsail
4vCPU 8GB

Minecraft
Realms

Figure 4.2: Cost of each service with minigames lasting 10 minutes over the span of a month.

named in §4.2.

Besides the resources of the container itself, Duplicraft has extra costs. The cost

to store the log seems high compared to the container resource cost but looks deceptively

so due to measuring in gigabytes. The amount of logs an instance produces is dependent

mostly on in-game events, so in a realistic setting the amount will vary from our results,

but 178 instance deployments of our system have generated half a megabyte of logs. If we

were to assume 20 containers to be deployed every day, equalling 600 deployments over a

month of 30 days, we would have 1.76 MB worth of logs. Assuming a retention rate of a

month for these logs on CloudWatch, we pay €0.001 per month to store our logs. Given

that we only store our Minecraft server docker image on ECR, we pay €0.03 consistently

each month. Assuming you store less than 427 MB of worlds, which is within expectations

as small Minecraft minigame worlds generally are less than 10 MB, sometimes even less

than 1 MB, the cost of S3 storing these items is less than €0.01 per month. For these

reasons we determine the constant monthly costs of Duplicraft (i.e. the costs of storage)

to be €0.03 for our calculations.

The figure shows two configurations for EC2 On-Demand, which is the EC2 service

for instances with no long-term commitments and payment by the hour, that we want to

25

4. DUPLICRAFT: SERVERLESS NON-PERSISTENT MINECRAFT
INSTANCES

compare to Duplicraft. We can see directly that 2 vCPU in Duplicraft, without accounting

for the memory costs, is already more expensive than the complete EC2 instance with

2 vCPU, the same goes for the other instance. This difference in cost is also clearly visible

in the line graph. The difference in cost is mainly due to EC2 having more management

overhead. In EC2 you have to manage your own cluster and instance, whereas in Duplicraft

the cloud service provider does more management for us. So even though EC2 On-Demand

Instances are less expensive, we pay the extra costs to remove management overhead for

the Duplicraft user, because it is an essential trait of a serverless system to not have to

manage the servers.

Lightsail has a fixed, monthly price for running an instance, we have again selected

two instance types to compare to. If we were to run a Duplicraft Instance with 2 vCPU

and 4 GB of memory without accounting for the €0.03 monthly costs, it would cost €0.112

per hour. For the other configuration, Duplicraft would cost €0.224 per hour. You could

run Duplicraft 351 hours and 699 hours per month respectively for the same price as

the Lightsail instances of similar resources. This is less than the number of hours you

would get from running an instance all month, without stopping it. However, based on

the popular minigame server Hypixel’s minigames, the instances would be deployed for

around 10 minutes each. This would allow us to deploy 2106 and 4194 instances each

month respectively, to match the price of a single Lightsail instance of similar capacity.

This would also allow us the flexibility of deploying multiple instances at the same time,

which commonly happens on popular minigame servers. In cases where we use Duplicraft

instances less than the calculated amounts, the user pays less. So although Duplicraft

is technically more expensive to run the same resources for a full month, it comes with

benefits that are important for our serverless system.

Minecraft realms is a difficult service to directly compare prices with, because to

the best of our knowledge, the exact amount of resources they provision their servers with

is not public information. Assuming we want to have 10+ players on our server, the

Minecraft wiki (18) recommends us to have at least 8 GB of memory allocated. So for this

comparison, we will assume a Duplicraft instance with 2 vCPU and 8 GB of memory, which

would cost €0.132 per hour, excluding monthly costs. Compared to Minecraft Realms, we

would be able to run the Duplicraft instance for 54 hours per month, which would mean

deploying approximately 324 instances of a Minecraft minigame, equalling 10 instances

per day for a month. Depending on how popular the hub server is, this could be a viable

alternative. However, a Minecraft realm only allows a maximum of 11 players to join, so

the comparison is not as clear, keeping in mind that Duplicraft aims to support tens of

26

4.3 Game and Resource Configuration

Variable name Description
CPU The maximum amount of CPU units to be present for the task
MEMORY The maximum amount of memory in MiB to be present for the task
WORLDURI URI of the world to start an instance with
IMAGEARN Location of the container image on ECR
HUBWORLD IP address of the Hub World
INSTANCEMEMORY Amount of memory the Minecraft server will use

Table 4.2: Table of important environment variables used to configure Duplicraft.

players. Duplicraft also has the benefit of being able to simultaneously deploy instances

and being less expensive when less than 324 instances are deployed in a month.

4.3 Game and Resource Configuration

In Table 4.2 we show the main configurable environment variables with which Duplicraft

can be configured. As mentioned in the previous section, the way to deploy containers

on ECS is through a Task Definition. It acts as an interface to describe to ECS what

parameters the container should be deployed with. Duplicraft stores the task definition as

a JSON file locally, with the important configurable parameters filled in with placeholder

values. This task definition can then have its placeholder values dynamically filled in so

it can be registered to ECS and containers can then be deployed based on its specified

parameters.

To fill in the placeholder values in the Task Definition template, we work with

environment variables, or alternatively through a .env file. The environment variable

file specifies all placeholder values as key-value pairs, from which the values are taken to

replace the placeholder values. The most important environment variables that the user

wants to dynamically configure are described in Table 4.2. The prototype comes with an

environment variable file so the user can fill in the values for all the keys. Omitted from

Table 4.2 are the environment variables related to the AWS services the user has to set up

before being able to use the prototype.

4.4 Low-Level Description of how Duplicraft Works

Figure 4.3 shows the successful deployment and connection switch processes in more detail

starting from the state in which the client is already connected to the proxy. Beforehand,

27

4. DUPLICRAFT: SERVERLESS NON-PERSISTENT MINECRAFT
INSTANCES

Player

Game Client Proxy Server

Load world packet

Close window packet

Container

Chat command
to swap worlds

Hub World ECS ECRECSHub World S3 CloudWatch

Player actions

State update

Player actions

State updates

Chat command
to return to Hub

Confirmation
message

Container destruction request

Success/Error

Request for logs

Log entries

Key presses

Frames

Confirmation
message

Repeat until request
to return to Hub

Repeat until container is
ready

Repeat untill container is assigned
an IP

Chat command
to return to hub

Player actions

State update

Player actions

State updates

Chat command
to swap worlds

Confirmation
message

Request for deployment with task definition

Container information

Container image

Image request

World files

World file request

Container logs

Container information

Key presses

Frames

Confirmation
message

Repeat until request to
change worlds

Container IP request

Container IP/Error

Check if logs contain string indicating complete initialization

Load world packet

Notify client packet

Repeat until game is disconnected

Figure 4.3: Sequence diagram of the Duplicraft container deployment and connection switch
process.

28

4.4 Low-Level Description of how Duplicraft Works

the proxy initializes a connection with the Hub World and awaits a client connection. The

game packets then get forwarded as if the client is sending them directly to the server by

setting up 2 session listeners which listen on the TCP sessions between the Game Client

and Proxy and between the Proxy and Hub World.

Once the user sends a chat message containing the text "/swap", the proxy server

tells ECS to deploy a container based on the configuration specified in the previous section.

Once ECS has confirmation that the container is being initialized, the Proxy Server gets

a confirmation message in return and sends the Game Client a confirmation message to

display to the user. We chose to use chat messages to indicate these interactions because

users can send them from the client in any world, and the Proxy server already has the

capability to intercept chat messages and analyze their contents.

For the container image, we use a docker image of a Minecraft server published by a

user named itzg on DockerHub (19), because it was made to be highly configurable through

environment variables which is something we can deploy a container with using our Task

Definition. Relevant configurations that this container image allows us to specify are, for

example, the amount of memory the Minecraft server can use, allowing bots to play on

the server so we can evaluate the prototype and the ability to specify a world URI which

it will automatically download and use as the Minecraft server’s world. This allows us to

retrieve the worlds we store in a public S3 bucket by specifying their respective URIs in

the environment variable.

To get the IP of the running task, the Proxy gets the network interface from the

container details. It then repeatedly sends requests to get information about this network

interface until it eventually returns an IP address. If there is no IP within a configurable

amount of seconds, the task is terminated. Then, for another configurable amount of

seconds, the server polls the CloudWatch logs each second to see if there is a log entry that

matches Minecraft’s default message to indicate server initialization has been completed

successfully, if it takes longer than the configured amount of seconds, the task is terminated.

We detail this choice and mention an alternative in §4.5.

However, only starting a new connection, removing the old session listeners and

replacing them with new ones causes problems, such as the Game Client getting stuck on

the loading world screen and the Game Client displaying the container server’s world, but

handling the player collision as if it were on the Hub World. To fix the disparity between

the display and collision handling, we manually send two packets to the Game Client to tell

the client to reload the world. We send two packets because the Minecraft protocol (20)

specifies issues might occur if you try to send a respawn packet to the same dimension.

29

4. DUPLICRAFT: SERVERLESS NON-PERSISTENT MINECRAFT
INSTANCES

To fix the issue of getting stuck on the loading world screen, we send the Game Client a

packet that forcefully opens a window on the Game client, then immediately follow it up

with a packet that forces it to close, which forces the Game Client out of the loading world

screen.

After that the packets are forwarded in the same way they were to the Hub World.

Once a player sends a chat message containing the text "/hub", the active container is

destroyed and the Game client’s packets are forwarded back to the Hub World in the same

way they were when the connection was switched to the container.

4.5 Implementation Alternatives

To improve performance for every individual world, we could preemptively define a

set of Task Definitions on ECS with a predetermined amount of resources to balance

out operational costs and server performance. However, given that one of this Duplicraft’s

main goals is to take away from the currently required preemptive configuration for existing

solutions, we want to make a dynamically configurable prototype. This leads us to believe

the better alternative is to template a Task Definition and update it for every to-be-

deployed container.

To reduce the time it takes for a server to be deployed, we can include the world and

server jar in the container image. This has the advantage of not having to download the

resources as an instance is deployed. However, we choose not to do it this way, because it

would require us to create and store a separate container image for each world, increasing

both cost and management overhead for the system user. By allowing the server jar

and world to be dynamically configurable we increase the time it takes for the server to be

deployed. However, because one of our main goals with Duplicraft is to reduce management

overhead for the server operator we opt not to implement it this way. Our experiment in

§5.3.3 shows that the downloading of the server jar and world files are only a fraction of

our deployment times, convincing us that this is the correct choice.

To see if an instance has finished deploying we currently repeatedly analyze the

container’s logs to find a predefined sentence to indicate the world has finished loading. If

such a sentence were not consistent, or we run into issues such as a rate limit on retrieving

logs from AWS, we can alternatively attempt to connect through the server using a TCP

client and wait for the connection to be accepted. Both options result in similarly accurate

times at which the instance is accepting connections, and can thus be used interchangeably,

30

4.5 Implementation Alternatives

but we opt to poll the logs, because we can also use the data from the logs to perform

experiments and analyze our server deployment, making it useful in Chapter 5.

A final alternative is to utilize a different cloud service provider. This can impact our

system in various ways. If a cloud service provider has more locations to host containers,

it could mean that switching to that provider allows for Duplicraft to have lower latency

during play. Other cloud providers could also charge different amounts for similar resources,

meaning that the cost would vary depending on which provider Duplicraft uses. Every

cloud service provider that allows for the deployment of containers on-demand can support

Duplicraft, but we choose to use AWS for the reasons specified in §4.2.

31

4. DUPLICRAFT: SERVERLESS NON-PERSISTENT MINECRAFT
INSTANCES

32

5

Evaluation

In this section, we explain how we evaluate our Duplicraft prototype and discuss its ca-

pabilities and characteristics to decide whether it meets our system requirements and if it

would be a viable alternative to existing services.

5.1 Experimental Environment

To run our experiments, we deploy each container server instance using Duplicraft as

described in §4.1. These container server instances are Minecraft servers for the game ver-

sion 1.12.2, which allows us to experiment using the realistic workloads described in §5.2.1.

These containers are deployed for every experiment with a flat, unexplored world with no

structures or otherwise natural terrain generation. We use these worlds as Duplicraft is

intended to run minigame worlds, which tend to be small in size (< 10MB), which we

determined by downloading several of the most popular Minecraft minigame worlds and

looking at their sizes.

We deploy our containers running Minecraft instances on AWS and vary the amount

of resources of each deployed container per experiment. All other tools and programs

are deployed locally on a home desktop computer setup, described in Appendix A. All

containers are deployed on an AWS region geographically closest to Amsterdam, which in

this case is the region eu-central-1 hosted in Frankfurt.

5.2 Experiment Design

Table 5.1 shows the design of our experiments. To evaluate Duplicraft, we determine several

important metrics which give us insight into whether our system is viable for real-world

use or not.

33

5. EVALUATION

Metric Server type Workload Tools Rep.
Bots World

§5.3.1 performance Spigot 0-50 default
Duplicraft
Yardstick

1

§5.3.2 latency Official 16 flat
Duplicraft
Yardstick

1

§5.3.3 cold start Official - flat Duplicraft 30

§5.3.4 resource efficiency Official 0-50 default
Duplicraft
Yardstick

1

Table 5.1: Overview of experiments.

To evaluate performance, we wish to measure the amount of time it takes the

Minecraft instance to process a game update. A key feature of Duplicraft is that a user

can configure the amount of resources a container is deployed with for each deployment.

Because the cost to the user scales with the amount of resources used, we wish to test

the performance of Duplicraft instances under several different configurations. We can

measure this by deploying instances with different amounts of resources and measuring

the amount of time it takes to process a game update under the varying workloads de-

ployed by Yardstick. This allows us to determine how well the tested instance configuration

performs under several workloads and if our system meets performance constraints. We

use a popular alternative to a Minecraft server that allows plugins, called Spigot, to use

a plugin called TabTPS (21). This plugin displays the milliseconds per tick (MSPT), a

measurement of how long it takes the server to process a game update, to the user several

times per second with a precision of 2 decimals. To generate our data we use Duplicraft

to deploy Minecraft server instances using the Spigot jar and the TabTPS plugin under

different amounts of resources. We then connect to the instance using the proxy so we

can intercept messages from the server. Once we enable TabTPS to display the MSPT to

our connection, we intercept the packets detailing the MSPT alongside packets from the

server indicating a player has joined. Our modified Duplicraft then writes the amount of

resources, the amount of players currently connected and the MSPT to a file each time

the MSPT is updated to collect the data. After measuring for a minute with no bots

connected, we start deploying 5 bots each minute using Yardstick to simulate a realistic

workload, up to 50 bots, because minigames rarely have 50 players or more. To make the

experiment reproducible, we specify that these bots are walking around in a bounded area

of 32 blocks around coordinates (200, 240) in the seed 7030672831634543076 generated us-

34

5.2 Experiment Design

ing default terrain generation. We can then plot this data as a line graph to see how each

configuration performs under the different workloads, and conclude which configurations

meet our performance requirements under specific workloads.

We also evaluate the latency of our system. Most minigames depend on real-time

player interactions, which leads to player enjoyment being impacted heavily by high latency.

To gain insight into the latency between a player and an instance deployed by Duplicraft, we

deploy several instances with different resources. We then use Yardstick, a tool described

in §5.2.1, to deploy a realistic workload on the instance and measure the latency between

two players under this workload by starting a timer, sending the server a message of a

world alteration from the first player, then stopping the timer once the second player gets

notified of the alteration. This data can then be displayed in a box plot, which we can use

to determine whether Duplicraft meets latency requirements. It also allows us to reason

about the cause of the latency measured in our experiment. To simulate a realistic workload

we deploy 16 bots to the server, 14 of which are walking around to simulate realistic player

actions and the other 2 bots measure the latency. Yardstick measures latency by having

one of the bots repeatedly place or break a block and start a timer, the other bot then stops

the timer once it receives a packet indicating the world has changed at the location of the

recently placed or broken block. We chose the number of 16 bots as we wish to simulate a

realistic setup, which in this case would be a minigame with more than 10 players. Among

the most popular minigames, some are played in teams, and 16 is divisible into several

different team arrangements with an equal amount of players. Each run of the experiment

lasted 5 minutes and used an empty flat world as it was required for the use of Yardstick’s

latency experiment. To make the experiment reproducible, we specify the seed used to

generate the flat world is -2907575813890716159 and the players walk in a bounded area

of 32 blocks around coordinates (110, -410).

Moreover, we evaluate the cold start times of Duplicraft. Loading times can nega-

tively impact player experience, making it intuitive to gain insight into the loading times

of Duplicraft. We measure the loading time of Duplicraft as the time between a player

requesting an instance to be deployed and Duplicraft being able to connect the player to

the instance. We do this by modifying Duplicraft to start a timer as soon as the player

sends a message to the proxy indicating the desire to swap worlds, then ending the timer

as soon as Duplicraft reads from the instance’s logs that the instance is accepting connec-

tions, repeating this process 30 times to determine the variance in loading times. With

this data, we can generate a box plot of the total loading times to get an indication of how

long a player must wait. However, total loading times do not help us understand what

35

5. EVALUATION

segments of our loading times can be reduced. To give better insight, analyze the logs of

each cold start and determine several segments, such as how long it takes to download the

jar and how long it takes to configure the server, then produce a stacked bar chart showing

the amount of time each segment takes. With this bar chart, we will have an insight into

which segments of Duplicraft loading times scale with resources and which do not.

Finally, we evaluate the resource efficiency of Duplicraft instances. To make the most

use of the pay-per-use model provided by serverless computing we ideally only allocate as

many resources as we will use. To determine the resource efficiency of Duplicraft we will use

a highly similar setup to the performance experiment, using the same world and intervals of

bot connections with the only change being that we deploy bots in batches of 10 using the

same behaviour pattern. We then use the container insights provided by AWS to generate

line graphs of the CPU and Memory usage, choosing these two metrics as they are the

core variables we change between runs of the experiment. By running the experiment

with varying amounts of resources we can observe the changes in resource efficiency as we

allocate more resources. We can then cross-reference the data of the resource usage with

each individual instance’s logs to determine at what point bots started being deployed

every minute and mark this spot on the graph to visualize how the increasing workload

impacts the resource efficiency of a instance. This graph will give insight into resource

efficiency under our workload.

5.2.1 Workloads

Table 5.1 already shows a few key details of the workloads used to run our experiments.

To run our real-world experiments we want to simulate realistic workloads to evaluate

Duplicraft. Van der Sar, et al. implemented a benchmarking tool for Minecraft-like servers

named Yardstick (14), which tests the scalability and performance of these servers. The

tool deploys realistic workloads by emulating players on a Minecraft-like server and has the

ability to capture performance-related metrics. Yardstick also has options for customization

of the deployed workload, allowing the user to simulate specific types of realistic interactions

such as players sending chat commands and moving around. Once deployed, Yardstick can

measure system- and application-level performance metrics by monitoring the server’s host

machine and derive service-level metrics, such as the number of messages per second or

frequency of game loop updates, based on collected data.

To simulate realistic workloads in our experiments, we deploy bots that walk in

a bounded area around a given coordinate to simulate players maneuvering around the

world. We do this so we can measure the performance of the containers in terms of latency

36

5.2 Experiment Design

and performance during play. This workload varies per experiment to help us measure if

our system scales up to 50 players as specified in our system design requirements detailed

in §3.1.

Part of our workload is the world we play in. We downloaded several of the most

popular minigame worlds and concluded that minigame worlds consistently take up less

than 10 MB of storage, occasionally even less than 1 MB. For these reasons we deploy

our servers with either an unexplored flat world, which is required for Yardstick’s latency

experiments, or with a world using Minecraft’s default world generation with the spawning

of animals enabled, to simulate a more realistic workload as flat worlds tend to consist of

only 3 layers of blocks with no further world simulations such as growing trees or moving

entities. However, this world only provides a realistic workload for minigames with a

limited world where players do not actively alter the world (e.g. Parkour in Minecraft).

Determining and accurately simulating a realistic workload for minigames is challenging,

as there is a large variety of available minigames with vastly different workloads, some of

which support many in-game particle effects and require multiple players to alter the world

at once among more intricacies.

5.2.2 Metrics

To evaluate Duplicraft, we wish to collect four metrics to determine its viability:

Metric 1: Performance.

Minecraft-like games scale poorly because they have to handle large amounts of data

for game state updates. For this reason, we measure the performance of a Minecraft

server as the amount of time it takes to process a game tick.

Metric 2: Latency.

Latency in Minecraft-like games is defined as the amount of time between a player

interacting with a server, and other players being notified of that change. For this

reason, we test latency between two players as discussed §5.2.

Metric 3: Cold start time.

Cold start describes the overhead caused by a container having to be freshly set up.

In our case, this is the delay between a user informing the server of wanting to switch

worlds and the world being ready for connections.

37

5. EVALUATION

Metric 4: Resource Efficiency.

A large benefit of serverless computing is the pay-per-use model. To measure whether

a Duplicraft user really pays for the resources they use, we measure what percentage

of the allocated resources Duplicraft instances actually use during play.

5.3 Experiment Results

From the experiments we gather 4 main findings:

MF1: (Section 5.3.1) Duplicraft instances meet performance requirements, supporting at

least 50 players walking around in a non-flat world without interacting with the world

on its minimal configuration. The only time the performance requirement is violated

is on the lowest configuration when new players connect to the instance, which causes

a temporary drop in performance.

MF2: (Section 5.3.2) Duplicraft on average meets latency requirements (i.e. less than

50 milliseconds of latency) under the low workloads of the experiment with con-

tainer configurations using as little as 1 vCPU and 2 GB of memory. Even so, each

configuration has outliers above 50 milliseconds which could impact the quality of

experience.

MF3: (Section 5.3.3) A container with 2 vCPU and 4 GB of memory is an intuitive

minimum based on our experiment results, however the average time of the cold

start is higher than what a study (22) shows to be acceptable. We cannot scale this

cold start time down far enough to be deemed acceptable by the study, but we can

argue for the time to be acceptable as Duplicraft allows for the player to move their

character in the Hub World as they wait.

MF4: (Sections 5.3.3, 5.3.1 and 5.3.4) Different tasks scale differently with the amount

of resources provided, dynamically changing the amount of resources during run-

time could significantly decrease cost and improve resource efficiency whilst keeping

desirable properties such as low cold start times, low latency and high performance.

5.3.1 Performance

Figure 5.1 shows the results of our performance experiment. We measure the number of

milliseconds different container configurations take to process game ticks under different

workloads. We wish to support 50 players, and game updates are processed by the client

38

5.3 Experiment Results

0

5

10

15

20

25

30

35

40

45

50

55

60

10 30 50
Number of bots

T
ic

k
du

ra
tio

n
[m

s]

Resources 0.5 vCPU, 1 GB
1 vCPU, 2 GB

1 vCPU, 4 GB
2 vCPU, 4 GB

2 vCPU, 8 GB
4 vCPU, 8 GB

4 vCPU, 30 GB

Figure 5.1: Grouped box plot of measured time it takes a server to process a game tick with
bots walking around (resources are ordered from left to right, lowest to highest).

20 times per second. This means that we wish to keep the milliseconds per tick (MSPT)

of the server below 50. The unmodified official Minecraft server for version 1.12.2 only

measures up to 20 TPS, giving us less detailed insight into the performance of the server.

Spigot allows us to install a plugin called TabTPS on the server which displays the server’s

MSPT to the user by sending packets we can intercept and analyze.

In the figure we can see that Duplicraft on average performs at an MSPT below

20 on every single configuration, where the amount of outliers scales down as the amount

of provided resources scales up. What is unexpected is that even on the low-resources

configuration of 0.5 vCPU and 1 GB of memory the instance on average performs well

below half the required MSPT, the required amount being 50 MSPT. This is unexpected

because 0.5 vCPU and 1 GB of memory is significantly less than the recommended amount

of resources to run a Minecraft server for more than 10 players. This means that even on

the lowest possible configuration, Duplicraft instances are able to meet performance re-

quirements on average with at least 50 players. It is noteworthy that our highest resource

configuration does not consistently have the best performance, which indicates that allo-

cating excess memory does not always increase performance. We display measurements

with all intervals of 5 bots in Appendix B.

39

5. EVALUATION

To confirm these unexpected results, we ran two sanity checks that we show the

results of and elaborate upon in Appendix C. In short, the sanity checks seem to confirm the

consistent performance of these instances and lead us to believe the consistent performance

is a result of the low workload produced by players only walking, without altering terrain

or loading in new parts of the world.

However, for the player experience it is important not only to measure the mean

values but also to look at the performance drops indicated by the outlying MSPT values

for each configuration. Here we can see that yet again Duplicraft instances consistently

stay below the required 50 MSPT with the exception of our lowest resource instance, which

has performance drops that would violate the system requirements.

We can see in the figure that the performance of each instance has low variance,

except for the lowest resource configuration at 50 bots. However, each instance has outliers

above the mean, where the difference between the outliers and the mean scales down as you

scale up resources. After analyzing the data we conclude that these drops in performance

happen when a new group of bots is connected to the instance, leading us to believe that

the new group of connections within a short amount of time causes a temporary drop

in performance. This reaffirms the idea that the performance during play is consistent,

and performance drops only occur as a result of certain events, such as multiple players

connecting to the server within a short period.

From this experiment we can conclude that Duplicraft instances perform well within

our system’s performance requirements under a small workload with at least 50 players.

Even on the lowest configuration the requirements are only violated during the performance

drop when the bots connect to the instance.

5.3.2 Latency

Figure 5.2 shows the results of our experiment where we measured the delay between a

player placing a block and another player receiving a network packet indicating the change

in different server configurations. We deploy the servers by using Duplicraft with different

configurations.

In the figure we can see that there is little variance in the average and median latency

between the different container configurations, indicating that the amount of resources a

container has does not affect the latency in significant ways under the conditions of our

experiment. The size of the boxes is also similar for all configurations, reaffirming that the

amount of resources has little impact on the latency. However, the latency is not consistent

and has outliers that could impact player experience, which becomes much more extreme

40

5.3 Experiment Results

0.5 vCPU, 1 GB

1 vCPU, 2 GB

2 vCPU, 4 GB

2 vCPU, 8 GB

2 vCPU, 16 GB

4 vCPU, 8 GB

4 vCPU, 16 GB

4 vCPU, 30 GB

0 25 50 75 100 125 150 175 200
Time [ms]

Figure 5.2: Latency between two players of a block being changed under a load of 16 players.
Lower is better.

with the worst configuration where the server cannot keep up with the workload. These

outliers are the most extreme in the configuration with the maximum amount of resources

allocated for the container, and the second most extreme in the container with the least

amount of resources. Thus we cannot conclude a correlation between allocated container

resources and outliers in latency. There being no significant correlation indicates that

latency is mostly dependent on other factors, an intuitive one being network delays based

on where in the world the container is deployed relative to the user connecting to it.

We can derive from the figure that the mean and average latency for containers of

1 vCPU and up lies between 45 and 50 milliseconds. The expected latency consists of

3 main segments, the delay of the packet being sent from our testing machine and the

server hosted in Frankfurt and is then sent back, which we estimate to be no larger than

10 milliseconds. The second segment is dependent on when the next game state update

is sent out by the server. Minecraft servers update 20 times per second, meaning that

every 50 milliseconds a game state update has to be sent out. In an ideal case, our packet

arrives the exact moment before a game update is processed, and is instantly processed

and sent back. In the worst case, our packet is received by the server exactly when the

previous game tick has been processed, implying we have to wait 50 milliseconds for the

next game state update to be processed and sent out. If we take the average of these

two extremes, we determine the expected delay based on tick processing intervals to be

25 milliseconds. The final segment is the time it takes the server to process a tick, which

can be variable dependent on the server’s workload and resources, among other variables.

With the varying amount of resources used in this experiment, we try to show this time to

41

5. EVALUATION

0.5 vCPU, 1 GB

1 vCPU, 2 GB

2 vCPU, 4 GB

4 vCPU, 8 GB

4 vCPU, 30 GB

0 30 60 90
Time [s]

Figure 5.3: Cold start times with different amounts of container resources.

0.5vCPU, 1GB

1 vCPU, 2GB

2 vCPU, 4GB

4 vCPU, 8GB

4 vCPU, 30GB

0 25 50 75 100
Time [s]

AWS Jar World Config Start

Figure 5.4: Overview of the amount of time each task of a cold start takes on average.

be variable, which is very apparent in the outliers of our container with the least resources,

where ticks might take significantly longer to process causing large delays. However, due to

our workloads being small the number of outliers is greatly reduced from our configurations

of one or more vCPU. We can also note that, with the exception of the worst configuration,

all boxes have similar outliers on the right and left sides, which can be explained by the

delay based on tick intervals. Based on the numbers calculated in this paragraph, we can

estimate that on average it takes 15 milliseconds for our packet to get processed and sent

back to us, which does not scale with resources.

With the exception of the worst configuration, the average and median latency

consistently lies below 50 milliseconds, which meets system requirement 2, specified in §3.1.

However, there is variability causing the latency to go beyond 50 milliseconds, which could

impact player experience at times. With this consistency across different resources, we can

argue that Duplicraft meets latency requirements under low workloads with resources as

low as 1 vCPU and 2 GB of memory.

42

5.3 Experiment Results

5.3.3 Cold Start

Figure 5.3 shows the result of our cold start experiment and Figure 5.4 how much time

each segment takes during the cold start. We measure cold start as the delay between

the moment the proxy receives the user’s chat message which indicates the request to

swap worlds and the moment the proxy knows the container is ready to be connected to.

These two points measure the time the player has to wait before being able to play on the

instance. We split a cold start into several segments to analyze what parts of our system

scale well. In the second figure, we show the time it takes AWS to provision a container

as AWS, the time it takes our container to download the server jar and world as Jar and

World respectively, the time it takes to configure the server as Config, and the time it takes

the server to launch the world once everything is set up as Start. Since we are hosting the

proxy on the client machine, there are no significant network overheads between the client

sending the chat command packet and the proxy receiving it, which makes it intuitive

to measure the moment of receiving that packet in the proxy as the moment to start

measuring the delay caused by the cold start. The lowest amount of vCPU we test with

is half a vCPU and 1 GB of memory, which is very little for an MVE game server, but

as Fargate only allows certain combinations of vCPU units and memory, this allows us to

scale up by doubling the amount of vCPUs and Memory repeatedly. Once we reach the

maximum amount of vCPUs available by Fargate (8 GB), we test one more time with the

maximum amount of available memory (30 GB). Each configuration has been sampled 30

times, with a delay of three minutes in between each deployment to try to avoid using a

container that already exists and has not had its resources deallocated yet, which would

not be a cold start. We generate the samples by having a modified version of Duplicraft

automatically deploy and destroy Instances, then we analyze the logs on AWS CloudWatch

to determine how much time each segment took to complete.

The first figure shows that the cold start time scales with the amount of available

resources both in consistency and mean time (indicated by the white dots), which is con-

sistent with other people’s findings (23). However, there are a few noteworthy things to

observe about our data. The furthest outlier for each of our configurations is always to-

wards the right side of the box, meaning that cold starts can take considerably longer than

the expected mean time of each configuration. The median, indicated by the black vertical

line, in three configurations lies far to the left of the mean, showing that in these cases the

amount of time a cold start takes is generally either of two extremes, rather than any given

time between the minimum and maximum being equally likely to happen. We speculated

43

5. EVALUATION

that it indicates that some of the cold starts are not truly cold starts, where resources

are being reused between runs of the experiment. We tried to mitigate this possibility by

generating 10 more samples for the most extreme case of this phenomenon in our data, the

configuration of 2 vCPU combined with 4 GB of memory, by waiting 30 minutes between

each deployment. However, the results were highly similar, with the cold start time being

either close to 50 or 80 seconds, disproving our speculation. The configuration which uses

1GB of memory also stands out, because it is vastly more consistent than the others. We

were unable to determine exactly why this is the case.

The second figure helps us analyze the cold start time further, where we note that

every single segment in our control scales with the amount of resources we provide. This

does mean that with the state-of-the-art technology that AWS provides us with, it is still a

point of concern for our system because we cannot decrease the cold start time significantly

by improving the server launching procedure. We can note that our system will not be

able to consistently scale lower than 50 seconds regardless of the amount of resources we

start a container with. A study by Liu et al. (22) shows that more than 50 percent of

participants said it was unacceptable for a level to take longer than 50 seconds to load,

which indicates that our system’s load times are unacceptably long. However, this number

is an average across several types of games with different loading screens. They argue

that certain visual stimuli, such as progress bars, can make longer loading times more

acceptable. In Duplicraft, a player can still move around the Hub World as a container is

being deployed, meaning that loading times in Duplicraft are arguably acceptable. These

loading times could further be made acceptable by having potential activities for the player

in the Hub World to participate in as they wait for a container to be deployed.

If we combine these results with the results gathered in §5.3.1 and §5.3.2 we can

make the observation that, given the workload that we ran our experiments with, the

amount of resources allocated for the container should not be static. As pay-per-use is an

important benefit of serverless systems, we wish to avoid using more resources than we

need. A desirable situation would be to initially allocate a lot of resources to reduce cold

start times, and then allocate just enough resources during play to have stable performance

and latency during play, meaning we should scale down the amount of resources after the

instance has finished initializing.

Even though our data has these inconsistencies and exceptions, we can conclude that

the mean cold start time decreases as you scale the amount of provisioned resources up.

However, it does not scale linearly with the amount of resources provided and both of our

top two configurations have the same minimal cold start time (44 seconds) and a similar

44

5.3 Experiment Results

0.5 vCPU, 1GB

1 vCPU, 4GB

2 vCPU, 4GB

4 vCPU, 30GB
4 vCPU, 8GB

0

25

50

75

0 1 2 3 4 5 6 7 8 9 10 11 12
Minutes since container started

%
 o

f m
em

or
y

in
 u

se

Figure 5.5: Memory usage of each Instance over time, the dots indicate when batches of 10
players started joining each minute (up to 50).

range of cold start times. We can also conclude that the amount of variability in these

cold start times decreases as you scale up the amount of provisioned resources, with the

exception of the lowest amount of resources. These cold start times are long in comparison

to the existing system which instantly connects you to another instance, but are often able

to be masked because online minigames require the player requesting an instance to be

deployed to wait for others to join the minigame. The cold start is considered the main cost

of our system to relieve the server operator of a large amount of management overhead.

We can see in the second figure that from our third best configuration onward the cold

start time starts to scale significantly less efficiently with the amount of extra resources

we provide as we double the value, but see less than half of the performance gains that we

see going from the second worst configuration to the third worst. This makes 2 vCPU and

4 GB of memory an intuitive minimum to deploy our containers with.

5.3.4 Resource Efficiency

Figures 5.5 and 5.6 Show the results of our resource efficiency experiment. For this ex-

periment, we chose 5 of the instance configurations used in our performance experiment,

namely the minimum, maximum and three configurations in between. AWS CloudWatch

Container Insights only provided us with the average resource usage as the average over

a minute, thus it is difficult to draw concrete solutions from this data. However, we can

45

5. EVALUATION

0.5 vCPU, 1GB

1 vCPU, 4GB

2 vCPU, 4GB

4 vCPU, 30GB

4 vCPU, 8GB

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12
Minutes since container started

%
 o

f c
pu

 in
 u

se

Figure 5.6: CPU usage of each Instance over time, the dots indicate when batches of 10
players started joining each minute (up to 50).

still use it for insight and potential future research. For example, it is notable that the

moment bots start being deployed seemingly has no significant impact on either figure for

any configuration. We have no clear explanation for why this is the case, but it could be

interesting to see how the establishing of connections impacts CPU or memory usage. This

level of insight is currently masked by only having the average usage over a full minute

when connecting a new batch of bots generally takes place over two to three seconds.

Both figures show a clear division between the lowest resource configurations and

the highest ones. We can see that in both cases the configurations with the lower resources

are more resource efficient, indicating that during play under our workload, these are better

for resource efficiency but are not likely to scale well beyond this point. The main anomaly

that stands out is the 1 vCPU 4GB instance dropping its CPU usage by around 30%

at the end. This anomaly was caused by an issue where the Yardstick instance would

disconnect a portion of the bots at the end of the experiment, which only happened at

this configuration and persisted in an attempted re-run of the experiment. For this reason

we believe the actual CPU usage with 50 connected bots to be higher, but the average

accounting for a period of time where many bots were disconnected. We can also note that

both configurations with 4GB of memory have vastly different memory usage, for which

we could not find a proper explanation.

A notable result is that the memory usage in the configurations with higher re-

46

5.3 Experiment Results

sources remains stable and the resource usage gradually goes up as bots are deployed.

Contrary to the sporadic results of the lowest two configurations resource-wise, this meets

the expectations of our setup. As under our workload the bots are not exploring the world

or doing memory-intensive actions, we expect the memory usage to remain stable whilst

more player actions need to be processed and thus the CPU usage to go up. Even though

it is difficult to draw conclusive results from this data, we can use this to support that

performance stabilizes the more resources are allocated as was shown in Section 5.3.1.

These results also support the idea that dynamic resource allocation at runtime

would be a highly beneficial trait for a system like Duplicraft. If we were to deploy a

container with 2 vCPU and 4GB of memory as suggested in Section 5.3.3, we would have

poor memory and CPU usage under our workload. If we were able to dynamically scale

resources at runtime, we could far more efficiently use resources and best make use of the

pay-per-use model provided by serverless computing.

47

5. EVALUATION

48

6

Related Work

There is very limited research on the serverless potential of Minecraft-like games. Individual

projects for serverless hosting of multiplayer instances, such as Minecraft-OnDemand (24),

exist as a proof-of-concept without fully exploring the viability of serverless systems for

MVEs. A main work in this niche is Donkervliet, Trivedi, and Iosup (HotCloud-Perf,

2020) (25), which proposes a redesign of MVEs in which they become scalable serverless

systems and resource management and scheduling is managed by the cloud provider. How-

ever, this work does not implement nor test the viability of such a system in a real-world

scenario.

However, outside of gaming research in serverless systems is thriving. Promising uses

of serverless technology are being discovered in many fields of research. Examples of such

fields are distributed machine learning (26), video processing (27), big data processing (28)

and many more (29).

Container services are of great importance to this research. AWS Fargate was the

container orchestrator of choice, but many alternatives exist. A notable one that went

unused in this work is the open-source container orchestration system Kubernetes (30, 31).

Kubernetes provides a framework with many benefits to the user, important once being

the scaling of containerized applications and resilience. Other popular alternatives are

Microsoft’s Azure Container Instances(32) and Google’s Cloud Run (33), which provide

similar services to AWS Fargate.

49

6. RELATED WORK

50

7

Conclusion

Minecraft-like games are among the most popular online video games and continue to grow,

which means that related systems need to grow with it to support the needs of both the

players and server operators. However, integrating many different modern technologies into

a single system is not a trivial task. It requires us to carefully identify the existing system

components, understand what components we need to add to seamlessly string together

multiple different existing services and design each interaction carefully around them to

ensure it functions as expected. From this design we identify which system components are

critical for evaluating the performance and cost of our system, resulting in a functional pro-

totype that takes in many new considerations to solve unforeseen implementation-specific

issues. From this prototype we are able to run several experiments and analyze the cost of

our system, then determine it has qualities that improved upon existing systems, such as

fine-grained payment and less management overhead. We also acknowledge that the sys-

tem has downsides, namely the cold start times of containers and inconsistencies in latency.

An important finding which resulted from our experiments is that there are great benefits

that would result if resource allocation is done at runtime, as different tasks scale vastly

differently with the amount of resources provided given our experiment configuration.

7.1 Answering Research Questions

In §1.2 we distinguish three research questions we set out to answer.

RQ1: How to design a system for serverless multiplayer minigames in MVEs?

Through the AtLarge design framework, we learn that designs go through many

iterations before becoming something that can be implemented in a real environment.

51

7. CONCLUSION

It takes a deep understanding of the system you are working with and its components

to be able to coherently put them together. When you have not thought about every

system interaction, a design fails. This is of significant importance when designing

a serverless system in which many components often hosted on different platforms

each having their own infrastructure will work together to achieve a single goal. So

thorough consideration and repeated feedback are key for an iterative design to be

robust. After many iterations, we are able to present the design shown in §3.2.

RQ2: How to implement a prototype of such a design?

It is important to consider how to build up a prototype based on a design. Based on

the time constraints of the project it is important to identify critical design compo-

nents which have to be implemented to be able to evaluate your system. In our case,

that implies we have to either modify or leave out several components to implement

a functional prototype, which allows us to run experiments to evaluate our proto-

type. Based on the ranking of the most critical system components, we implement

them ordered from most to least critical, leaving out only the components which im-

plement functionalities that do not significantly affect how we evaluate our system,

such as the container manager. During the implementation of a prototype, we also

run into several unforeseen issues, such as switching worlds seamlessly. Preparing for

every issue is nearly impossible, so time management is very important to ensure a

functional prototype can be created.

RQ3: How to evaluate the design, through real-world experiments using the prototype?

Once the prototype is implemented and its limitations and capabilities are known,

we experiment on the system. To do so, it is highly important to identify the key

metrics which set your system apart from others or measure functionality. In our

case, we identify the four key metrics discussed in §5.2.2, because they measure if

our system performs according to our system requirements, and show the advantages

and disadvantages our system has compared to other services and existing systems.

After settling on the metrics to measure, we select the right tools to be able to run

experiments and evaluate their outcomes. Once the experiments are finished, it is

vital to analyze and generally visualize the data, because it gives deeper insight into

the results of the experiments.

52

7.2 Limitations and Future Work

7.2 Limitations and Future Work

There are still several flaws with our system, mainly in the prototype. The first suggested

improvement is to implement the missing components which did not transfer over from the

design into the prototype, with a modified game instance, container manager and managing

the interactions with the cloud service provider through the Hub World. This would allow

for a more complete prototype where several different players would be redirected to the

same container.

A second suggestion is to test more realistic workloads to accurately simulate sev-

eral different minigames being played, including more accurately simulating player actions

to have a more realistic workload than only walking around. This allows us to better

understand the performance and capabilities of such a system.

A third improvement is to experiment more thoroughly with latency. The mean

latency of Duplicraft instances is within our system requirement, but there are inconsis-

tencies that go above the requirement. More research on how to improve the latency during

play while using Duplicraft will give us more insight on ways to improve such a system.

Examples would be to experiment with deployment in different regions or trying to con-

nect from different networks. The way we experiment with latency in this work is also

not conclusive on which parameters affect latency the most for our system, so thorough

latency experiments give more insight on how to improve such a system.

A fourth point of interest is to develop a feature for open-source serverless platforms,

such as OpenWhisk, to dynamically scale resources at runtime. This would allow further

research into our main finding stating that certain tasks of the instance scale much better

than resources than others.

The final suggestion is to test the system with multiple cloud service providers and

see if there are significant changes in the four core metrics we evaluated, namely in the cold

start time, because we show that the scaling capabilities of our system’s cold start times

are mainly influenced by AWS. If there is a significant enough difference, it is worthwhile

to transfer the system over to another cloud service provider.

53

7. CONCLUSION

54

References

[1] Tom Wijman. The Games Market and Beyond in 2021: The

Year in Numbers | Newzoo. https://newzoo.com/insights/articles/

the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/, De-

cember 2021. (Accessed on 7 February 2022). 1

[2] J. Clement. Online gaming - statistics & facts | Statista. https://www.

statista.com/topics/1551/online-gaming/#dossierKeyfigures, May 2021. (Ac-

cessed on 7 February 2022). 1

[3] Chris Bailey, Elaine Pearson, Voula Gkatzidou, and Steve Green. Using

Video Games to Develop Social, Collaborative and Communication Skills.

June 2006. 1

[4] Jordan Sirani. Top 10 Best-Selling Video Games of

All Time - IGN. https://www.ign.com/articles/2019/04/19/

top-10-best-selling-video-games-of-all-time. (Accessed on 8 February

2022). 1

[5] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Mosci-

broda, Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook:

Enabling Large-Scale, High-Speed, Peer-to-Peer Games. SIGCOMM Comput.

Commun. Rev., 38(4), August 2008. 1

[6] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A

Distributed Architecture for Online Multiplayer Games. January 2006. 1

[7] Julien Gascon-Samson, Jörg Kienzle, and Bettina Kemme. DynFilter:

Limiting bandwidth of online games using adaptive pub/sub message fil-

tering. In 2015 International Workshop on Network and Systems Support for Games

(NetGames), 2015. 1

55

https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/
https://www.statista.com/topics/1551/online-gaming/#dossierKeyfigures
https://www.statista.com/topics/1551/online-gaming/#dossierKeyfigures
https://www.ign.com/articles/2019/04/19/top-10-best-selling-video-games-of-all-time
https://www.ign.com/articles/2019/04/19/top-10-best-selling-video-games-of-all-time

REFERENCES

[8] Raluca Diaconu, Joaquín Keller, and Mathieu Valero. Manycraft: Scal-

ing minecraft to millions. In 2013 12th Annual Workshop on Network and Systems

Support for Games (NetGames), 2013. 1

[9] Edward Hays. Most popular active Minecraft servers of 2021. https://www.

sportskeeda.com/minecraft/popular-active-minecraft-servers, June 2021.

(Accessed on 06/14/2022). 2

[10] Popular All Time Minecraft Servers - Minecraft Server List. https:

//minecraft-server-list.com/sort/PopularAllTime/. (Accessed on 06/14/2022).

2

[11] Video Game Industry Statistics, Trends and Data In 2022 | WePC.

https://www.wepc.com/news/video-game-statistics/, January 2022. (Accessed

on 06/14/2022). 3

[12] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin Van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Distributed

Systems and Ecosystems. CoRR, abs/1902.05416, 2019. 4

[13] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to

Master. Pearson Education, 1999. 5

[14] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. Yard-

stick: A Benchmark for Minecraft-like Services. In Proceedings of the 2019

ACM/SPEC International Conference on Performance Engineering, ICPE ’19, page

243–253, New York, NY, USA, 2019. Association for Computing Machinery. 5, 36

[15] About Spigot | SpigotMC - High Performance Minecraft. https://www.

spigotmc.org/wiki/about-spigot/. (Accessed on 06/18/2022). 8

[16] Canalys Newsroom - Global cloud services spend hits US$55.9 billion

in Q1 2022. https://canalys.com/newsroom/global-cloud-services-Q1-2022.

(Accessed on 06/18/2022). 9

[17] Mark Claypool and Kajal Claypool. Latency Can Kill: Precision and

Deadline in Online Games. In Proceedings of the First Annual ACM SIGMM

Conference on Multimedia Systems, MMSys ’10, page 215–222, New York, NY, USA,

2010. Association for Computing Machinery. 12

56

https://www.sportskeeda.com/minecraft/popular-active-minecraft-servers
https://www.sportskeeda.com/minecraft/popular-active-minecraft-servers
https://minecraft-server-list.com/sort/PopularAllTime/
https://minecraft-server-list.com/sort/PopularAllTime/
https://www.wepc.com/news/video-game-statistics/
http://arxiv.org/abs/1902.05416
http://arxiv.org/abs/1902.05416
https://books.google.nl/books?id=5wBQEp6ruIAC
https://books.google.nl/books?id=5wBQEp6ruIAC
https://doi.org/10.1145/3297663.3310307
https://doi.org/10.1145/3297663.3310307
https://www.spigotmc.org/wiki/about-spigot/
https://www.spigotmc.org/wiki/about-spigot/
https://canalys.com/newsroom/global-cloud-services-Q1-2022
https://doi.org/10.1145/1730836.1730863
https://doi.org/10.1145/1730836.1730863

REFERENCES

[18] Server/Requirements/Dedicated – Minecraft Wiki. https://minecraft.

fandom.com/wiki/Server/Requirements/Dedicated. (Accessed on 07/29/2022). 26

[19] itzg/minecraft-server - Docker Image | Docker Hub. https://hub.docker.

com/r/itzg/minecraft-server. (Accessed on 07/07/2022). 29

[20] Minecraft Protocol. https://wiki.vg/Protocol. (Accessed on 07/22/2022). 29

[21] TabTPS [1.8.8-1.19+] Show TPS, MSPT and more in the Tab menu | Spig-

otMC - High Performance Minecraft. https://www.spigotmc.org/resources/

tabtps-1-8-8-1-19-show-tps-mspt-and-more-in-the-tab-menu.82528/. (Ac-

cessed on 08/11/2022). 34

[22] Shengmei Liu, Federico Galbiati, Miles Gregg, Eren Eroglu, Atsuo

Kuwahara, James Scovell, and Mark Claypool. TECH REPORT: Wait-

ing to Play – Measuring Game Load Times and their Effects on Players.

April 2022. 38, 44

[23] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. Peeking Behind the Curtains of Serverless Platforms.

In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 133–146,

Boston, MA, July 2018. USENIX Association. 43

[24] doctorray117/minecraft-ondemand: Templates to deploy a serverless

Minecraft Server on demand in AWS. https://github.com/doctorray117/

minecraft-ondemand. (Accessed on 02/25/2023). 49

[25] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards Sup-

porting Millions of Users in Modifiable Virtual Environments by Redesign-

ing Minecraft-Like Games as Serverless Systems. In 12th USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 20). USENIX Association, July 2020.

49

[26] Hao Wang, Di Niu, and Baochun Li. Distributed Machine Learning with

a Serverless Architecture. In IEEE INFOCOM 2019 - IEEE Conference on Com-

puter Communications, pages 1288–1296, 2019. 49

[27] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

Sprocket: A Serverless Video Processing Framework. In Proceedings of the

57

https://minecraft.fandom.com/wiki/Server/Requirements/Dedicated
https://minecraft.fandom.com/wiki/Server/Requirements/Dedicated
https://hub.docker.com/r/itzg/minecraft-server
https://hub.docker.com/r/itzg/minecraft-server
https://wiki.vg/Protocol
https://www.spigotmc.org/resources/tabtps-1-8-8-1-19-show-tps-mspt-and-more-in-the-tab-menu.82528/
https://www.spigotmc.org/resources/tabtps-1-8-8-1-19-show-tps-mspt-and-more-in-the-tab-menu.82528/
https://ftp.cs.wpi.edu/pub/techreports/pdf/22-02.pdf
https://ftp.cs.wpi.edu/pub/techreports/pdf/22-02.pdf
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://github.com/doctorray117/minecraft-ondemand
https://github.com/doctorray117/minecraft-ondemand
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://doi.org/10.1145/3267809.3267815

REFERENCES

ACM Symposium on Cloud Computing, SoCC ’18, page 263–274, New York, NY, USA,

2018. Association for Computing Machinery. 49

[28] Jonatan Enes, Roberto R. Expósito, and Juan Touriño. Real-time re-

source scaling platform for Big Data workloads on serverless environments.

Future Generation Computer Systems, 105:361–379, 2020. 49

[29] Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. Rise of the

Planet of Serverless Computing: A Systematic Review, 2022. 49

[30] Gianluca Turin, Andrea Borgarelli, Simone Donetti, Einar Broch

Johnsen, Silvia Lizeth Tapia Tarifa, and Ferruccio Damiani. A Formal

Model of the Kubernetes Container Framework. In Tiziana Margaria and

Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verifica-

tion and Validation: Verification Principles, pages 558–577, Cham, 2020. Springer

International Publishing. 49

[31] Kubernetes. https://kubernetes.io/. (Accessed on 02/25/2023). 49

[32] Azure Container Instances | Microsoft Azure. https://azure.microsoft.

com/en-us/products/container-instances. (Accessed on 02/25/2023). 49

[33] Cloud Run: Container to production in seconds | Google Cloud. https:

//cloud.google.com/run. (Accessed on 02/25/2023). 49

58

https://www.sciencedirect.com/science/article/pii/S0167739X19310015
https://www.sciencedirect.com/science/article/pii/S0167739X19310015
https://arxiv.org/abs/2206.12275
https://arxiv.org/abs/2206.12275
https://kubernetes.io/
https://azure.microsoft.com/en-us/products/container-instances
https://azure.microsoft.com/en-us/products/container-instances
https://cloud.google.com/run
https://cloud.google.com/run

Appendix A

Experiment Configuration

In this chapter, we show the setup and configuration with which we ran the experiments.

Table A.1 shows the home setup the experiments were run on, which is a home

desktop computer connected to the internet using Ethernet.

Table A.2 shows the configuration of the Minecraft instance deployed to AWS.

Component Value
CPU Ryzen 7 3700x
GPU NVIDIA GeForce RTX 2070 Super
Memory 16 GB DDR 4 SDRAM 1060MHz
Bandwith 350 Mbps

Table A.1: Specifications of the at-home setup used to run experiments.

59

A. EXPERIMENT CONFIGURATION

Name Value
rcon.port 25575
enable-command-block true
gamemode 1
level-name world
generate-structures true
difficulty 0
network-compression-threshold 256
max-tick-time 60000
max-players 999
use-native-transport true
online-mode false
enable-status true
broadcast-rcon-to-ops true
view-distance 10
allow-nether true
server-port 25565
enable-rcon true
sync-chunk-writes true
op-permission-level 4
prevent-proxy-connections false
entity-broadcast-range-percentage 100
player-idle-timeout 0
force-gamemode false
hardcore false
white-list false
broadcast-console-to-ops true
spawn-npcs true
spawn-animals true
snooper-enabled true
function-permission-level 2
level-type DEFAULT
spawn-monsters true
enforce-whitelist false
spawn-protection 0
max-world-size 29999984

Table A.2: Server.properties of the deployed Minecraft instances, empty fields and some
default settings are omitted to save space.

60

Appendix B

Additional Graphs

In this chapter, we present two additional graphs which are omitted from Chapter 5.

Figure B.1 displays the mean times it takes for the server to process a game tick

with a more diverse amount of bots walking around.

Figure B.2 shows the highest measured times that it takes the server to process a

game tick with a more diverse amount of bots walking around.

61

B. ADDITIONAL GRAPHS

0.5 vCPU, 1 GB

1 vCPU, 2 GB

1 vCPU, 4 GB

2 vCPU, 4 GB

2 vCPU, 8 GB

4 vCPU, 30 GB

4 vCPU, 8 GB

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50
Number of bots

T
ic

k
du

ra
tio

n
[m

s]

Figure B.1: Average measured time it takes a server to process a game tick with bots walking
around.

0.5 vCPU, 1 GB

1 vCPU, 2 GB

1 vCPU, 4 GB

2 vCPU, 4 GB

2 vCPU, 8 GB

4 vCPU, 30 GB

4 vCPU, 8 GB

0

5

10

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40 45 50
Number of bots

T
ic

k
du

ra
tio

n
[m

s]

Figure B.2: Maximum measured time it takes a server to process a game tick with bots
walking around.

62

Appendix C

Sanity Checks

In this chapter, we show the results of our sanity check experiments that we ran to verify

the results gathered in §5.3.1. Figure C.1 shows the results of the experiment running

on a Minecraft instance running on a home computer with 8 GB of memory. Figure C.2

shows the results of the same experiment being run on a Duplicraft instance configured

with 1 vCPU and 4 GB of memory. This resource configuration was chosen as it was the

lowest amount of resources that got very consistently stable results in §5.3.1. For both

experiments, the server setup and method of collecting the MSPT data remains the same

as the performance experiment. We now use a single instance of Yardstick to deploy 10

bots every minute, which walk in a square with a diameter of 32 blocks around a coordinate

in the world.

The AWS sanity check confirms that the performance of up to 50 bots matches the

results we gathered in the original experiment. We note that after 90 bots have joined,

each time a new batch of 10 bots joins performance degrades significantly, which reassures

us that the good performance comes from the low workload, which after a large number

of bots (>100) the server starts to have trouble meeting performance constraints with.

However, after 130 bots we can observe an anomaly in our data, where the performance

improves the more bots join the instance. Through investigation we find that a single

yardstick instance fails to function once the workload becomes too large for it to handle,

causing the bots to stop moving and thus greatly decreasing the strain they place on the

server.

We also verified the consistent performance by deploying bots on a home computer,

up to 30 bots we can indeed see that our original experiments seem to be correct, where the

performance remains very stable. However, from 40 bots and upwards we observe this to

not be the case. Through testing we find that while running a Minecraft server instance, a

63

C. SANITY CHECKS

0

50

100

150

0 10 20 30 40 50
Number of bots

T
ic

k
du

ra
tio

n
[m

s]

Figure C.1: The amount of time it takes for the instance to process a game tick with
increasing amounts of bots walking around on a home computer.

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Number of bots

T
ic

k
du

ra
tio

n
[m

s]

Figure C.2: The amount of time it takes for the instance to process a game tick with
increasing amounts of bots walking around on an Duplicraft instance with 1 vCPU and 4 GB
of memory.

64

Yardstick instance simulating bots, a Minecraft game instance and the Duplicraft instance

on a single home computer, the machine fails to perform well and starts being unable to

provide the computing resources each program needs. This explains why the performance of

our home instance starts to have performance issues significantly earlier than the Duplicraft

instance.

65

	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Plagiarism Declaration

	2 Background
	2.1 Minecraft-like Games
	2.2 Serverless Platforms

	3 Design of serverless non-persistent instances of MVEs
	3.1 System Requirements
	3.2 Design Overview
	3.3 Workflows of Instance Creation and Destruction
	3.4 Design Detail of the Harness and Container Manager
	3.5 Design Decisions

	4 Duplicraft: serverless non-persistent Minecraft instances
	4.1 Duplicraft Overview
	4.2 Selection of Cloud Services
	4.3 Game and Resource Configuration
	4.4 Low-Level Description of how Duplicraft Works
	4.5 Implementation Alternatives

	5 Evaluation
	5.1 Experimental Environment
	5.2 Experiment Design
	5.3 Experiment Results

	6 Related Work
	7 Conclusion
	7.1 Answering Research Questions
	7.2 Limitations and Future Work

	References
	A Experiment Configuration
	B Additional Graphs
	C Sanity Checks

