DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,

@m SECOND CYCLE, 30 CREDITS
o T Ry

FKTHS

STOCKHOLM, SWEDEN 2021

VETENSKAP
28 OCH KONST 2%

s

Scaling the Simulation Core of
Modifiable Virtual Environments
with Serverless Computing

JAVIER RON ARTEAGA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Scaling the Simulation Core
of Modifiable Virtual
Environments with Serverless
Computing

JAVIER RON ARTEAGA

Master’'s Programme, Software Engineering of Distributed
Systems, 120 credits

Date: September 20, 2021

Supervisor: Nicolas Harrand

Examiner: Martin Monperrus

School of Electrical Engineering and Computer Science

Host organization: Massivizing Computer Systems, VU Amsterdam
Host supervisor: Jesse Donkervliet / Alexandru losup

Swedish title: Skalning av simuleringskérnan fér modifierbara
virtuella miljéer.

Scaling the Simulation Core of Modifiable Virtual Environments
with Serverless Computing / Skalning av simuleringskarnan fér
modifierbara virtuella miljéer.

© 2021 Javier Ron Arteaga

Abstract | i

Abstract

Modifiable Virtual Environments (MVESs) are widely popular, especially in
the video game industry. An example application of MVEs is the game
Minecraft, which has a player count reaching into the hundreds of millions.
But despite the huge number of users, MVE applications have significant
limitations regarding scalability. MVEs are generally deployed in client-server
architectures, where servers can support, at a maximum, a few hundreds
of clients simultaneously. This scalability issue severely hinders interaction
between users and communities. Previous work in MVE scalability has been
focused on scaling out servers using approaches that focus on user actions,
or moving away from client-server architectures, specifically in the form
of peer-to-peer or hybrid architectures. Yet, distribution through serverless
computing has only recently been proposed, and no attempt at designing
or gathering experimental data has been presented. Therefore, this thesis
proposes a model for distributing the simulation process of MVEs and a
prototype implementing said model over a serverless computing platform, with
the main objective of increasing their scalability. The distribution model is
specific to MVEs and exploits its design properties. We also present a system
design to take advantage of said model, which consists of two additions to a
traditional MVC client-server architecture: a client-side module, and a cloud
module. Experimental results show that the proposed distribution model,
applied in a serverless computing setting, is a viable approach for scaling MVE
simulations. Furthermore, regarding performance and scalability, results show
a meaningful increase in the volume of users and simulated constructs that the
system can correctly handle.

ii | Abstract

Sammanfattning | iii

Sammanfattning

Modifierbara virtuella miljoer (MVE) ar mycket populédra, sarskilt i video-
spelsindustrin. En exempelapplikation av MVE ér spelet Minecraft, som har
ett antal spelare uppemot hundratals miljoner. Men trots det stora antalet
anviandare, MVE applikationer har betydande begrinsningar nér det géller
skalbarhet. MVE anvinds vanligtvis i klient-server arkitekturer, dar servrar
maximalt kan stodja ndgra hundratals klienter samtidigt. Detta skalbarhets-
problem hindrar allvarligt interaktionen mellan anvindare och communityn.
Tidigare arbete inom MVE-skalbarhet har fokuserat pd att skala ut servrar
med hjilp av tillvigagingssitt som fokuserar pd anviandaratgérder, eller att
flytta ifrdn klient-server arkitekturer, specifikt i formen av peer-to-peer eller
hybridarkitekturer. And4 har distribution genom serverlds datoranvindning
bara nyligen foreslagits, och inget forsok med design eller insamling av
experimentella data har presenterats. Darfor foresldr detta arbete en modell
for distribution av simuleringsprocessen av MVE och en prototyp som
implementerar modellen 6ver en serverlos datorplattform, med huvudsyftet
att 0ka deras skalbarhet. Distributionsmodellen &r specifik for MVE och
utnyttjar dess designegenskaper. Vi presenterar ocksa en systemdesign for att
dra nytta av modellen, som bestér av tva tillagg till en traditionell MVC-klient-
serverarkitektur: en modul pd klientsidan och en molnmodul. Experimentella
resultat visar att den foreslagna distributionsmodellen, som tillimpas med
serverlos datoranvindning, dr ett hallbart tillvigagéngssitt for att skala MVE
simuleringar. Nir det géller prestanda och skalbarhet visar resultaten dessutom
en meningsfull 6kning av anvindarvolym och simulerade konstruktioner som
systemet kan hantera korrekt.

iv| Sammanfattning

CONTENTS |v

Contents

1 Introduction 1
1.1 Problem Statement 2
1.2 Research Questions 3
1.3 Contributions 4
1.4 Outline 5
2 Background 7
2.1 Modifiable Virtual Environments 7
2.2 Serverless Computing 9
2.3 Scalability Techniques in Distributed Systems 10
3 Related Work in MVE Scalability 13
3.1 Distributed Architectures 13
3.2 Cloud Resource Efficiency 14
3.3 Serverless Deployments 15
4 Modelling the MVE simulation process 17
4.1 Environment Simulation 17
4.2 Simulated Constructs’ Model 19
4.3 Simulated Constructs’ Properties 23
44 Summary e e e 24
S System Design and Implementation 27
5.1 Requirements 27
5.2 SystemDesign Lo 29
5.3 Implementation, 32
6 Experimental Protocol 37
6.1 Experiment Design 38

6.2 ExperimentSetup 41

vi| Contents

7 Experimental Results
7.1 Serverless Simulation Latency
7.2 Update Step Times
7.3 MVE Server CPU Consumption
7.4 MVE Server RAM Consumption

8 Discussion
8.1 Distributing MVE Simulations
8.2 Applicability of Serverless Computing to MVEs
8.3 Limitations oo
8.4 Ethics and Sustainability

9 Conclusions
9.1 Recapitulation Lo
9.2 Future work

A Additional MVE Server RAM Consumption Figure

References

43
43
44
46
48

49
49
50
51
51

53
53
55

56

57

Introduction | 1

Chapter 1

Introduction

Hundreds of millions of people play video games daily. In 2020, the gaming
industry generated a revenue of over $175 billion [1], breaking records in a
unique growth year, boosted by COVID-19 related lockdowns that propelled
interest in video gaming worldwide.

With more than 200 million copies sold, and more than 130 million active
monthly players, Minecraft is one of the most successful games of all time [2].
In Minecraft, players get together to explore, mine, and build in a virtual world.
Players use Minecraft for a variety of generally beneficial purposes, such as
entertainment, education [3], activism [4], and social events [5]. Minecraft,
and other similar sandbox games are able to achieve this by providing users
access to a Modifiable Virtual Environment (MVE).

Virtual Environments are defined as organizations of sensory information
that transfer perceptions from a synthetic to a non-synthetic environment.
Specifically, Immersive Virtual Environments, refer to Virtual Environments
that aim to create in the user a psychological state, in which they perceive
themselves to exist within the Virtual Environment [6]. Modifiable Virtual
Environments are a subset of Immersive Virtual Environments, where users
are able to modify the environment’s objects and parts, create new content
and interact with it through programs [7].

Yet, despite having a gigantic player-base, sandbox games’ scalability is
limited. These games support their vast number of players by relying on the
replication of isolated game-instances that do not communicate.

Particular in-game building blocks, allow players to create pseudo-digital-
systems. By building and connecting logic gates and digital components,
players can create a variety of devices such as digital computers and automated
farms and factories. For example, Minecraft supports a feature called

2| Introduction

Redstone, which gives access to players to a Turing complete language and the
capabilities associated with it, but also a very broad design space that players
can use to place a disproportionate workload on the system.

This work is part of a vision for large-scale MVEs presented in [7],
and will contribute to the effort of realizing that vision, by addressing the
research challenges regarding serverless environment simulation. The use
of a serverless platform enables the transfer of MVE simulations from fixed
hardware resources to on-demand, elastic environments, with potentially high
scalability gains.

Enabling larger-scale MVEs has a direct impact in the way these are
built and used. By increasing limits of MVEs, a greater space for
applications is created (i.e., bigger worlds with vast numbers of users
interacting simultaneously), which will most certainly be explored by the MVE
community.

1.1 Problem Statement

Generally, MVE instances can support only 200-300 simultaneous players [8],
and unfortunately, the use of resource-intensive features can compound this
scalability challenge. MVEs typically update their state in update steps. The
continuous update of the MVE state is called MVE simulation or simply
simulation. The rate at which the world is updated is known as the update
rate. A reduction of the update rate can cause time slowing down inside the
virtual environment and other undesirable effects, resulting in a poor quality of
experience, and ultimately in users quitting the environment. To prevent this,
the MVE must complete each update step in time to start the next update step.

Maintaining a high and stable update rate is a challenging requirement
to fulfill for MVEs. In contrast to traditional, non-modifiable virtual environ-
ments, where the means to shape the virtual world are not present, MVEs allow
users to build and activate arrangements of arbitrary complexity, significantly
increasing and changing the computational load on the environment.

Existing state-of-the-art scalability techniques for large-scale MVE such
as online games, e.g., interest management and world partitioning, are
designed to reduce the workload created by player actions. However, the
workload created by MVEs is largely independent from user behavior, and
instead, follows a deterministic set of rules. This derives in some degree of
predictability that can be leveraged, with the use of well-known mechanisms
(e.g. caching, ahead-of-time computation) to increase the maximum number
of concurrent users in MVEs.

1.2

Introduction | 3

Research Questions

The aim of this work is to improve the scalability of MVEs through use

serverless computing. This platform permits the design, adaptation, and

evaluation of both novel and existing scalability techniques. Such techniques

include computational offloading, speculative execution, and result caching.
Formally,

RQ1

RQ2

How can MVE simulations be expressed in a model compatible with
distributed computing?

Within MVEs, simulations are commonplace, and such a model can
improve our ability to reason about their properties. The model
also assists in determining if MVE simulations can be expressed as
a workload that can be partitioned in sub-tasks and executed in a
distributed environment.

Creating a model of MVE simulations is a challenging task, because
despite the existence of a number of clear and well known categories
(e.g., physics, user actions), MVEs provide players with the tools
to build and modify the world, resulting in the space of possible
simulations being extremely broad. For example, there might exist
instances of simulations that are so inter-connected that partition would
be impractical; and, on the other hand, simulations that are so simple
that distribution would add unnecessary overhead. Thus, we benefit
from a model that simplifies these complex range of simulations, and
helps us to identify which improvements can be tried, and where.

How can serverless computing be used in MVE simulations to
improve scalability?

Improving the scalability of MVEs allows their large number of users to
share the environment together. No systems for large-scale simulation
of MVE:s currently exist, and it is not known which design, algorithms,
and mechanisms work well for this use-case.

It is important to note that MVEs are subject to performance constraints,
and that the proposed solutions must contemplate the fact that known
scalability techniques may introduce intolerable side-effects (e.g.,
eventual consistency, increased latency) in the context of MVESs’

4 | Introduction

RQ3

expected quality of experience. In MVEs and in games in general, the
trade-off between consistency and performance is particularly difficult
to manage, since these need to both have high performance and be
largely consistent.

While MVE simulations by themselves have some degree of pre-
dictability, these are sometimes directed by human behavior which is
unpredictable, thus affecting the degree of accuracy with which we can
predict their behavior.

How to evaluate the effectiveness of using serverless computing in
MVE simulations?

By performing real-world experiments with a prototype, we produce
new knowledge about the feasibility and effectiveness of our approach.
Because no standardized evaluation method for distributed systems
exists, this requires designing and conducting the experiments,
and analyzing their results. Apart from comparisons focused on
performance and scalability gains, these results also provide insights
which are useful finding representative system configurations and
workloads.

Enabling larger-scale MVEs has a direct impact in the way these are

built

and used. By increasing limits of MVEs, a greater space for

applications is created (i.e. bigger worlds with a higher number of players
interacting simultaneously), which will most certainly be explored by the MVE
community.

1.3

Contributions

This thesis makes the following contributions to academic literature:

A novel model of MVE simulations which is compatible with distributed
computing. It can be used as a guideline to offload MVE simulations in
a variety of distributed environments, as it singles out computational
bottlenecks that can be partitioned and processed concurrently.

A system design and prototype implementation built on top a client-
server MVE architecture. It uses serverless computing as the concrete
means of distributing MVE simulations. The design proposes, in

Introduction | 5

addition, the use of speculative execution and caching, to further
enhance performance.

* An experiment design, results, and analysis comparing a base MVE
implementation against our prototype, in terms of performance,
resource consumption, and scalability differences. The prototype also
aims to indirectly validate our model of MVE simulations, and the
suitability of a serverless approach.

1.4 Outline

The remainder of this document is structured as follows: Chapter 2 presents
relevant concepts necessary to the thesis development, Chapter 3 explores
the current state of the art in regards of Virtual Environments’ scalability.
Chapter 4 describes in detail the MVE simulation process, and details how
it can be modelled in a distributed-computing-consistent manner. Chapter 5
depicts a system design applying the proposed model, serverless computing,
and other scalability enhancements. Chapter 6 and Chapter 7 present an
experiment to evaluate the proposed system and its results, respectively.
Chapter 8 discusses how the work presented throughout the thesis fits in the
context of current literature, describe limitations, and ethical considerations.
Finally, Chapter 9 summarizes the thesis and traces a path for future research
work.

6 | Introduction

Background | 7

Chapter 2

Background

This chapter provides an overview of Modifiable Virtual Environments, with a
focus on their architecture and main components. It also delves into serverless
computing, and introduces the scalability techniques explored further ahead
in the work.

2.1 Modifiable Virtual Environments

A Modifiable Virtual Environment (MVE) is a real-time, online, multi-user
environment which allows its users to modify its objects and parts, create
new content and interact with it through programs [7]. MVEs commonly
use a client-server architecture where each user connects through a client
to a remote server. The client processes are responsible for handling the
input from the users and rendering their relevant subset of the environment.
Correspondingly, the server process keeps the environment’s state, and also
performs all environment simulations: the continuous update of said state over
time.

Figure 2.1 provides a general overview of how an MVE is deployed. The
user interacts with a client (1) by performing specific actions defined by the
MVE’s particular design. These actions are sent to the server through a
networking (2) component, and used to direct the virtual world simulation
(3). The results of the simulation update the in-memory representation of the
environment, which we call world state @ Concurrently, the world state is
continuously broadcasted through the network component towards the clients,
which render the up-to-date world state. The server can also have a persistent
storage (5) component which purpose is to save snapshots of the world state
for backup or sharing purposes.

8| Background

MVE Server

—)[Networking

Ao

4
World Simulation MVE State
- Z Environment 5
; Simulation)
R Persistent storage
Entity Simulation
Server configuration
\§ J

Figure 2.1 — MVE architecture general overview.

An interesting property of MVEs is that the world state is expressed as a set
of spaces, where each space may hold an elemental object. We refer to these
elemental objects as simulated elements. Furthermore, simulated elements can
interact between each other creating altogether greater, composite objects with
defined behavior. This is illustrated for simplicity in a two-dimensional space
on Figure 2.2, however the same property holds for a three-dimensional space.
The nature of how simulated elements can be arranged within the MVE state
is combinatorial with respect to the number of different types of simulated
elements.

MVE State

D Empty space

D Simulated element

Figure 2.2 — A spatial representation of a two-dimensional MVE State.

Significant examples of applications of MVEs are sandbox video games,
where simulated elements take the form of blocks which the players can
destroy, create, combine, and interact with, to modify the environment.
Figure 2.3 shows how different games render their state through their clients.

Background | 9

Figure 2.3 — Screen captures of Starbound, Minecraft, and Terraria games.
All of which provide a modifiable virtual environment.

2.2 Serverless Computing

Serverless computing is a cloud computing execution model, where instead
of thinking of applications as collections of servers, they are defined as a set
of functions with access to a common data storage [9]. This model relieves
developers of tasks related to capacity planning, configuration, management,
maintenance, operating and scaling of infrastructure and runtimes; leaving
these task entirely to the responsibility of the cloud provider.

The two main advantages of a serverless deployment are:

* Managed fine-grained elasticity, which means that applications scale
dynamically by allocating and de-allocating resources as the workload
changes, and in a completely transparent manner from the developers’
perspective.

* A pricing model which charges developers only for the CPU time and
memory used by their functions, as opposed to allocating servers or
virtual machines that will likely incur in idle time. To contextualize,
AWS EC2! virtual machine usage is metered and billed by the second,
while AWS Lambda? does so by the millisecond, allowing a much higher
resolution and thus a higher cost-effectiveness.

The popularity of serverless computing has risen significantly since
the introduction of function-as-a-service (FaaS) offering AWS Lambda in
2014 [10], and currently all major cloud providers offer a similar option
(e.g. Azure Functions®, Google Cloud Functions*, IBM Cloud Functions®).
Since then serverless computing has become a viable alternative for the

Thttps://aws.amazon.com/ec2/
Zhttps://aws.amazon.com/lambda/
3https://azure.microsoft.com/en-us/services/functions/
“https://cloud.google.com/functions/
Shttps://www.ibm.com/cloud/functions

10| Background

implementation of a broad range of application domains including: real-
time collaboration and analytics, urban and industrial management systems,
scientific computing, machine learning, video processing, graph processing,
and IoT [11].

2.3 Scalability Techniques in Distributed
Systems

This section discusses three well-known scalability-improving techniques
that are explored later in the work, as part of the proposed system design,
albeit here, these are introduced in the general context of applications within
computer science.

2.3.1 Computational Offloading

Computational offloading refers to the transfer of resource-intensive com-
putation tasks to different execution environments [12]. Its main purpose
is to overcome processing power limitations, as well as to leverage parallel
computing for compatible workloads. This approach has the advantage that for
any job, resources can be horizontally scaled as needed. While it is possible to
offload tasks locally, (e.g. to other cores of the same processor, or a GPU), a
single local system has a limited number of resources, a problem that is solved
by outsourcing from a remote cluster or from the cloud.

In the context of distributed systems, offloading is often related to the use
distributed computing systems such as MapReduce [13] or Apache Spark [14],
which are designed to process high-volume datasets. These systems work by
partitioning datasets into smaller, more manageable subsets that are processed
in separate concurrent tasks. The partial results of said tasks are then
aggregated into a complete result corresponding to the whole dataset. This
approach makes possible to process petabyte-scale datasets in a time range of
minutes [15].

From this method, several design and implementation challenges arise,
related to optimally dividing and distributing the tasks. One pertinent
challenge is managing fask granularity, which measures the amount of
computation involved in each task [16]. Task granularity is closely related to
the completion time of the main process, as naturally, coarser-grained tasks
take more time to complete than finer-grained tasks. Fine-grained tasks,
however, may become inefficient as there may not be enough resources to

Background | 11

process a high volume of them in parallel, and can cause higher overhead times
due to synchronization.

2.3.2 Speculative Execution

Speculative execution is a performance improvement technique used in
multiple areas of computer science. It describes the concept of executing tasks
before being certain that they need to be executed [17]. This performance gain
is possible because hardware is able to carry out several tasks at the same time,
and therefore, tasks can be speculatively started earlier than the evaluation
of their condition, given that there are resources available. If eventually,
the results of the tasks are found to be not necessary, they are discarded.
Speculative execution is often found in many layers of software and hardware
and can take many different forms depending on the context. The following is
a list of specific examples where speculative execution is used:

e In CPU pipelines, branch prediction is used to fetch and execute
instructions before being certain of which branch of the code is the
one to be executed. If correct prediction rates are high enough to
outweigh misprediction penalties, the CPU will have a better overall
performance [18]. Another speculative task performed by CPUs is
cache prefetching, which moves data and instructions in advance from
main memory to cache memory. This allows the CPU to take advantage
of faster access times of cache memory versus main memory [19]. The
mechanisms that decide the specific data or instructions to be prefetched
can be implemented either in hardware or software.

* In transactional systems such as databases, optimistic concurrency
control is a technique that allows multiple transactions to be executed
concurrently, even though it is unknown if write conflicts will force them
to rollback. Optimistic concurrency control is preferred in systems with
low write-contention, where other methods such as locks substantially
reduce the potential concurrency quota [20].

* In distributed computing, task duplication is commonly used as a
mechanism to increase fault tolerance and suppress straggler node
delays [21] Given a set of concurrent tasks and one of such tasks has
been detected to be delayed, another instance of the same task will be
spawned. The result of the task instance that returns first is used. This
provides the main process with an efficient way to work around tasks
executed on overloaded or crashed nodes.

12| Background

2.3.3 Caching

Caching is a technique focused on improving systems’ performance, namely
latency and throughput metrics [22, 23]. It consists of storing data, with the
intention of serving future requests for that same data faster. This is achieved
by placing data caches both physically closer to the clients and in faster-access
memory. A cache consist of set of entries, each entry contains an identifier
and associated data. When a client performs a request, it will first trigger a
query in the cache searching for the requested data. If the data is found in the
cache, the request is immediately served; we call this event a cache hit. 1f the
data is not found on the cache, we call this event a cache miss.

Performance of caches is usually measured by their hit rate, which
refers to the proportion of requests that result in a cache hit. Cache
performance is highly dependent on both cache configuration and target
workload. Cache configuration entails eviction, admission and write policies
which should fit the target workload to obtain a maximum of performance
gains. In a distributed systems environment, caches are found at several
layers, e.g. fast key-value stores to save shared computation results or proxy
nodes and are intended to reduce network requests’ latency. In distributed
computing, frameworks like Apache Spark allow developers to explicitly
cache intermediate computation results in order for them to be reused in further
computation steps [14].

Related Work in MVE Scalability | 13

Chapter 3
Related Work in MVE Scalability

This section summarizes the work done found in literature about: (1)
increasing scalability of virtual environments and games through novel
deployments and architectures; and (2) the adoption of serverless computing in
different application domains, where traditional architectures are predominant.

3.1 Distributed Architectures

Distributed architectures for virtual environments have been proposed in
literature as an approach to scale the environment in both terms of size and user
count. Diaconu et al. [24] present Kiwano, a scalable distributed infrastructure
for virtual worlds is presented. The approach of this work is to divide the
virtual world in non-overlapping zones, where each of these is managed by
one server. Zone servers are organized in a peer-to-peer network, and are able
to share their border content with neighboring zones. Animportant property of
Kiwano is that zones are dynamic, this means that a load-balancing algorithm
is executed to prevent overloading a single zone. This approach, however
only considers movement of objects as the events happening inside the virtual
world. The same authors also show Manycraft [25], which implements a server
on top of Kiwano, and is compatible with Minecraft clients. Manycraft allows
for a higher number of concurrent players compared to a Minecraft server, at
the cost of modifiability, this means, Manycraft worlds are static and cannot
be changed by the players.

Lake et al. [26] define virtual environment simulator-centric architectures,
where all simulation and communication processes are executed on a single
server. In the same work it is argued that this kind of architectures
do not scale, regardless of the capacity of the server. Therefore, they

14 | Related Work in MVE Scalability

propose the Distributed Graph Scene architecture, where the storage of state
and simulation tasks are moved to distributed actors, allowing the virtual
environment to scale with the addition of hardware.

Horn et al. [27] propose dividing virtual environments in three individually
administered parts: (1) space servers, which store state, (2) object hosts, which
execute simulated objects’ code, and (3) content delivery networks, which
offload communication of static content. Although the experiments do not
present a comparison with other architectures in terms of scalability, they
show that the system handles a high volume of interactions between simulated
objects. Extending on this idea, Elfizar et al. [28] present a model where each
object is managed by its own simulation process, allowing for even broader
distribution.

Going beyond distribution of the server process, Vilardell et al. [29] state
the need of gaming-aware distribution mechanisms and propose a hybrid
architecture, where the game world is divided into a main game which is
hosted in a client-server configuration; and other auxiliary games which are
hosted by its participants in a peer-to-peer configuration. The results show that
compared to a traditional client-server only architecture, lower latencies are
achieved in average. This also comes at the cost of lower reliability and higher
probabilities of failure, however, the authors argue that the scalability provided
by the peer-to-peer addition amply compensates for this disadvantage.

In the realm of mobile games, Anand et al. [30] introduce the concept
of gamelets. Gamelets are nodes within a micro-cloud infrastructure which
provide support to otherwise resource limited mobile devices. Using a
combination of techniques such as zone distribution, distributed rendering,
adaptive streaming, and peer-to-peer configurations, gamelets are able to assist
in the execution of resource demanding games and data transmission to mobile
devices. Gamelets are evaluated on bandwidth consumption, processing
efficiency and user perception parameters achieving mixed results.

3.2 Cloud Resource Efficiency

The cloud plays a central role in supporting a high volume of users through
horizontal scaling, and proper management of cloud resources is key to achieve
maximum cost-efficiency. This is not different in virtual environments such
as Massively Multiplayer Online Games (MMOs). Nae et al. [31] propose a
cloud-based ecosystem for MMOs, in which the interaction of business actors
(resource providers, game operators, game providers and clients) is regulated
through Service Level Agreements. This allows game providers to lease cloud

Related Work in MVE Scalability | 15

resources dynamically and on-demand, while at the same time guaranteeing
all Quality of Service requirements. Their results show a 60% decrease in
operational costs compared to the use of a static infrastructure approach.

Gao et al. [32] take the same concept further and a similar approach to
reduce over-provisioning is described, but with a focus on energy efficiency.
They show how better provisioning policies can be found through the use of
a genetic algorithm. The results show that a 54.5% energy saving can be
achieved versus other state-of-the-art provisioning policies.

3.3 Serverless Deployments

Using serverless architectures to deploy virtual environments has been only
recently proposed and has still many design and implementation challenges
to be addressed, as described by Donkervliet et al. [7]. On a more hands-on
approach, Liew [33] presents a proof of concept with a port of the videogame
DOOM! to the Fastly Compute @Edge? platform. The original source of
the game is split and modified so that the rendering and input handling is
performed in a web browser, and the computation of each update step is done
in a serverless function call. This work is presented as an experiment to
showcase the capabilities of the Compute @Edge platform, and does not seek
to achieve any performance improvement; however, it is successful in showing
the feasibility of building games and virtual environments in a serverless
architecture.

Moving traditional deployments to serverless deployments in other
application domains has also been explored in the literature. While not directly
linked to MVEs, the criteria underneath the deployment transition are similar,
meaning that patterns and procedures may be reproduced.

Toader et al. [34] present Graphless, a serverless graph processing system.
In contrast to existing graph processing systems that focus on performance,
Graphless tries to be accessible to a broader user base. The serverless
approach allows users to focus on small and stateless functions, and an easier
architectural deployment. The experimental results show that in some specific
cases Graphless can provide performance and operational costs similar to
state-of-the-art graph processing systems.

Fouladi et al. [35] describe ExCamera, a system for low-latency video
processing. Within the scope of the work, two contributions are made: (1)

Thttps://bethesda.net/en/store/product/DO1GNGPCBGO01
2https://www.fastly.com/products/edge-compute/serverless

16 | Related Work in MVE Scalability

a framework to run general-purpose parallel computations on commercial
serverless environments; and (2) a video encoder designed for fine-grained
parallelism, and implemented using a functional programming style that
splits computation into thousands of sub-tasks. The experiments show
that ExCamera achieved comparable compression to other video processing
systems, at the same quality level relative to the original uncompressed video,
and was in some cases up to 300x faster.

Modelling the MVE simulation process |17

Chapter 4

Modelling the MVE simulation
process

At the core of virtual environments, we seek to imitate and manipulate real-
world physical phenomena, these tasks are impossible to achieve without
emulating the passage of time. This concept is what we refer to as simulation:
the continuous update of the virtual environment performed in discrete steps
at a regular frequency. Within an MVE that is deployed in a client-server
architecture (Figure 2.1), the simulation process is performed by the MVE
server, which computes each of the simulation steps (also referred to as update
steps or ticks).

The following sections explore an approach to describe the MVE
simulation process in a way that: (1) is compatible with distributed computing,
and (2) enables scalability enhancements. It also introduces the concept
of simulated constructs, and notation used to represent MVE simulation-
related concepts. The ideas presented here are used throughout the work
and specifically, play a key role in directing the system design proposed in
Chapter 5

4.1 Environment Simulation

As noted in Chapter 2 the MVE server is responsible for the operation of,
among others, three components: the MVE state, the environment simulation
and the networking components. These three components continuously
interact as part of the MVE simulation. Figure 4.1 shows, in a sequence of
steps, how they interact in a simulation loop: (1) The networking component
receives input from clients and modifies the MVE state with external changes,

18 | Modelling the MVE simulation process

if any. (2) The MVE state is read by the simulation component, and (3) the
simulation component applies the simulation rules on the MVE state and
updates it. Finally, (4) the new MVE state is transmitted to the clients through
the networking component. Each instance of the simulation loop is effectively
an update step or tick. The update rate or tick rate is defined as the number
of updates that are performed within a time unit, and ideally, the update rate
should be stable and frequent enough to maintain a continuous-time illusion.

MVE Server

Clients . (4]
<-- Networking
(1]

e - . \ O
World Simulation :[MVE State]
o

Environment
Simulation

Entity Simulation

Figure 4.1 — MVE simulation loop.

Since the world state is a collection of simulated elements, updating
the world state means updating the elements that constitute it. The amount
of elements that are actively updated is determined by a configuration
policy, often linked to spatial proximity to a user’s avatar. To do so, the
world simulation component traverses the set of elements and performs the
corresponding computation of their next state. This continuous next-state
computation for each element is what allows the server process to imitate
natural phenomena such as physics, as well as to execute any arbitrary kind
of time-dependant feature.

From an abstract perspective, the world state and the changes applied to it
each tick, can be expressed as a collection of sets and functions:

Given the world state S at any point in time ¢, it can be defined as a set of
simulated elements:

St={el el e, ... et} (i)
The networking component applies external changes as a function N to
the world state S

N(S") =5 (Step 1) (ii)

Modelling the MVE simulation process |19

If there are no changes to the world state S introduced by users, /V becomes
effectively an identity function, and thus S* will be equal to S*

From there, the simulation component applies a function U to the world
state, which computes the world state for the next time step:

U(st) = gttt (Step 3) (iii)

Overall, we can express each simulation step as a function STM applied to
the world state S at time ¢, to compute the world state at time ¢ + 1.

U(N(SY) = SIM(S?) = §t+1 (iv)

Equivalently, the simulation step can be presented as applying the function
to each simulated element contained in the world state:

SIM(S") = {SIM (e}), SIM (e}), SIM (eb), ..., SIM (e!)} (v)

Which is equivalent to computing the next state for each simulated element:

SIM(S") = {ebtt, el ettt ... ett! (vi)

r n

Expressing the MVE simulation as a collection of sets and functions is
the first step towards providing a distributed computing-compatible model.
A naive approach can be devised from (v): mapping the simulation of
single elements to one distributed task. However, this produces one further
complication: the required amount of tasks might be unreasonably high, as
shown in Figure 4.2 which depicts a concrete MVE instance. This instance
is constituted by a number of simulated elements that reaches the order of
hundreds of thousands. The next section describes a solution to this problem.

4.2 Simulated Constructs’ Model

A property of simulated elements is that they can interact with and between
each other, as configured by the simulation rules. This allows for the existence
of simulated constructs, this is, sets of simulated elements that interact with
each other to provide —as a whole— a single, coherent and defined behavior.
This behavior emerges naturally as the constituting simulated elements follow
the simulation rules and respond to user input.

As a concrete example, a working instance of the LC3 computer [36] was

20 | Modelling the MVE simulation process

Figure 4.2 — A working quad-core computer built in Minecraft'.

created by a member of the Minecraft community?. In this instance, modular
components are built separately and connected. Such components include
RAM, ALU, bus, and other basic components of computers. Figure 4.3 depicts
a contraption designed to hold one bit of RAM. In this example each depicted
block is an instance of a simulated element, and the RAM unit as a whole is
an instance of a simulated construct.

Figure 4.3 — A simulated construct example in Minecraft. A RAM module
used in the construction of a working computer.

21.C3 in Minecraft: https://youtu.be/ecBFyjtjqvQ
2Quad-core copmuter: https://youtu.be/yobsIg3YL_U

Modelling the MVE simulation process | 21

From a more general standpoint, Figure 4.4 illustrates how a simulated
construct can be created in a sequence of successive world states. Step 1
shows an arbitrary initial configuration, where the elements "1" and "3" do not
interact with each other. Step 2 shows the user placing a simulated element
in an available empty space. In Step 3, through a pre-configured rule of
spatial proximity a simulated construct is formed. In that final state, the three
simulated objects interact with each other, and from the user’s perspective their
behavior can be described as of that of a single entity.

A A A

| S U R

l H

1 2 1] 2] 3 | 1=—2=—3 |
1. A user avatar and two 2. The user places the new 3. The simulated construct
simulated objects, [Tl and [3]. simulated object [2]. iAlis created.

R Useravatar | | Empty space [| Simulated object i _iSimulated construct

Figure 4.4 — Sequence of MVE world states where a simulated construct is
created.

In relation the sets and functions definitions in Section 4.1, simulated
construct can also be represented as such. Thus, the simulated construct C'
at time ¢ becomes a set of simulated elements:

C'={ep, et eb,....el} (i)

From there, the complete MVE state S can be expressed as the union of:
all simulated constructs, and the set R of all remaining elements that do not
constitute a simulated construct:

St={ci,crCE L CE R (i)

Likewise, the simulation function SIM can be applied to simulated
constructs to compute the next state S*':

SIM(S") = {SIM(C}), SIM(C}),...,SIM(CY), SIM(R")} (iii)

Simulated Constructs may have other relevant properties, depending on
simulation rules and the elements that make up a construct. For example,

22 | Modelling the MVE simulation process

the interaction between them can result in a high number of computations
in a single update step. An example of this is when elements subscribe to
notifications to adjacent elements’ changes, triggering —in the worst case— a
cascade of computations that propagates exponentially as shown in Figure 4.5.
Some interactions can also lead to inefficiency by repetition of computations,
specially in constructs with looping behavior or when multiple instances of
the same construct exist, as shown in Figure 4.6.

S -> S > S
Step 1 Step 2 Step 3
State propagation State propagation in

—> Next step origin next step

Figure 4.5 — Sequence of steps depicting element state change propagation
within a simulated construct.

State A State B State A State B
> -> -> > ...
Step 1 Step 2 Step 3 Step 4
9 Next step Identical previous

state

Figure 4.6 — Sequence of steps depicting a simulated construct with looping
behavior. The colors represent any simulated element’s non-specific internal
state.

Modelling the MVE simulation process | 23

4.3 Simulated Constructs’ Properties

To objectively describe and quantify simulated constructs within an MVE,
we characterize them by using a comprehensive set of properties. These are
selected from a broad spectrum, comprising from well-known systems-level
properties to top-level design properties. These properties are classified in
three main categories: (1) System-level properties which relate to performance
and resource consumption from a system’s perspective; (2) Application-level
properties which relate to MVE implementation and technical specifics; and
(3) High-level properties related to behavior that emerges from the MVE’s
rules and design.

By observing and measuring the values of these properties, it is
possible to correlate distinct configurations to the overall MVE performance.
Furthermore, high-level properties may be used to recognize patterns and
direct what changes may be appropriate given the goal of improving the
system’s scalability.

System-level properties

We determine the consumption of hardware resources to be a relevant property
of simulated constructs. Measuring this allows us to establish a relation from
different configurations of simulated constructs to a well-understood domain
using metrics that are common to evaluate all software. Within these metrics
we specifically name: CPU load, memory consumption, both in the process of
simulation and holding state; and network bandwidth usage.

Application-level properties

Application-level properties of simulated constructs are directly related and
constrained by the specific implementation of the MVE. Consequently, some
application-level properties are directly inherited from the MVE, such as the
geometric properties which describe how the shapes and positions of elements
are represented and computed within the virtual environment. Another
inherited property is the update rate, that equivalently describes how many
times is the construct updated per unit of time. We have described simulated
constructs as collections of simulated elements, therefore a relevant property
is the number of elements that constitute them; we refer to this property as the
construct’s size.

24 | Modelling the MVE simulation process

High-level properties

Simulated constructs may have some properties that arise from the design
space provided by the MVE, i.e. interactions between different simulated
elements, taking into account all their different configurations. This properties
are based on the concept of emergence [37], this is behavior that is not directly
described by preset rules, but rather by higher-level interaction of elements and
components of a system. For simulated constructs we identify two relevant
high-level properties. Simulated constructs may be deterministic, this is, any
future state of the construct can be computed from the simulation rules, and
does not depend on any random events or state-altering input from any external
entity. Simulated constructs can have periodic behavior, which means that
a set of its states will recur at intervals over time. High-level properties of
simulated constructs are of particular interest since this kind of behavior can
be used to direct specific enhancements on the MVE implementation. For
example, determinism means that the simulation of a construct and the update
rate can be decoupled, supporting ahead-of-time simulation of constructs.
Likewise, periodicity implies that the same state transitions have to be applied
periodically to some simulated constructs, providing a suitable use case of a
cache to reduce repeated computations of state transitions.

4.4 Summary

MVE simulation is a process that takes place within the MVE server process. It
is tasked with periodically updating the state of simulated elements according
to predefined simulation rules, and transmitting the new overall state of the
environment to the users. Inside the environment, a set of simulated elements
can be arranged into a simulated construct, meaning that for a user it may
appear as if this set of elements is a single coherent entity. The design space of
simulated constructs can be very broad and lead to configurations that require
a high number of computations to be completed in each update step.

Simulated constructs can be described by: properties directly related to
their execution: system-level properties; properties intrinsic to the MVE
where these are instanced: application-level properties; and properties
that arise from the MVE design and element interaction rules: high-level
properties. Table 4.1 summarizes the described properties of simulated
constructs.

Modelling the MVE simulation process | 25

System-level Unit of measurement
CPU load percentage
Memory (simulation) bytes
Memory (state) bytes
Network usage packets per second
Application-level Value
Spatial dimensions 2D/3D
Geometry voxel/polygon -based
Size # of components
Update rate updates per second
High-level properties Value
Periodicity Yes/No
Determinism Yes/No

Table 4.1 — Summary of identified properties.

We argue that a model of the MVE simulation based on simulated
constructs is well suited for serverless computing and enables overall
scalability enhancement of the MVE. The reasoning for this claim is that
the simulation of each construct can be offloaded in a serverless function
invocation, therefore, freeing resources to handle a higher volume of simulated
elements or users. This topic is further explored in the Experimental Design
(Chapter 6) and Results (Chapter 7) chapters.

26 | Modelling the MVE simulation process

System Design and Implementation | 27

Chapter 5

System Design
and Implementation

This chapter presents a system design whose main goal is to leverage serverless
computing to increase scalability of MVEs. Therefore, it builds on top of two
previously detailed notions: simulated constructs defined in Section 4.2, and
a set of scalability techniques presented in Section 2.3. Simulated constructs
are used as a model to break down the MVE simulation process into smaller
tasks compatible with serverless computing. Computational offloading and
speculative execution are achieved by performing the update of simulated
constructs in serverless functions; and caching is used on the server to store the
serverless functions results for reuse. The following sections describe in detail
the system’s requirements, and the design proposed to meet them. Finally, it
delves into the specific platform and tools used to implement the system.

5.1 Requirements

Consistent with the research questions, the system’s requirements are directly
related to the use of serverless computing to increase scalability of MVEs.
Concretely, this means building on top of a client-server MVE implementation
to increase the volume of clients served concurrently by the MVE server.

Regarding performance and quality of service, MVEs have tight
constraints on update rate and latency as perceived by clients, with the update
rate being of special significance for the proposed system.

As stated in Section 4.1, the update step time (or tick time) is the time it
takes the system to perform a complete simulation loop. In the same section,
we defined the update rate as the number of simulation steps completed per

28 | System Design and Implementation

time unit. Given that the system has a target update rate, the update step
time becomes directly constrained. From the target update rate, we derive
a maximum update step time that acts as a limit: if update steps take more
time to complete than this limit, then the target update rate is not met, and the
performance constraint violated. The maximum update step time is defined
by the following equivalence:

1

UpdateStepTime, =
PAALESTED M imax UpdateRate

target

As an example, given an MVE server with a target update rate of 20
updates per second, the update step time cannot be any higher than 50ms.
Consequently, If the update step time is higher than 50ms, we consider the
MVE server to be server overloaded.

Regarding serverless computing, it must be noted that the latency of
serverless function invocations cannot be predicted and may have a degree
of variability[38]. As stated previously, MVE servers must fulfill a target
update rate in order to provide the expected quality of experience. Therefore,
if the actual update rate of an MVE depends on the uncertain return time of
a serverless function, then the update rate also becomes uncertain. In other
words, if the serverless functions take more than to complete the maximum
update step time, then the target update time constraint would not be met. The
proposed system design must take care of this consideration, and provide an
alternative to complete the update steps, even when the serverless functions
have not yet returned.

With respect to the system’s features, in addition to the MVE simulation
process described in Section 4.1, the system should implement a mechanism
to interface with a serverless computing provider and make use of it to enhance
performance and increase scalability. Such mechanism can be described as a
sequence of steps:

1. Partition the MVE simulation workload into smaller tasks.

2. Offload the simulation of the generated tasks to serverless functions.
3. Store the returned results of the serverless functions for reuse.

4. Synchronize the results into the main MVE simulation.

Each of these steps can be performed by a different component of the
system which are detailed in the following section.

System Design and Implementation | 29

5.2 System Design

Broadly, the proposed system can be depicted as an MVE platform with
an interface to a serverless computing provider, where parts of the MVE
simulation process can be offloaded. The design builds on top of a traditional
MVE client-server architecture (Figure 2.1), and consists of the addition of
two modules, as shown in Figure 5.1: A module embedded in the MVE server
process @ and a module hosted in a cloud services provider .

The server-side module is responsible for: accessing and partitioning the
MVE state, interfacing with the cloud services, and transmitting the data to the
external simulation function. It also listens for incoming computation results
to be stored and applied into the world state. The cloud module is composed
by the simulation function, which contains the MVE simulation rules.

MVE Server)

MVE State

-
Server-Side Distribution Module Cloud Services Provider

7l Simulation Function

A&

Clients

MVE State
Subset Selector

B
World Simulation Cloud Services
Interface
Environment
Simulation
State Store
B
State Synchronizer Data flow E—
| S — Simulation
Component

)

Figure 5.1 — Design of an MVE with serverless simulation capabilities.

The server side-module has by four components. These components
handle MVE state access and modification, storage of the pre-computed state
subsets, and communication with the cloud module. Figure 5.1 also shows
the interactions between its components as well as interaction with the cloud
module and MVE state component. The following sections detail each of the
system’s components and their role in fulfilling the system’s requirements.

30 | System Design and Implementation

5.2.1 Workload Partitioning

To enable the use of serverless functions we rely on dividing the MVE state
into self-contained subsets. This is done by the MVE state subset selector
component (1), and the division follows a model relying in the simulated
construct concept, implying that each partition contains one simulated
construct. Ideally, the resulting partitioning results in one partition for
each simulated construct, and a remainder partition where there are not any
simulated constructs. Doing this, the MVE state is effectively divided as noted
on Section 4.2:

St={C{,Ct,....Ct R} (Section 4.2 ii)

5.2.2 Simulation Offloading and Ahead-of-time Simu-
lation

This step relies on two components being in place: (2) a serverless function
where the simulation will be performed, and @ a method to invoke the
serverless function from the MVE server. The serverless function receives
a payload that consists of a serialized MVE state subset, and applies the
simulation rules to it. The result of the invocation is the next state of said
subset according to the simulation rules:

SIM(C}) = Ctt?

From there, if we assume that no external changes will be applied to the
MVE state subset, the simulation rules can be applied an indefinite number
of times within the same serverless function’s environment. If we define this
number as n, then we can compute a set of states for the next n updates. The
consecutive application of the simulation rules can be denoted as S™ where n
is the number of updates to be computed, and its result is as follows:

SIM™(C}) = {C{T, Cit?, Ci? .. ity

It is relevant to note that when computing several steps at once, the
obtained result is effectively speculative and obtained ahead-of-time, since it
is unknown if C; will be modified by an external entity in between any of the
computed states.

System Design and Implementation | 31

5.2.3 Simulation Caching

To speed up the simulation loop and reuse previously computed states, we set
up a cache (4) to store the results generated by the serverless function. It is built
as a key-value store, where the keys are unique identifiers for each state subset
C; and the values are the results S™(C}), returned by the serverless function.

Entry = (C;, {C{™,C*2, 012, ... CFY)

There is one main use case where caching is useful in this context. Given
a simulated construct C! that is placed in the MVE state such that it is similar
to C]’-L, and therefore:

SIM™(C}) = SIM™(C}")

If the simulation for the first construct has already been computed, it can
be reused for the second construct.

The same reasoning applies a simulated construct that behaves periodi-
cally, such that C! is equal to C{*", and therefore the computed states can be
reused for the same construct.

SIM™(C}) = SIM™(CI*m)

The cache entries are invalidated if a modification on the simulated
constructs occurs, such that it causes divergence from the pre-computed states.
To detect modifications, a hash function H(CY) is used. To illustrate, given
that the current state of C; is C{"™™ and the synchronization mechanism is
set to apply C'™, it first has to check if H(CS"™™) is equal H(C?). If these
values are not equal, the system determines that the behavior of the construct
has diverged and S™(C?) is discarded from the cache. A new computation
Sm(Csurent) s then triggered for C;. The use of a hash function is preferred
for state comparisons given that: (1) hashes for the pre-computed states can
also be pre-computed in the serverless function environment, and (2) the
comparison of hash values is inherently faster than the comparison of whole
states of a simulated construct.

5.2.4 State Synchronization

A mechanism to synchronize the computation offloaded to serverless function
is needed @, this is, the results returning from the serverless function
invocations are consolidated back into the main MVE state at the appropriate

32| System Design and Implementation

time.

The selected solution consists of 2 steps: First, since the simulation of the
remainder set R is not offloaded, its elements are updated according to the
usual MVE simulation rules. Then, the system iterates over all the simulated
constructs defined at the partitioning, and either: (1) changes its state to the
corresponding next state stored in the cache, or (2) if not present in the cache,
invoke the serverless function to compute its next states. If we differentiate
the SIM function in SIMoe, and STMerveress depending on the execution
environment, the complete simulation step can be expressed as:

S]M(St) = {S[Mserverless(cot)a R S]MSCI‘VCI‘ICSS(CTf/)j S[jwlocal(Rt)} (51)

Where the results of STMerveress may be available on the cache.

5.3 Implementation

This section describes the system’s implementation. As directed by the system
design, A server-side module, as part of Opencraft'; and a cloud module which
uses Amazon Web Servies (AWS)?.

5.3.1 Server-side Module

We implement the server-side module as part of the Opencraft project® which
is a platform for research in massivising Minecraft-like networked virtual
environments. The Opencraft project develops and maintains a homonymous
MVE server: Opencraft. Opencraft is an open source implementation of a
Minecraft server, written in Java and fully compatible with Minecraft clients.
Opencraft is mainly used as a research sandbox to implement novel features
and conduct related experiments[8, 39]. The following is a list of noteworthy
problems solved while implementing the designed components into Opencraft.

Latency hiding

According to our requirements, as described in Section 5.1, an update step
cannot take more than 50ms, however latencies from the serverless function

Thttps://github.com/atlarge-research/opencraft
2https://aws.amazon.com/
3https://atlarge-research.com/opencraft/

System Design and Implementation | 33

can be higher than that limit. To overcome this problem all offloaded
constructs must be locally simulated while waiting for the serverless functions
to return. Figure 5.2 shows a timeline, where offloaded simulation is invoked
for state subset C; at time ¢, however local simulation is still needed while
waiting for the offloaded result to arrive. Once it arrives, local simulation is
stopped for C; and the pre-computed values are used instead to update the next
states for C;.

Local
t+1 1+2 1+3 t+4 t+5 1+6
i i i i i i
t
Ci
Offloaded
t+1 1+2 1+3 t+4 t+5 1+6 7 1+8 1+9 t+n
Ci Ci Ci Ci Ci Ci Ci Ci Ci cee Ci
I:‘ Discarded state At t+6
I:‘ Used state serverless function
returns all states

Figure 5.2 — Simulation asynchronous wait.

MVE state partition with cuboidal bounds

To select a subset from the MVE state we make use of the geometry properties
of the Opencraft MVE. In Opencraft simulated elements are arranged as a set
of voxels, this is, the elements’ positions are represented as discrete values
in a regular, rectangular three-dimensional grid. Figure 5.3 illustrates in a
two-dimensional space, how two anchor points, "A" and "B", can describe a
rectangular bounding area. Likewise, to select a rectangular bounding volume
in Opencraft we extend the same method to a three-dimensional space.

MVE state serialization

Serializing the MVE state subsets prior to transmission to and from the
serverless function has a noticeable impact in the systems’ performance.
While the AWS SDK provides the means to easily serialize Java objects as
JSON objects, this proves to be quite inefficient and does not adhere to low
latency constraints. To overcome this limitation, we encode elements as an
array of 6 integers that describe the constituting elements’ positions, types,
and internal states. Encoding elements in this manner reduces the payload
sent to the serverless function by orders of magnitude as shown in Table 5.1.

34 | System Design and Implementation

Empty space

Simulated element

7™ Selected rectangular
i area

|:| Anchor points

Figure 5.3 — Two-dimensional representation of MVE state subset selection
strategy.

JSON encoding Custom encoding
{

"state" :{

"x":119,

"y":61,

"z":-48,

"typeId":3,

"data": { 119,61,-48,3,0,0

"type":3,

"data":0

}
b
"attachedToFace" : "DOWN"
}

Table 5.1 — Encoding a simulated element, JSON vs. custom encoding.

5.3.2 Cloud Module

For the implementation of the cloud module we rely on Amazon Web Services,
specifically on AWS Lambda. As discussed in Section 2.2, AWS Lambda is
a FaaS offering with support for multiple programming languages, including
Java. A serverless function that follows the system design is uploaded to the
platform. The MVE simulation rules are available to the function through a
Maven dependency.

System Design and Implementation | 35

Loop detection

To exploit the periodicity property of simulated constructs a loop detection
algorithm is executed after computing the configured number of state in the
serverless function, if periodical behavior is detected then the resulting set of
pre-computed states is truncated, and the result flagged as periodical. Loop
detection allows the pre-computed states to be valid for an indefinite time, and
also reduces the size of the serverless function response.

A B C A B C A B Ahead-of-time

simulation result

A A A A A A A A 1-segment

A B A B A B A B 2-segment

A B C A B C A B 3-segment

Ij Single state Segment

Figure 5.4 — Loop detection procedure.

Loop detection is implemented as follows: After computing all requested
states, these are assigned a value by using a hash function, we then operate over
this list of hash values. Figure 5.4 Shows the procedure: we select a segment
of the list, ranging from positions 0 to n (n-segment), and then create a new
list containing only successive instances of this segment, we then compare the
new list to the original list. If they match, then only the segment is returned as
the result. The algorithm is executed from n = 0 to n = length/2, or until a
looped segment is found.

36 | System Design and Implementation

Experimental Protocol | 37

Chapter 6

Experimental Protocol

This chapter shows an experimental approach which purpose is to test the
capabilities of the system presented in Chapter 5. To accomplish this, the
system is compared against an MVE environment deployed in a traditional
client-server architecture, in this case, an unmodified version of Opencraft.

Broadly, the approach consists on two sets of experiment configurations.
These are respectively intended to provide data on the suitability of the
system, and the actual effects on the system’s performance and scalability.
Table 6.1 shows an overview of the relevant metrics and parameters used.
Set 1 is aimed at validating the use of serverless computing, provided that
the remote functions execute within reasonable latency. Set 2 is aimed
at measuring specific performance and scalability differences between the
serverless-enhanced and base MVE implementations.

Set Parameters Metrics # of configurations

1 SC size Serverless func. latency 3

Simultan. MVE clients Update step time
2 Number of SCs CPU usage 6
RAM usage

Table 6.1 — Overview of experiment configurations. (SC) stands for simulated
construct

The following sections describe the details on how the experiments are
carried out, which metrics are used to compare both systems, and the
environment where the experiments are executed.

38 | Experimental Protocol

6.1 Experiment Design

The experiments presented in this section aim to provide insight on the
research questions RQ2 and RQ3, therefore, are related to measuring the
suitability and performance variations of a serverless-enhanced MVE. The
results produced by the experiments are also used to indirectly validate
the simulated constructs model, presented in Chapter 4 and directly related
to RQ3.

6.1.1 Parameters

To produce relevant experiment configurations, the workload size and
partitioning is modified through the following parameters: Number of
simulated constructs, Simulated construct size, Number of MVE users,
Offloading. These will be adjusted between every experiment configuration to
produce relevant and comparable metrics. Other workload-related parameters
and properties from simulated constructs are kept constant through the
experiment, e.g., all simulated constructs used in the experiment have the
determinism and periodic behavior properties.
The following is a description of each selected parameter:

Number of simulated constructs The amount of simulated constructs present
in the MVE state. Assuming that each construct is different, then this
parameter also indicates the number of serverless functions that that are
invoked in each experiment configuration.

Simulated construct size This parameter is taken directly from the size
property of simulated constructs. This is, the size of simulated
constructs is given by the number of simulated elements that constitute
it. While the exact unit in which the size of simulated constructs is
measured is the amount of constituent simulated elements, an alternate
scale (S,M,L) is provided to emphasize the difference in scale, rather
than specific numeric differences.

Number of MVE users The amount of MVE clients connected to the server
and receiving the updates caused by MVE simulation. This parameter
is dynamic, this means that it increments from 0 to n over time within
the experiment execution.

Serverless-enhanced Indicates if the experiment is performed in the
serverless-enhanced or base MVE implementations.

Experimental Protocol | 39

Table 6.2 describes the values of the parameters used for the experiment;
each experiment configuration is a combination of these.

Parameter Values
50
Number of simulated constructs 100
200
252 (S)
Simulated construct size 484 (M)
2015 (L)
Number of MVE users 0-100
Serverless-enhanced Yes
No

Table 6.2 — Parameter values.

While there are other properties and configurable values that can be
used as experimental parameters, these will remain static for all experiment
configurations. Table 6.3 shows these values.

Parameter Value

Target update rate 20 updates per second
Maximum update step time 50 ms

Ahead-of-time updates 50

Table 6.3 — Static values used throughout all experiment configurations.

6.1.2 Configurations

Experiment configurations are divided into two subsets: One subset is used
to assess how suitable the serverless-enhanced system is and under what
circumstances; while the other subset relates to performance and scalability
variations. To measure the suitability of our solution, we determine if the
results of the offloaded simulations fulfill the latency and update step time
constraints. Since the latency of the offloaded computation is dependent on
the size of the simulated constructs, we variate this size to determine if and
under what configurations are the constraints met. Table 6.4 shows the selected
experiment configurations for suitability.

40 | Experimental Protocol

of constructs Construct size # of users Serverless-enhanced
50 {S,M, L} 100 yes

Table 6.4 — Experiment: Suitability of serverless computing.

When measuring the performance and scalability of MVEs, two
dimensions need to be taken into account. The MVE server is said to have
better scalability if it can handle either: a higher volume of users, or a higher
volume of simulated elements. To achieve this we variate the number of
constructs in our system per configuration, and execute said configurations
both in the serverless-enhanced and base MVE implementations. Table 6.5
shows the selected experiment configurations for performance and scalability.

of constructs Construct size # of users Serverless-enhanced

{50, 100, 200} S 100 yes
{50, 100, 200} S 100 no

Table 6.5 — Experiment: Performance and scalability variation.

6.1.3 Metrics

From the proposed experiment configurations, three relevant metrics are kept
to track the latency of serverless function calls, update step time, and CPU
consumption. Latency is measured to determine if offloaded and ahead-of-
time computations are performed quickly enough, so that latency and step
time constrains are met. A difference between configurations with smaller and
larger constructs is expected, as larger constructs take longer to be simulated.
Regarding scalability variance, our system is measured in 2 dimensions: (1)
the number of users that the server can correctly handle given a fixed number
of simulations, and (2) the number of simulated elements that the server can
correctly handle given a fixed number of users. We consider any number of
simulations or users to be correctly handled if the update rate of the server
does not drop from the predefined threshold of 20 updates per second, or
equivalently it does not take more than 50ms to execute an update step. It
is also relevant to measure CPU and RAM consumption values, as it provides
insight on hardware resources usage. Table 6.6 lists the selected metrics and
their unit of measurement.

Experimental Protocol | 41

Metric Unit of measurement

Serverless function latency milliseconds (ms)

Update step time milliseconds (ms)
CPU consumption percentage (%)
RAM consumption percentage (%)

Table 6.6 — Experiment: metrics.

6.2 Experiment Setup

The experiments are performed on an environment that is representative of a
production deployment. To achieve this we use the DAS-5' computer, which
allows us to spawn powerful nodes suitable for executing an MVE server, or
multiple instances of MVE clients. The following table describes the hardware
specifications of the avalible nodes on the DAS-5 computer.

Parameter Value

of nodes 5

CPU 2x Intel® Xeon® Processor E5-2630 v3
Memory 64GB

Network connection Gigabit Ethernet + InfiniBand

Table 6.7 — DAS-5 node specifications.

To operate our system we use a scriptable Minecraft CLI client?, the
scripted behavior is set to create the configured amount of simulated constructs
and to trigger their offloaded execution. To simulate user workloads we
use Yardstick [8], a tool that allows us to emulate the connection and basic
interaction of multiple MVE clients. We use in the experiment several
Yardstick instances, with a maximum of 50 clients per node. The following is
the disposition of nodes on DAS-5 and their usage.

Regarding the cloud environment, AWS Lambda also provides config-
urable values, from which the following were selected, as to not constrain any
computation within the serverless function.

'https://www.cs.vu.nl/das5/
Zhttps://github.com/ORelio/Minecraft-Console-Client

42 | Experimental Protocol

Node index Usage

0 Opencraft server
1 Minecraft CLI scriptable client
2,34 Yardstick instance / 50 users per node

Table 6.8 — DAS-5 node usage.

Parameter Value

Runtime Java 8
Memory 1GB
Timeout 300 seconds

Table 6.9 — AWS lambda configuration values.

Experimental Results | 43

Chapter 7

Experimental Results

This chapter presents the results of the experiments described in Chapter 6.
The selected metrics are used to focus the findings around the applicability
of serverless computing in MVE simulations, and performance variations
between the serverless-enhanced and base implementations. The following
list describes the experiments’ findings.

F1 Offloading of MVE simulations in serverless functions is achieved with
reasonable latency.

F2 The serverless-enabled system can support a higher volume of clients and
MVE simulations without overloading.

F3 The serverless enabled system prevents CPU bottlenecks otherwise caused
by high volumes of simulated constructs.

F4 RAM used in the MVE server to handle simulated constructs is lower in
the serverless-enabled system.

In the following sections we describe in detail how each finding is
interpreted from the experimental data.

7.1 Serverless Simulation Latency

The results of this experiment show that the latency of simulations computed
through our serverless approach can be reasonable (Finding F1). Figure 7.1
shows the response time of the simulation serverless function calls. The
horizontal axis is a logarithmic measure of time, and the vertical axis
displays the three size categories defined in the previous chapter. There

44 | Experimental Results

is a latency threshold set by the combination of update time and ahead-
of-time updates requested to the function. For any of the states contained
in the function response to be timely, it must return before the threshold
has expired. This threshold is represented by the vertical dashed line at
1500ms. As expected, the response time increases with the simulated
construct size. Regarding the latency constraints, small and medium simulated
constructs return in a reasonable amount of time, this is, before the latency
threshold. For large constructs all responses arrive much later, making the
pre-computed states usable only if the determinism and periodicity properties
hold permanently. Furthermore, the simulation of /arge constructs is affected
by higher variability, which is against the goal of achieving stable update times.

1
+ ! : [e) [e]
g S po : S o
i 1
S : M o dfoo o
w .
oS M odp o : ; ; : : : .
gv I 0 200 400 600 800 1000 1200 1400
2 i
1
& L : H F———
T T T 1 T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 7.1 — Latency for varying simulated construct size. The dashed line at
2500ms indicates the maximum acceptable latency threshold.

In Table 7.1 request and response payload sizes of the serverless functions
are compared. From these values it can be observed that, although the
simulations take more time to be performed, the difference in network usage
is not drastic.

Simulated construct size Request payload size Response payload size

S 4.2 KB 33 KB
M 8.5 KB 34.1 KB
L 33.7KB 134.9 KB

Table 7.1 — Serverless function request and response payload sizes.

7.2 Update Step Times

The update step times achieved by moving simulations off the MVE server are
significantly lower (Finding F2), even with a higher count of simultaneous

Experimental Results | 45

clients connected. Figure 7.2 shows comparisons of update step times
between the proposed system and the normal implementation. The vertical
axis represents the time it takes to complete an update step, measured in
milliseconds. The bottom horizontal axis, is the runtime of the experiment,
measured in seconds. At t = 0Oms, the MVE state already contains the
configured number of simulated constructs. The top horizontal axis describes
the number of connected MVE clients there are at that point in time.

The trend described by the lines follows intuition: with higher numbers
of simulated constructs and MVE clients, it takes longer to complete an
update step. The horizontal dotted line at 50 ms is the configured maximum
update step time. This means that both the 100- and 200-simulated
constructs base configurations overload the server, it is also observed that
these two configurations cause overload or near-overload, even when there
are no MVE clients connected. Furthermore, the performance of the 200-
simulated construct base configuration is degraded to the point of crashing the
simulation thread. It can also be observed that the three serverless-enhanced
configurations are able to handle the workload without overloading the server.
Comparing the base and serverless-enhanced configurations with the same
number of simulated constructs (which share the same color in the figure),
it can be seen that the serverless-enhanced solution performs better, achieving
lower update step times in all three instances. Comparing specifically the 50-
base and 200-serverless configurations, both with update step times below the
threshold, an improvement of at least 4x can be observed in reference to the
number of supported simulated constructs.

Regarding specific features of the curves of Figure 7.2, we can observe that
serverless-enhanced configurations have lower variability, this is, the update
step times are more stable throughout the experimental runs. There are also
spikes in each curve, which are caused by a periodic process of saving the
current MVE state to persistent storage. During the this save period, the
simulation and saving processes go through synchronization actions to ensure
consistency. Finally, at the beginning of the best-performing curves, there is
a dip where update step times drop significantly. This drop is caused by the
disconnection of the MVE client which was responsible of configuring all the
simulated constructs. After the disconnection of this client, the MVE server
is not serving any clients, and thus the simulation loop does not involve any
networking, resulting in lower update step times.

46 | Experimental Results

Number of connected clients
0 20 40 60 80 100

—¥— 50sc-serverless
¥+ 50sc-base
—8— 100sc-serverless
100 - @ 100sc-base
—A— 200sc-serverless

120 A

A+ 200sc-base

80 A

Update time [ms]

0 50 100 150 200 250
Runtime [s]

Figure 7.2 — Update step time vs Runtime/Client count.

7.3 MVE Server CPU Consumption

Figure 7.3 shows comparisons of CPU consumption on the same configura-
tions used in Figure 7.2. The vertical axis measures CPU as a percentage value
normalized by the maximum amount of CPU usage registered. The bottom
horizontal axis, is the runtime of the experiment, measured in seconds. At
t = O[ms], the MVE state already contains the configured number of simulated
constructs. The top horizontal axis describes the number of connected MVE
clients there are at the point in time. In the figure, the lines individually follow
a correlation between CPU usage and number of connected MVE clients.
Both serverless and base implementation follow a trend with respect to the
amount of simulated constructs. In base configurations, CPU usage drops as
the amount of simulated constructs increases to 200, this can be attributed to
the execution of the MVE server process being throttled due to the high volume
of constructs that need simulation, and not meeting the target update rate.
Conversely, in serverless configurations CPU usage increases with the amount

Experimental Results |47

of simulated constructs, behavior consistent with offloading the simulation of
constructs which cause a processing bottleneck (Finding F3). Furthermore,
the relation between each base-serverless configuration pair is not similar. For
the 50- and 100-simulated construct configurations pairs, it is observed that the
serverless-enhanced configurations register a lower usage of CPU. However,
in the 200-simulated constructs configuration pair, the CPU consumption of
the base configuration is considerably lower.

Number of connected clients

1 20 40 60 80 100
100' ! ! 1 L L 1
—e— 50-serverless
—¥— 100-serverless S

801 ¥~ 100-base V
9 —s— 200-serverless ey
2 ~#- 200-base pas
N
< 60 A
£
o
£
]
2 40
9]
)
)
o
@]

20 A

0 T ; . : :
0 50 100 150 200 250

Runtime [s]

Figure 7.3 — CPU usage vs. Runtime/Client count.

Correlating each measurement on CPU consumption data with its
analogous in Figure 7.2, we can observe that the use of CPU is more efficient,
at least from the viewpoint of the MVE server. In this context efficiency means
using less CPU resources to maintain the update step time below the threshold.
It is important to reiterate that the efficiency measured is from the viewpoint
of the MVE server, given that, in serverless-enhanced configurations, the total
CPU consumption of the MVE server plus the serverless functions is unknown.

48 | Experimental Results

7.4 MVE Server RAM Consumption

Figure 7.4 shows comparisons of RAM consumption at the time in which each
experiment has completed building all simulated constructs, and before all
MVE clients start to connect. The vertical axis measures RAM usage in GBs.
The horizontal axis shows the labels each experiment configuration, denoting
the number of simulated constructs, and if the base or serverless-enabled
implementations are used. Each serverless-base pair shows consistently that
the serverless-enabled implementation uses a smaller amount of RAM to hold
and process simulated constructs. It can also be seen that for the chosen
configurations, the RAM usage is well below the 32 GBs of total RAM
available on the server. This shows that the system’s demand for RAM is not
causing a bottleneck, and is unlikely to cause update step time increments.

However, following the connection on MVE clients on each experiment,
RAM usage varies without a discernible pattern. This is shown on Figure A.1,
and suggests that RAM usage when clients are present does not correlate to
any of the chosen experimental parameters.

4.01 T

w
(8]
1

RAM usage [GBs]
[= N N w
o U o U o

o
(6]
1

o
o

Figure 7.4 — RAM usage on each experiment configuration.

Discussion | 49

Chapter 8

Discussion

This chapter presents a analysis relating the main experimental findings up to
each proposed research question. Also, the work’s limitations are discussed,
and finally, concerns related to ethics and sustainability are presented.

8.1 Distributing MVE Simulations

In the context of distributed computation and computational offloading,
among many other design decisions, managing workload partitions and
task granularity are important challenges. In the case of MVEs and their
simulation process, and given the nature of their design, a way of partitioning
the workload is self-evident. Since the MVE state, is already divided in
elemental components, finding a way to arrange and group these elements
into self-contained subsets stands out as a reasonable approach. The model
of simulated constructs provides a useful method to distribute the workload
of MVE simulations. Results show that it is possible to offload only
the computationally expensive simulation operations from the server, while
freeing the server’s fixed resources to either support more of these operations,
or support more client connections.

The simulated constructs model presents an alternative to distributed
architectures found in the literature, which rely on replicating MVE servers,
and use techniques that focus on user activity. In contrast the simulated
constructs model is directed dynamically by the content of the MVE state,
and is able to leverage the elasticity provided by serverless computing.

50 | Discussion

8.2 Applicability of Serverless Computing to
MVEs

According to the analyzed literature, scalability is a major challenge in
commercial MVESs, where restrictions to the number of clients or environment
size are in place. An approach based on serverless computing can help loosen
those restrictions, while both freeing otherwise busy resources in the MVE
server, and allowing the scaling of computational resources in the form of
serverless functions. A system based on the simulated constructs model
and related experiments, shows that offloading the MVE simulation using
serverless functions is a viable approach and can provide performance and
scalability enhancements. This system also benefits from synergies with
caching and ahead-of-time simulation. Results show that under the correct
configuration the number of simulated constructs supported by a single MVE
server can be increased by up to 4x by offloading their computations. The
same experiment shows that a serverless-enhanced design achieves a higher
client capacity given the same amount of simulated constructs, compared to
the base implementation.

However, it is clear that only certain configurations are able to achieve
this. Dividing the workload into small subsets with periodic behaviour is
the most effective configuration. Workload partition into larger tasks, namely
large simulated constructs, is not practical due to high latency, unless pre-
computed and cached values are valid for very long times. In terms of systems
metrics, from the server’s perspective, CPU usage is also more efficient.
With the use of serverless computing it is able to handle a higher volume of
constructs with a lower or equal CPU consumption, when compared to the base
implementation. In the best case scenario, server CPU consumption is halved,
at the same time that update step times are drastically lowered; in the worst
case, server CPU consumption is relatively equal, but at the same time update
step times are notoriously lower. Regarding RAM usage both serverless and
base configurations perform in a similar capacity. From a high level point
of view, the previously mentioned results open the possibility of applying
the same concepts to other Virtual Environments, as all benefit from higher
counts of users and more efficient resource usage. Furthermore, the simulated
constructs model is an arbitrary, but sensible task partitioning solution, which
can be used as well in other Virtual Environment applications, to direct system
designs capable of achieving similar results.

Discussion | 51

8.3 Limitations

There are several limitations that this work has encountered. These range from
the system’s technical limitations, to experiment limitations which threaten the
validity of the results and related conclusions.

Most importantly, the serverless-enhanced system is implemented on
top of an open-source research platform with known differences with its
production counterpart. These differences can be appreciated as divergence
of behavior between the implementations. However, since the source and
implementation details of a commercial MVE are not available, the specific
causes of the divergence are unknown. It is altogether possible that the
model of simulated constructs is not as practical given other design and
implementation details of MVEs, and therefore, the results derived from the
experiments may be incompatible.

MVEs provide an immense design space, covering a high proportion of
this design space is a difficult problem. Since simulated constructs are subsets
of MVEs they inherit this complexity, which make the task of evaluating them
equally difficult. The simulated construct instances chosen for the experiments
can be considered a representative sample in the reference frame provided
by the simulated constructs model. These instances prove to be useful in
validating the simulated constructs model as an instrument for computational
distribution. However, real-world, extensive workloads, which explore a
broader subset of the design space are not publicly available, which poses a
limitation difficult to overcome.

Regarding technical limitations, data transmission rates to serverless
functions may not be good enough. Payloads encoded in binary format have
the potential to provide more efficient communication between the MVE
server and the serverless functions. Furthermore, the response of the functions
could be a stream instead of a single response, making the pre-computed states
available as soon as they are created, instead of having to wait until the function
has finished completely.

8.4 Ethics and Sustainability

The economic and cultural relevancy of virtual environments is rapidly
expanding, as applications widen in entertainment and other diverse domains.
As society moves towards an extensive use of information technologies in
regards of services, work, and entertainment, it is relevant to optimize the

52| Discussion

means and infrastructure that these technologies use to function. Virtual
environments have proven to be one of these technologies. For example, in
certain spaces through the COVID-19 pandemic, its use has enabled people to
participate in remote work, scientific conferences, and events such as sporting
meets, in ways that do not expose users to any danger.

Regarding energy consumption and sustainability, it is known that data
center energy consumption accounts for a significant amount of the global
energy consumption [40], and also given the existing high volume of MVE
users, it becomes of high relevance to make efficient use of the available
computational resources. This work however, acknowledges its limitations
in terms of measuring the total energy consumption of the proposed system,
since energy consumption details of the cloud module and serverless functions
are unknown.

Conclusions | 53

Chapter 9

Conclusions

This chapter provides a summary of the work presented in previous sections
and possible directions for future work.

9.1 Recapitulation

Modifiable Virtual Environments are widely popular, specially in the video
game industry. An example of this is the game Minecraft. Minecraft has
a player count reaching into the hundreds of millions. Despite this, current
implementations have known limitations regarding scalability. MVEs are
generally deployed in client-server architectures, where servers can support, at
a maximum, a few hundreds of clients simultaneously. This scalability issue
severely hinders interaction between users and communities, and potential use
cases (e.g., massive collaboration) are beyond reach.

Related work in MVE scalability has been focused in horizontally scaling
out MVE servers using approaches that focus on user actions. However,
moving away from client-server architectures has also been proposed,
specifically in the form of peer-to-peer or hybrid architectures. Yet,
distribution through serverless computing has only recently been proposed [7],
but no attempt at designing or gathering experimental data has been presented.

Therefore, this thesis explores the feasibility of distributing the simulation
process of Modifiable Virtual Environments over a serverless computing
platform, with the main objective of increasing their scalability. To achieve
said objective, we formally define research questions regarding: an appropriate
distribution model, a system design harnessing said model, and observing
performance and scalability benefits. We develop the research questions as
separate chapters, each making specific, but connected contributions which
are the core of this work.

54 | Conclusions

RQ1 How can MVE simulations be expressed in a model compatible with
distributed computing?

The presented distribution model exploits design properties of MVEs,
and relies on two main components of an MVE server: the MVE state and
MVE simulation. Since the MVE state is expressed in elemental units,
defined as simulated elements, the model proposes arranging and grouping
these elements into self-contained subsets: simulated constructs. Simulated
constructs are arbitrary arrangements of simulated elements, but with the
characteristic of being perceived by users as single entities. We are then able
to simulate each construct as independent and parallel tasks.

RQ2 How can serverless computing be used in MVE simulations to
improve scalability?

We present as system design to take advantage of the simulated constructs
model. The system consists on two additional modules to a traditional MVE
client-server architecture: a client-side module, and a cloud module. The
client-side module is responsible of selecting the simulated constructs from
the MVE state, and triggering their simulation in serverless functions, as well
as synchronizing the results back into the MVE state. The cloud module
consists of a serverless function that receives a serialized MVE state subset
and simulates it a certain number of steps ahead. The server-side module also
implements a cache where results from the serverless functions are stored for
re-use, a feature possible because of periodical and deterministic properties of
some simulated constructs.

RQ3 How to evaluate the effectiveness of using serverless computing in
MVE simulations?

We present experiments to test the suitability and measure performance
and scalability variations compared to a base implementation of an MVE.
The results show that the simulated construct model, applied in a serverless
computing setting, and under the correct configuration, is in fact a viable
approach for distributing the MVE simulation. Regarding performance and
scalability, the results show a substantial increase in the volume of users and
simulated constructs that the system can correctly handle, as well as a very
clear differences in CPU and RAM usage patterns.

Conclusions | 55

9.2 Future work

The system presented on this thesis can be extended in several dimensions. A
limitation of the implemented system is that it is not able to perform workload
partitioning autonomously, this means that simulated constructs have to be
selected by a purposeful user. A mechanism to automatically detect when
a combination of simulated elements constitutes a simulated construct and
automatically trigger an offloaded computation is a relevant topic.

While a caching component is used for re-usability of computations,
other caching-related approaches remain to be explored. For example, pre-
computed simulations may be shared between MVE servers by using a server-
agnostic encoding, given that the simulation rules are the same for a set of
servers. This approach allows for a shared cache layer that could achieve better
performance results.

A complete evaluation on the effectiveness of the specific caching and
speculative execution components remains to be done. From a computer
systems’ perspective, a thorough analysis of said components is very relevant
to due to very specific characteristics of the workload. Furthermore, different
configurations and policies can be compared to find more efficient, and better
performing solutions.

Finally, the contributions from this thesis: the simulated constructs model,
the serverless-enhanced system, and experimental results can be analyzed in a
more general context, given that access to commercial MVE implementations
and real-world workloads is obtained.

56 | Additional MVE Server RAM Consumption Figure

Appendix A

Additional MVE Server RAM Con-
sumption Figure

Number of connected clients

1 20 40 60 80 100
100 {1 —e— 50-serverless L
- 50-base
90 { —¥— 100-serverless ... e e
¥ 100-base 4 W
80 1 —#— 200-serverless . :
—_ - 200-base B R
& 704 >
(]
g 60
o
=
< 50
40
30 4
20 4
0 50 100 150 200 250
Runtime [s]

Figure A.1 — RAM usage vs. Runtime/Client count.

REFERENCES |57

References

[1]

(2]

(3]

[4]

Newzoo, “Newzoo Global Games Market Report
2021,7 https://newzoo.com/insights/trend-reports/
newzoo-global-games-market-report-2021-free-version/, 2019,

accessed: 2021-07-26.

D. Curry, “Minecraft Revenue and Usage Statistics (2021),” https://www.
businessofapps.com/data/minecraft-statistics/, June 2021, accessed:
2021-07-26.

“Minecraft: Education Edition,” https://education.minecraft.net, ac-
cessed: 2020-02-08.

A. Natividad, “How Greenpeace Used Minecraft to Stop Illegal
Logging in Europe’s Last Lowland Primeval Forest,” https://bit.ly/
MinecraftGreenpeace, Jan 2018, accessed: 2020-02-08.

“Block By Blockwest: the closest we’ve come to an authentic online
festival,” https://bit.ly/31g9KFS, accessed: 2020-07-20.

J. Blascovich, Social Influence within Immersive Virtual Environments.
London: Springer London, 2002, pp. 127-145. ISBN 978-1-4471-0277-
9. [Online]. Available: https://doi.org/10.1007/978-1-4471-0277-9_8

J. Donkervliet, A. Trivedi, and A. losup, “Towards Supporting Millions
of Users in Modifiable Virtual Environments by Redesigning Minecraft-
Like Games as Serverless Systems,” in /2th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). USENIX Association,
jul 2020. [Online]. Available: https://www.usenix.org/conference/
hotcloud20/presentation/donkervliet

J. van der Sar, J. Donkervliet, and A. losup, “Yardstick: A Benchmark
for Minecraft-like Services,” in ICPE, 2019.

https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version/
https://www.businessofapps.com/data/minecraft-statistics/
https://www.businessofapps.com/data/minecraft-statistics/
https://education.minecraft.net
https://bit.ly/MinecraftGreenpeace
https://bit.ly/MinecraftGreenpeace
https://bit.ly/3lg9KFS
https://doi.org/10.1007/978-1-4471-0277-9_8
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet

58 | REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2016, Denver, CO, USA, June 20-21, 2016,
A. Clements and T. Condie, Eds. USENIX Association, 2016.
[Online]. Available: https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/hendrickson

I. Baldini, P. C. Castro, K. S. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” in
Research Advances in Cloud Computing, S. Chaudhary, G. Somani,
and R. Buyya, Eds. Springer, 2017, pp. 1-20. [Online]. Available:
https://doi.org/10.1007/978-981-10-5026-8_1

H. Shafiei and A. Khonsari, “Serverless computing: Opportunities and
challenges,” CoRR, vol. abs/1911.01296, 2019. [Online]. Available:
http://arxiv.org/abs/1911.01296

A. Bhattacharya and P. De, “A survey of adaptation techniques
in computation offloading,” J. Netw. Comput. Appl., vol. 78, pp.
97-115, 2017. doi: 10.1016/j.jnca.2016.10.023. [Online]. Available:
https://doi.org/10.1016/j.jnca.2016.10.023

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-
113, 2008. doi: 10.1145/1327452.1327492. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327492

M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environments,”
in OSDI, 2008.

G. Czajkowski, M. Dvorsky, J. Zhao, and M. Conley, “Sorting Petabytes
with MapReduce - The Next Episode,” 2018, accessed: 2020-04-28.

K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, 1sted. McGraw-Hill Higher Education, 1992. ISBN
0070316228

B. W. Lampson, “Lazy and speculative execution in computer systems,”
in Proceeding of the 13th ACM SIGPLAN international conference

https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://doi.org/10.1007/978-981-10-5026-8_1
http://arxiv.org/abs/1911.01296
https://doi.org/10.1016/j.jnca.2016.10.023
http://doi.acm.org/10.1145/1327452.1327492

[19]

[21]

[24]

REFERENCES|59

on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008, J. Hook and P. Thiemann, Eds. ACM,
2008. doi: 10.1145/1411204.1411205 pp. 1-2. [Online]. Available:
https://doi.org/10.1145/1411204.1411205

J. E. Smith, “Retrospective: A study of branch prediction
strategies,” in 25 Years of the International Symposia on Computer
Architecture (Selected Papers), G. S. Sohi, Ed. ACM, 1998.
doi: 10.1145/285930.285940 pp. 22-23. [Online]. Available:
https://doi.org/10.1145/285930.285940

A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, no. 3,
pp. 473-530, 1982. doi: 10.1145/356887.356892. [Online]. Available:
https://doi.org/10.1145/356887.356892

A. Dan, D. F. Towsleyy, and W. H. Kohler, ‘“Modeling the
effects of data and resource contention on the performance of
optimistic concurrency control protocols,” in Proceedings of the
Fourth International Conference on Data Engineering, February I-5,
1988, Los Angeles, California, USA. 1EEE Computer Society, 1988.
doi: 10.1109/ICDE.1988.105486 pp. 418-425. [Online]. Available:
https://doi.org/10.1109/ICDE.1988.105486

X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu,
“Hopper: Decentralized speculation-aware cluster scheduling at
scale,” Comput. Commun. Rev., vol. 45, no. 5, pp. 379-
392, 2015. doi: 10.1145/2829988.2787481. [Online]. Available:
https://doi.org/10.1145/2829988.2787481

J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach, 5th Edition. Morgan Kaufmann, 2012. ISBN
978-0-12-383872-8

J. Wang, “A survey of web caching schemes for the internet,”
Comput. Commun. Rev., vol. 29, no. 5, pp. 3646, 1999. doi:
10.1145/505696.505701. [Online]. Available: https://doi.org/10.1145/
505696.505701

R. Diaconu and J. Keller, “Kiwano: A scalable distributed in-
frastructure for virtual worlds,” in 2013 International Conference
on High Performance Computing Simulation (HPCS), 2013. doi:
10.1109/HPCSim.2013.6641489 pp. 664—667.

https://doi.org/10.1145/1411204.1411205
https://doi.org/10.1145/285930.285940
https://doi.org/10.1145/356887.356892
https://doi.org/10.1109/ICDE.1988.105486
https://doi.org/10.1145/2829988.2787481
https://doi.org/10.1145/505696.505701
https://doi.org/10.1145/505696.505701

60 | REFERENCES

[25]

[26]

[27]

[28]

[29]

[30]

R. Diaconu, J. J. Keller, and M. Valero, “Manycraft: Scaling
Minecraft to Millions,” in Annual Workshop on Network and Systems
Support for Games, NetGames ’13, Denver, CO, USA, December 9-10,
2013. 1EEE/ACM, dec 2013. doi: 10.1109/NetGames.2013.6820617.
ISBN 978-1-4799-2961-0. ISSN 21568146 pp. 1:1—-1:6. [Online].
Available: http://dl.acm.org/citation.cfm?id=2664635http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6820617

D. Lake, M. Bowman, and H. Liu, “Distributed scene graph to
enable thousands of interacting users in a virtual environment,” in
9th Annual Workshop on Network and Systems Support for Games,
NetGames 2010, Taipei, Taiwan, 16-17 November, 2010. 1EEE, 2010.
doi: 10.1109/NETGAMES.2010.5679669 pp. 1-6. [Online]. Available:
https://doi.org/10.1109/NETGAMES.2010.5679669

D. Horn, E. Cheslack-Postava, B. F. Mistree, T. Azim, J. Terrace,
M. J. Freedman, and P. Levis, “To infinity and not beyond: Scaling
communication in virtual worlds with meru,” tech. report CSTR 2010-
01 5/11/09, 2010.

Elfizar, M. S. Baba, and T. Herawan, “Object-based simulators for
large scale distributed virtual environment,” in Proceedings of the
Second International Conference on Advanced Data and Information
Engineering, DaEng 2015, Bali, Indonesia, April 25-26, 2015, ser.
Lecture Notes in Electrical Engineering, vol. 520. Springer, 2015.
doi: 10.1007/978-981-13-1799-6_2 pp. 11-19. [Online]. Available:
https://doi.org/10.1007/978-981-13-1799-6_2

I. B. Vilardell, C. Roig, and F. Giné, “Distributing game instances in
a hybrid client-server/p2p system to support MMORPG playability,”
Multim. Tools Appl., vol. 75, no. 4, pp. 2005-2029, 2016. doi:
10.1007/s11042-014-2389-0. [Online]. Available: https://doi.org/10.
1007/s11042-014-2389-0

B. Anand and A. J. H. Edwin, “Gamelets - multiplayer mobile games
with distributed micro-clouds,” in Seventh International Conference
on Mobile Computing and Ubiquitous Networking, ICMU 2014,
Singapore, January 6-8, 2014. 1EEE Computer Society, 2014.
doi: 10.1109/ICMU.2014.6799051 pp. 14-20. [Online]. Available:
https://doi.org/10.1109/ICMU.2014.6799051

http://dl.acm.org/citation.cfm?id=2664635 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6820617
http://dl.acm.org/citation.cfm?id=2664635 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6820617
https://doi.org/10.1109/NETGAMES.2010.5679669
https://doi.org/10.1007/978-981-13-1799-6_2
https://doi.org/10.1007/s11042-014-2389-0
https://doi.org/10.1007/s11042-014-2389-0
https://doi.org/10.1109/ICMU.2014.6799051

[31]

[32]

[33]

[37]

REFERENCES | 61

V. Nae, R. Prodan, and A. Iosup, “Autonomic operation of massively
multiplayer online games in clouds,” in Proceedings of the 2013 ACM
Cloud and Autonomic Computing Conference, ser. CAC *13. New
York, NY, USA: Association for Computing Machinery, 2013. doi:
10.1145/2494621.2494629. ISBN 9781450321723. [Online]. Available:
https://doi.org/10.1145/2494621.2494629

Y. Gao, L. Wang, Z. Xie, W. Guo, and J. Zhou, “Energy-efficient
and quality of experience-aware resource provisioning for massively
multiplayer online games in the cloud,” in Service-Oriented Computing
- 16th International Conference, ICSOC 2018, Hangzhou, China,
November 12-15, 2018, Proceedings, ser. Lecture Notes in Computer
Science, vol. 11236. Springer, 2018. doi: 10.1007/978-3-030-
03596-9_61 pp. 854-869. [Online]. Available: https://doi.org/10.1007/
978-3-030-03596-9_61

“Compute @Edge: porting the iconic video game DOOM,” https://www.
fastly.com/blog/compute-edge-porting-the-iconic-video-game-doom,
accessed: 2021-05-31.

L. Toader, A. Uta, A. Musaafir, and A. Iosup, “Graphless: Toward
serverless graph processing,” in 2019 18th International Symposium on
Farallel and Distributed Computing (ISPDC), 2019. doi: 10.1109/IS-
PDC.2019.00012 pp. 66-73.

S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in /4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, 2017. ISBN 978-1-931971-37-9 pp. 363—
376. [Online]. Available: https://www.usenix.org/conference/nsdil7/
technical-sessions/presentation/fouladi

M. K. Stojcev, Y. N. Patt, and S. J. Patel, “Introduction to computing
systems: From bits and gates to C and beyond second edition,
mcgraw-hill higher education, boston (2004) ISBN 0-07-121503-4
softcover, pp 632, plus XXIV,” Microelectron. Reliab., vol. 45, no. 2,
pp. 405406, 2005. doi: 10.1016/j.microrel.2004.08.010. [Online].
Available: https://doi.org/10.1016/j.microrel.2004.08.010

J. Schell, The Art of Game Design: A book of lenses. CRC press, 2008.

https://doi.org/10.1145/2494621.2494629
https://doi.org/10.1007/978-3-030-03596-9_61
https://doi.org/10.1007/978-3-030-03596-9_61
https://www.fastly.com/blog/compute-edge-porting-the-iconic-video-game-doom
https://www.fastly.com/blog/compute-edge-porting-the-iconic-video-game-doom
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1016/j.microrel.2004.08.010

62 | REFERENCES

[38]

[39]

[40]

S. Ginzburg and M. J. Freedman, “Serverless isn’t server-less:
Measuring and exploiting resource variability on cloud faas platforms,”
in WoSC@Middleware 2020: Proceedings of the 2020 Sixth
International Workshop on Serverless Computing, Virtual Event
/ Delft, The Netherlands, December 7-11, 2020. ACM, 2020.
doi: 10.1145/3429880.3430099 pp. 43-48. [Online]. Available:
https://doi.org/10.1145/3429880.3430099

J. Donkervliet, J. Cuijpers, and A. Iosup, “Dyconits: Scaling minecraft-
like services through dynamically managed inconsistency,” in /ICDCS,
2021.

J. Mao, T. Bhattacharya, X. Peng, T. Cao, and X. Qin, “Modeling energy
consumption of virtual machines in dvfs-enabled cloud data centers,” in
39th IEEE International Performance Computing and Communications
Conference, IPCCC 2020, Austin, TX, USA, November 6-8, 2020. 1EEE,
2020. doi: 10.1109/TPCCC50635.2020.9391552 pp. 1-6. [Online].
Available: https://doi.org/10.1109/TPCCC50635.2020.9391552

https://doi.org/10.1145/3429880.3430099
https://doi.org/10.1109/IPCCC50635.2020.9391552

TRITA -EECS-EX-2021:716

	Introduction
	Problem Statement
	Research Questions
	Contributions
	Outline

	Background
	Modifiable Virtual Environments
	Serverless Computing
	Scalability Techniques in Distributed Systems

	Related Work in MVE Scalability
	Distributed Architectures
	Cloud Resource Efficiency
	Serverless Deployments

	Modelling the MVE simulation process
	Environment Simulation
	Simulated Constructs' Model
	Simulated Constructs' Properties
	Summary

	System Design and Implementation
	Requirements
	System Design
	Implementation

	Experimental Protocol
	Experiment Design
	Experiment Setup

	Experimental Results
	Serverless Simulation Latency
	Update Step Times
	MVE Server CPU Consumption
	MVE Server RAM Consumption

	Discussion
	Distributing MVE Simulations
	Applicability of Serverless Computing to MVEs
	Limitations
	Ethics and Sustainability

	Conclusions
	Recapitulation
	Future work

	Additional MVE Server RAM Consumption Figure
	References

