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Abstract

Video gaming has been a mainstream and fastest-growing media over the last

decade. Minecraft is one of the most popular games with its featured Modi-

fiable Virtual Environment (MVE), which allows players to interact with the

environment. However, despite its large number of players, previous research

shows that it does not scale well. Serverless technology provides the advan-

tage of automatic scaling, which has the potential to address the scalability

challenges of MVEs.

In this thesis, we study how serverless technology benefits MVEs and how per-

formance variability impacts the system. We design and implement a serverless

MVE prototype based on Opencraft and Azure Cloud platform. We design and

implement a benchmark suite to evaluate the serverless MVE prototype. We

conduct both microbenchmarking on services hosted on cloud platforms and

macrobenchmarking on the real system with emulated player behaviors. The

experiments focus on four aspects: effectiveness of latency hiding policies, scal-

ability, performance variability, and the worst cases perceived by players.

Our finding shows that serverless technology improves the scalability of MVEs.

It benefits MVEs in terms of supporting more players by offloading heavy com-

putation tasks to serverless functions. Our first step into using multiple server

instances with serverless for one game world further improves the scalabil-

ity. In the worst cases of specific events where the players have to wait for

the results, the gaming experience is not significantly impacted. Furthermore,

the performance variability is high on all tested cloud services. However, the

high variability of serverless functions does not negatively impact the serverless

MVE, when using effective latency hiding policies. Instead, the performance

variability of the serverless MVE is mainly caused by the shared CPU resource

of virtual machines and the internal process of MVEs.
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1

Introduction

Video gaming has been a mainstream and fastest-growing media over the last decade [1].

In 2020, the yearly global market revenue of gaming was USD 173.7 billion [2]. Due to

the impact of the COVID-19 pandemic, in-person and outdoor entertainment are limited,

which leads to further growth in the gaming market, especially in online multiple games.

With over 200 million copies sold and more than 131 million monthly active users [3],

Minecraft has been one of the most popular games in the world with its Modifiable Virtual

Environment (MVE), which allows users to interact and modify the virtual worlds in real-

time. However, despite its large number of users, the game does not scale well, limited by its

replicated game instances which do not exchange information with each other. Serverless

technology is an event-driven programming model, which provides automatic scaling. In

this thesis, we design and implement an MVE system using serverless technology. We

conduct an empirical evaluation on it. We show that serverless improves the scalability of

MVEs, and the high performance variability of cloud services does not negatively impact

the MVE with proper latency hiding policies.

Minecraft is an online multiplayer sandbox game with an infinite terrain, which is gen-

erated through algorithms as players explore it. Minecraft provides players an MVE that

allows them to interact with the objects in a virtual world, construct buildings, or make

complex systems such as a computer [4]. Additionally, players can create customized con-

tent via modding programs. By providing players a large amount of freedom in creativity,

Minecraft goes beyond entertainment and steps in other fields such as computer-aided

design [5], education [6], and research [7].

Despite the increasingly large number of users in Minecraft and its awards, Yardstick [8],

a benchmark for Minecraft games, shows that Minecraft services are poorly parallelized and

do not scale well, by conducting real-world experiments on popular server distributions.
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1. INTRODUCTION

The game performance degrades with the increasing number of players. Under favorable

conditions, only up to a few hundred of players can join the same game instance. As the

most popular MVE, Minecraft server relies on creating new game instances which do not

exchange states with each other for achieving scalability. As a result, the large user-base

of Minecraft cannot play together in the same world, though the world is designed to be

infinitely large. The players who join different game instances cannot see or interact with

each other. The Minecraft-as-a-Service provider, Minecraft Realm, only allows up to ten

concurrent players on the same game instance [9]. Similar problem exists on other MVE

games. For example, Valheim, a MVE game published in 2021, limits the maximum player

to ten due to synchronization and lag issues [10]. Compared to other modern massively

multiplayer online games, such as World of Warcraft, Final Fantasy XIV, and EVE Online,

which are capable of handling thousands of concurrent players in one game instance, MVE

games put forward a motivation for increasing the capability of concurrent players in the

same virtual world.

Motivated by the scalability limitation of Minecraft, which also exists in other MVE

games, Donkervliet et al. [11] envision a new architecture for large-scale MVE games with

serverless technology. They propose a model of services and deployments for MVEs as

serverless systems that run as independently scheduled services, so that each part of the

system can scale independently with the potential to support millions of users. Serverless

is an event-driven programming model whose infrastructure and scalability are handled

by cloud providers. It provides high-level abstractions of distributed computing elements,

which allows developers to focus on business logic without much server- and resource-

management burden [12]. The advantages of serverless technology have the potential to

address the scalability challenges of MVEs.

By designing MVEs as serverless systems, new and unique challenges are posed for both

providers and developers. In the aspect of development, for example, the additional layers

of communication between components and cold start of functions can cause overhead,

and may potentially slow down the overall performance when migrating to serverless ar-

chitecture due to improper system design. The overhead issue can significantly impact

applications that require strictly low latency, such as online games [13].

Additionally, the same performance is not always guaranteed for applications hosted

in clouds. The reason is that it is difficult to guarantee resource usage in shared infras-

tructure among tenants, and the resource management and scheduling policies enforced

by the providers may not be suitable for all kinds of applications. Previous studies show

that performance variability is a widely observed phenomenon in cloud computing [14, 15].
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1.1 Research Questions

Specifically, in serverless functions, Ginzburg et al. [16] demonstrate that the phenomenon

is significant in AWS Lambda, a serverless service provided by Amazon. The performance

variability affects the users’ Quality of Experience (QoE). It remains an open research ques-

tion to understand how the performance variability impacts MVEs as serverless systems

running on the clouds.

1.1 Research Questions

In this work, our goal is to study the impact of performance variability on serverless

MVEs by conducting real-world experiments. To this end, we propose three research

questions (RQs).

RQ1 How to design a serverless MVE?

To the best of our knowledge, no serverless MVE currently exists. We first design

a serverless MVE. We identify the important components in the game system and

propose a high-level design of the system using serverless architecture.

An important challenge is to split the MVE into modules while meeting the game’s

QoS requirements. The latency requirement for most online games is strictly low,

which seems to be incompatible with serverless functions because their latency can

be high and variable due to cold starts [12] and communication overhead between

different services. We consider latency in our design so that the game can meet player

expectations.

RQ2 How to implement the prototype of such a system?

To conduct experiments on serverless MVE, we implement a serverless MVE proto-

type based on the design. There is no known universal method to translate designs

into prototypes. Additionally, there is no publicly available method for migrating

monolithic applications to serverless applications. We first explore the implementa-

tion of the existing game system, the programming model, and the services offered by

the cloud provider. There are many vendor-specific frameworks with a wide selection

of built-in components, which may result in significant differences in the performance

of the system. Thus, we need to carefully choose services and components, and map

our serverless MVE design to them. We modify the logic of the MVE game sys-

tem and the communication models between different modules to fit the serverless

platform.

3



1. INTRODUCTION

RQ3 How to evaluate and measure the performance variability of such a sys-

tem? Does a serverless architecture benefit an MVE?

To understand the performance variability of the system, we perform real-world ex-

periments on it. There are two challenges. First, there is no universal way to evaluate

performance variability. Second, currently no benchmark tool exists for serverless

MVE systems. Our approach is to implement a benchmark suite that automati-

cally deploys the serverless MVE, runs experiments, and captures metrics. The suite

extends YardStick [8], which emulates players and submit workloads to server.

We run experiments to benchmark the monolithic system and the serverless proto-

type, and capture both system- and application-level metrics. To measure perfor-

mance variability, we run multiple iterations for each experiment and discuss the

deviation. To measure the scalability, we compare the maximum number of players

before the server is overloaded, which is defined as consecutive tick duration over 50

ms. Finally, we study the overhead of using serverless technology by comparing the

worst cases of player perceived performance.

1.2 Main Contribution

To answer these research questions, we make the following three-fold contribution.

1. We propose a novel design of a serverless MVE system (Section 4), considering the

architecture of MVEs and components of serverless platforms to meet QoS require-

ments.

2. We implement a serverless MVE prototype based on Opencraft and run it on the

Azure cloud platform (Section 5). Opencraft is an open-source Minecraft server for

research on Massivizing MVE. Azure is a cloud platform from Microsoft and provides

serverless functions and storage solutions.

3. We design and implement a benchmark suite to evaluate the serverless MVE (Sec-

tion 6). We conduct an empirical evaluation (Section 7 and 8), including microbench-

marking on cloud services and macrobenchmarking on the serverless MVE prototype.

The microbenchmarking result shows significant performance variability on serverless

functions and cloud storage back-ends. The macrobenchmarking result shows that

serverless technology improves the scalability of MVEs. Although the performance

4



1.2 Main Contribution

variability is high on cloud services, it does not negatively impact the serverless MVE

with proper latency hiding policies.
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2

Background

In this chapter, we provide comprehensive background information on Modifiable Virtual

Environments (MVEs) and its system model (Section 2.1). Next, we introduce the concept

of serverless computing and its components (Section 2.2). Finally, we discuss performance

variability of cloud services (Section 2.2.3).

2.1 Modifiable Virtual Environments

A modifiable Virtual Environment (MVE) is a real-time, online, multi-user environment

that allows players to modify the objects in the virtual world, create new contents by

connecting components, and interact with the world through programs [11].

We present in Figure 2.1 a system model of an MVE, with general services. Generally, an

MVE system is designed with client-server architecture where players run a client software

in their local devices, which periodically exchanges information with a remote server hosted

in the cloud, through a network management service with Internet connection.

MVE Client

MVE Client MVE Server

Rendering

Simulator

N
etw

orking

N
etw

orking

Terrain
Generator

Plugin
Manager

Data Collector

Storage

Input Translator

Messenger

Output

Configurator

Authenticator
World
Environment
NPC

Simulator

Input
Output

...

Scheduler

...

MVE-Specific
Components

Figure 2.1: MVE System Model.
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2. BACKGROUND

2.1.1 MVE Client

The MVE client accepts inputs from players, usually from keyboard and mouse, or con-

troller. It translates the inputs into system commands, transmitted to the MVE server,

renders graphic content, and provide output to players, usually to monitors. A simulator

is maintained in the client, which provides instant feedback to players based on their in-

puts. The simulator periodically synchronizes with the server to maintain consistency on

elements with other clients.

Similar to most games, there are two types of clients in MVEs, namely traditional clients

and thin clients. A traditional client does heavy computation tasks in client end and renders

graphic contents locally, thus it usually occupies storage for game elements and requires

hardware acceleration support such as GPU under many scenarios. Thin client, on the

other hand, is more lightweight and similar to video streaming clients. It is proposed with

the development of Internet infrastructure and is usually used in remote rendering games,

which are also known as cloud gaming, a term introduced as a market stunt by OnLive in

2011. The rendering tasks and most computation tasks are completed in remote server or

middleware. The computation tasks in thin client usually only involve handling player’s

inputs and displaying the streamed contents.

The latency requirements are different for traditional and thin clients. A previous study

[13] shows that the latency requirement for traditional game clients is strictly low, and the

threshold is different depending on game genres. For example, first-person shooting games

are the most sensitive game genre to latency. Third-person role-playing games can tolerant

five times higher latency than first-person shooting games before performance degradation

is observed by players. Games with thin clients are even more sensitive to latency. Third-

person avatar games with thin clients can tolerant up to the same latency threshold as

first-person shooting games with traditional clients [17], which are the most sensitive game

genres in traditional gaming. Because of the obstacles in thin client, such as meeting

stricter latency requirements and scheduling resources of remote GPUs, traditional clients

still dominate the online game market.

2.1.2 MVE Server

The server handles most game logic, and performs heavy computation tasks. There are

some common components as other game servers. Authenticator verifies each request for

security reasons. Configurator loads configuration during server initialization, and updates

configuration when necessary. Messenger delivers or broadcasts system and user-defined

8



2.2 Cloud Computing

messages to players. Storage service saves the system data persistently, such as world

data, and player data. Lastly, data collector collects system usage data and saves it for

debugging and analytic. The server is responsible for ensuring a consistent game state so

that players who join the same game instance can see the same environment. Depending

on the specific requirement, both strong consistency and eventual consistency models can

be used.

A typical MVE server includes three MVE-specific components. First, Terrain Generator

generates the terrain as players explore in the infinite world. As the world is designed to

be infinite and can be explored freely, it cannot be fully loaded at once due to resource

constraints such as bandwidth. Thus, the server should generate new or load existing

terrain data when it is of concern to players. The generation algorithms should be designed

in a way that consuming the least resource while not degrading players’ experience. Second,

the server provides feedback to players’ behavior and simulates all elements in a virtual

world, including changing environments such as climate, weather, and geography through

continuous timers or triggers, and generating the behaviors of non-playable characters. The

simulator on the server is periodically synchronized with the MVE client. Third, Plugin

Manager loads mods written by players with pre-defined interfaces.

Generally, the server needs to complete most computation tasks within one game tick,

which is a constant frequency of the game state updates. Otherwise, the unfinished tasks

will delay the thread and slow down overall performance, directly impacting players’ ex-

perience. A low tick rate results in low granularity for message processing and reduces

the precision of the simulation. A high tick rate increases it but requires more resources.

Overall, many aspects should be taken into consideration to design a proper MVE, and an

empirical evaluation helps to understand the efficiency of the new design.

2.2 Cloud Computing

Cloud computing refers to on-demand computer system resources which provide some levels

of abstraction to save the burden of direct management for users. It has been a commonly

used solution for deploying online services for over a decade. Several service models exist in

cloud computing, providing a different level of abstraction to satisfy some sets of business

requirements. Infrastructure-as-a-Service (IaaS) abstracts underlying network infrastruc-

ture, physical servers and storage. By providing on-demand computer resources in the

forms of virtual machines or containers, IaaS saves users the hassle and cost to manage

IT infrastructure from self-hosted hardware, while giving users full control over operating
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systems. In addition to infrastructure, Platform-as-a-Service (PaaS) abstracts operating

systems and middleware, such as development tools, analytic tools, and database manage-

ment. By providing a framework for developers to build cloud-based applications, PaaS

reduces the coding effort and supports the full life cycle of web applications.

2.2.1 Serverless Computing

With the motivation of making PaaS more accessible, fine-grained, and affordable, server-

less computing is born as an emerging paradigm of cloud service model [18]. One of the

common ways to archive serverless computing is the Function-as-a-Service (FaaS) model.

These two terms are highly overlapped and often mixed-use. We use in this thesis the term

serverless.

Serverless is an event-driven programming model whose infrastructure and scalability are

handled by cloud providers. It provides high-level abstractions of distributed computing

elements, typically including workflow composition, function management, and resource

orchestration [19]. By programming the system in serverless architecture with APIs pro-

vided by serverless platforms, developers only need to focus on business logic without

much server- and resource-management burden [12]. In general, serverless is promising

as it further reduces the complexity and cost of distributed applications development by

outsourcing operational logic to cloud providers.

In practice, programming in serverless architecture basically follows the principles of

microservice, which aims to design a system as a collection of loosely coupled services

(serverless functions), and process communication between services via the network, such

as HTTP. Existing systems implemented in microservice architectures can be reused in

serverless with minor modification. With microservice, developers need to concern about

containers creation and termination, and usually need to take care of the scalability of

storage. While in serverless, these matters are managed by providers with their full set of

cloud services, such as data storage, database, and content delivery network. The serverless

functions are run as a more centrally managed service [19].

We summarize the pros and cons of serverless computing below.

Strength of Serverless (S)

S1 Simplification. Serverless saves the burdens of server and resource management

for developers. Back-end development is simplified with the API from serverless

platforms. Also, the service deployment process is simplified. Developers only need

to indicate the function entry, and the rest is handled by providers.
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S2 Extended Scalability. Serverless architecture is designed in a way that is highly

scalable. The functions are run separately in containers, which will be automatically

started up with adaptive request demands. This leads to the potential of a highly

scalable MVE if designed properly.

S3 Low Cost. With the pay-as-you-go billing model at a high granularity (usually at

the unit of 100ms [20]), only resources that are consumed by running functions are

charged. Compared to IaaS which is billed in resource bundle, the cost on serverless

is lower.

Weaknesses of Serverless (W)

W1 Vendor Lock-in. Different cloud providers offer slightly different components and

APIs. It can be difficult to switch providers as it takes time and effort to change

them in codes. Also, not all platforms provide the same set of components, which

may result in malfunctioning if migrated.

W2 Overhead. Overall system performance can be impacted by the overhead on server-

less architecture, such as function cold start time during initialization and scaling,

and function routing time during HTTP requests.

W3 Variable Performance. Performance variability widely exists in cloud comput-

ing, so does in serverless. The additional variance may impact the overall system

performance, especially for latency-sensitive application such as online games.

2.2.2 Azure Cloud Platform

In this work, we make use of Microsoft’s Azure Cloud Platform. As of 2021, Azure has 19%

share in the cloud market, second to Amazon’s AWS [21]. Thus, it is a representative cloud

platform. We introduce some services provided by the platform, including their naming

and limitation, which we will take into consideration during implementation.

Azure Functions is the Azure serverless computing. There are three subscription plans.

Consumption plan automatically scales and only charges when in use. Premium plan adds

support of pre-warmed workers. Dedicated plan assigns dedicated resources and allows full

customization. We consider in this work consumption plan only, because it is the most

representative one. It provides three types of function triggers, namely HTTP, Timer, and

Event. The input and output data format is not restricted and can be fully customized.

The resource allocation per function instance is fixed at 1.5 GB memory and 1 CPU.
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The function’s maximum duration is ten minutes. Users can choose runtime environment

between Windows and Linux and region from availability zones.

Azure Blob Storage is the object storage service optimized for storing massive amounts

of unstructured data. It consists of three-level of components, namely storage account,

container, and blob. Storage account is a namespace for all the data. It provides an

endpoint for access and tokens for authentication. A container is similar to a folder and

can contain an unlimited number of blobs. A blob presents an object, including the file

metadata, including file name, modification time, locks, and binary data. The file name

can be made of file path, which works similarly as layered directories. The maximum

storage space for block blob is 190.7 TB.

Azure SQL is a database service based on Microsoft SQL (MSSQL). Although Azure

provides different database back-ends, including MySQL, and PostgreSQL, only MSSQL

service provides a pay-as-you-go (serverless) billing model. The serverless SQL is billed

based on actual CPU core usage per second and the database size.

Virtual Machine is the IaaS service provided by Azure. A wide range of specifications

is available for selection.

Azure Monitor is a traditional monitor for other services, such as Azure Blob Storage

and Virtual Machines. It provides an API for retrieve metrics. However, there are two

limitations on the API. First, it is not possible to retrieve raw data points. One of the

aggregators, including maximum, minimum, count, and total, must be appended to the

request. Second, the minimal time interval for data aggregation is one minute. We need

to take these limitations into consideration for our experiments.

Application Insights is the new feature of Azure Monitor, specifically designed for

Azure Functions. It collects metrics and logs produced during function invocation. Azure

tracks metrics in a non-blocking thread, and sends batched telemetry data, which implicates

that the overhead is small. Application Insights provide API to query raw data points.

However, it is only available for a limited amount of metrics, such as requests. Other

metrics are served by Azure Monitor, which is subject to the same limitation.

2.2.3 Performance Variability

The same performance is not always guaranteed for applications hosted in clouds. The

reason is that it is difficult to guarantee resource usage in shared infrastructure among

tenants, and the resource management and scheduling policies enforced by the providers

may not be suitable for all kinds of applications. Previous studies show that performance

variability is a widely observed phenomenon in cloud computing [14, 15]. Specifically in
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serverless functions, Ginzburg et al. [16] demonstrate that the phenomenon is significant

in AWS Lambda, a serverless service provided by Amazon.

The variance significantly may impact the overall system performance, especially for

latency-sensitive applications such as MVE. The performance variability may result in

QoS metrics not being met, which leads to degradation of player experience. It remains

an open research question to understand how the performance variability impacts different

parts of MVE as a serverless system running on the cloud.
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Related Work

In this chapter, we survey related work on benchmarking MVE and serverless systems.

A few performance analyses exist for Minecraft games and MVE. Yardstick [8] is a

benchmark suite to analyze the performance of several Minecraft servers. It emulates

players and automatically submits workloads to the server.

Alstad et al. [22] analyze the network performance of Minecraft by considering the impact

of player type and number, player activities, and virtualization delays.

Manycraft [23] aims to scale Minecraft to millions of players on a static map through

Kiwano infrastructure, which is a scalable distributed infrastructure for virtual worlds.

Donkervliet et al. [11] envision a new architecture for large-scale MVE games with server-

less technology. They propose a model of services and deployments for MVEs as serverless

systems that run as independently scheduled services so that each part of the system can

scale independently with the potential to support millions of users. The vision is the main

motivation of our work.

Serverless is the latest paradigm in cloud computing. Some studies exist to migrate

monolithic systems to serverless architecture. For example, the performance of a docu-

ment processing system used in Fintech is significantly improved after moving to serverless

architecture with only a marginal increase in cost [24].

The additional latency between different components of serverless architectures poses

new challenges. Many studies exist to understand them by benchmarking. Function-

Bench [25] provides realistic workloads for evaluating various cloud function services, comb-

ing microbenchmark, machine learning models, and real-world data-oriented image and

video processing applications.

Towards latency-sensitive applications hosted on serverless platforms, Pelle et al. [26]

first conduct a detailed benchmark on Amazon’s AWS, adjust a drone control application
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to the platform, and study its performance. They observe that the variance and the jitter

is very high and conclude that the serverless approach is feasible for applications that can

tolerate latency up to 100 ms.

SPEC-RG group envision a comprehensive serverless benchmark that evaluates serverless

ecosystems. They compare the performance overhead when feeding workload on both

closed- and open-source serverless platform [27].

FaaSdom [28] is a benchmark suite that provides insights on the performance of serverless

applications on AWS, Azure, Google Cloud, and IBM. It covers a wide range of workloads

and implementation languages. It also compares budget costs for an application hosted on

these four platforms.

Ginzburg et al. [16] study the performance variaiblity on AWS Lambda. They observe

that the variation is significant but also stable. The lack of performance isolation be-

tween tenants can be exploited for performance improvement and cost reduction by using

placement gaming algorithms on the platform.

To our best knowledge, currently, no study focuses on benchmarking serverless architec-

ture with online gaming workloads. Thus, we extend Yardstick to benchmark our serverless

MVE prototype, with the benchmarking technologies on serverless from related works.
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Serverless MVE Design

In this chapter, we present the design of a serverless MVE. We first define a set of require-

ments and present a high-level design that fulfills the requirements.

4.1 Requirements

R1 Meet QoS requirements, especially in terms of overall system latency. The

serverless MVE should not add noticeable latency compared to the monolithic MVE.

R2 Improve scalability. The ultimate goal of the novel design is to support more

concurrent players in the same virtual world.

R3 Compatible with current MVE clients. The serverless MVE design should be

compatible with current MVE clients so that the players can connect seamlessly

without the need to modify their current installation.

R4 Ease of deployment. The serverless MVE should be easy to set up and deployed

on a cloud platform.

R5 Metrics Collection. The serverless MVE should provide access to metrics across

different levels from each component for performance analysis.

4.2 Design Overview

Considering the design requirements, we make a high-level design of serverless MVE and

show it in Figure 4.1. The MVE client is the traditional game client discussed in Section

2.1.1. We keep it unchanged to satisfy R3. Players use existing client software ( 1○) installed
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in their local devices to connect to the system gateway. We discuss our main components,

namely Gateway, MVE Server Pool, and Serverless Functions.
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MVE Client
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Figure 4.1: Serverless MVE Model.

4.2.1 Gateway

The gateway ( 2○) is a connection entry point for clients. It consists of components such

as firewall and load balancer at application layer (layer seven of the Open Systems Inter-

connection model [29]). The gateway listens to one or more pre-defined network ports and

handles incoming connections from MVE clients.

If the connections are from a new client, the gateway looks up an available server in

the MVE server pool, routes the connections to it, and records the client-server pair. For

connections from an existing client, i.e., a client that matches the record, the gateway routes

the traffic directly to the destination server based on the record. Overall, the gateway hides

the server details and internal processes from clients, so that existing clients can seamlessly

connect to servers (R3).

4.2.2 MVE Server Pool

The MVE server pool ( 3○) contains a resource manager, a synchronizer, and a number of

MVE server instances. Initially, a pre-defined number of MVE servers are started. The

MVE server is designed to be thin, which offloads most computation tasks to serverless
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functions, while keeping only lightweight computation tasks and network stacks locally. It

keeps the existing network stack for communication with clients (R3). The MVE servers

exchange information with serverless functions through a list of Function Invokers, where

each invoker can invoke one or more serverless functions.

Additionally, the MVE server connects to storage service provided by the cloud platform

with storage client. Persistent data of the system should be stored in storage service

instead of local filesystem. There are three benefits by storing data in remote service.

First, the scalability of file storage is handled by the infrastructure of the cloud provider

(R2). Second, all MVE servers and serverless functions can share the same copy of data,

which provide system-wide consistency. Third, it is no longer necessary to consider storage

provisioning for MVE server, because the remote storage space is automatically grown on

demand.

The synchronizer guarantees the consistency state between different MVE servers. Dif-

ferent consistency model can be applied depending on the system requirement. We here

present two use cases. First, the storage service only provides system-wide consistency.

After the remote file is loaded, the consistency state is no longer the concern of storage

service. To avoid conflict update to a single remote file, strong consistency model must

be applied to guarantee the data from different servers are synchronized before writing to

storage.

Second, the synchronizer provides a global view of players in different server instances.

The players on one server instance should acknowledge the players in another server in-

stance, if they are in the area of interest.

The resource manager keeps track of the system load of each server, and creates new

server instance whenever necessary (R2). All server instances use the same copy of server

programs. By automatic scaling up the number of servers, the connections from clients

can be processed without overloading a single server, which improves scaliability.

4.2.3 Function Invokers

Similar to a traditional function invoker, a serverless function invoker ( 4○) is a caller of a

remote serverless function. One function invoker can call one or multiple specific functions.

A serverless function invoker accepts parameters from MVE servers, constructs a request

with them, and sends it to a serverless function. When the serverless function is executed,

the result is returned to the invoker, which then passes it to the server. Typically, an

invocation request is an HTTP request, because HTTP is the standard communication
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protocol of current serverless platforms. The function invocation process can be either

synchronous or asynchronous depending on the system requirement.

4.2.4 Storage Client

The storage client ( 5○) is used to connect to the storage service of cloud platforms for

Input/Output (I/O) operation. Usually, cloud platforms provide SDK for development.

Because the storage is remote, the latency is higher than the local filesystem, which can

lead to QoS degradation. To meet QoS requirements (R1), different cache policies should

be applied depending on the needs of latency hiding. The remote I/O process can be either

synchronous or asynchronous depending on the system requirement.

Generally, cloud platforms provide different types of storage services for different pur-

poses, such as persistent or ephemeral. The storage client should carefully select storage

service based on purposes. For example, player data should be stored in persistent services,

while temporally simulation data that will be deleted after retrieved should be stored in

ephemeral service.

4.2.5 Serverless Functions

Implemented by developers, serverless functions ( 6○) are the business logic of an applica-

tion. It can utilize other components in cloud platforms. A serverless function is designed

to serve a single purpose. In the context of MVE, it can be used to serve one specific

feature.

To satisfy R1, two types of tasks are designed to be serverless functions. First, the task

that is not directly related to interaction activities with players can be migrated to server-

less. Typically such a task can be run independently without blocking the main thread

of an MVE server. For example, environment simulator changes the world environment,

e.g. weather, time, after a certain time or triggered by command events. The simulation is

completely independent regardless of other events from the MVE server, and usually does

not need to be complete within one game tick. Another example is to unban a specific

player after a certain time. We can safely offload such tasks to serverless functions with-

out the concern of added latency. The functions can be triggered either by MVE servers

through invokers, or other trigger events provided by serverless platforms ( 7○), such as a

timer. The MVE server then retrieves the updated simulation results and changes its game

state periodically, e.g. during several game ticks.
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Second, the task that is computation-intensive can be migrated. This indicates that

the task completion time surpasses the introduced latency between serverless function and

MVE server. To understand which tasks are computation-intensive, we need to conduct

performance analysis. For example, Yardstick [8] shows that the majority of the data sent

by MVE server is related to the generated terrain data while players explore the world.

Thus, we can offload the terrain generation task to a serverless function, so that the system

load of the MVE server is lowered.

4.2.6 Monitoring Service

Monitoring Service logs all events and metrics from the cloud platform. In a serverless

MVE, the serverless functions should call the monitoring API, so that the metrics can be

recorded and retrieved for future analysis (R5).
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Serverless MVE Implementation

We implement a serverless MVE prototype based on Opencraft, which is a Minecraft server

written in Java, specific for research in massivizing Modifiable Virtual Environments [30].

We choose Microsoft Azure as our cloud platform and implement the prototype with its

services and components. In this chapter, we discuss the implementation details of our

serverless MVE prototype.

5.1 Persistent Cloud Storage

Currently, Opencraft stores persistent data in local filesystem. As our first step to realize a

serverless MVE prototype, we migrate them to cloud storage. Cloud storage provides three

advantages through its abstraction. First, the data can be accessed in a distributed way,

e.g. by different game instances and serverless functions. Second, cloud storage guarantees

high scalability. By migrating persistent data to the cloud, the scalability is improved in

terms of Input/Output (I/O) service. Third, cloud storage only charges for the used space

and requests. Over-provisioning is no longer necessary. This leads to lower costs.

Azure provides different cloud storage services. In our implementation, we use Azure

Blob Storage, which is an object store for text and binary data. As a comparison, we add

a Microsoft SQL back-end for structured data so that we can evaluate the Azure Serverless

SQL service.

The implementation includes three steps. First, we create a class BlobClientAzure to

serve cloud IO requests. The class utilizes Azure Blob Storage SDK to create clients for

the three components. It provides different upload and download methods to serve different

scenarios. This includes execution policies, i.e. synchronous and asynchronous, and data

type, i.e. plain text, stream, and file. Additionally, we notice that Azure SDK reads data
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Table 5.1: Details of Persistent Data on OpenCraft. Legend: Server Initalization (SI), World
Save (WS), Player Login (PI), Player Logout (PO), Player Movement (PM), Access Frequency
(Freq), File Size (Size).

Access Event
ID Data Format SI WS PI PO PM Freq Size
PS1 Player NBT X X Low Small
PS2 Player Statistic JSON X X Low Small
PS3 Player Metadata JSON X X X Low Small
PS4 World Metadata NBT X X Medium Small
PS5 Scoreboard NBT X X Medium Small
PS6 Structure NBT X X Medium Medium
PS7 Region Anvil X X X High Large

from storage service to memory as output stream, and writes input stream to remote.

While Java reads data from local storage to memory as input stream, and writes output

stream to storage. Thus, the class also provides conversion between input and output

streams by using ByteArray as an intermediate. For connecting to Microsoft SQL, we use

JDBC driver.

Second, we analyze the existing persistent IO services on Opencraft and classify the data

types. Table 5.1 shows the major types of persistent data and their properties. The table

does not include events triggered by commands from administrators.

Name Binary Tag (NBT) is a tree data structure consisting of various tags, each of which

includes a name and an ID. The data structure can be compressed by GZip. PS1, PS3,

PS4, and PS5 employ such a format. Anvil is a file storage format mainly used for storing

chunk data. It is a container of NBTs and it is used for storing region data (PS6) where

each region anvil file stores a group of 32x32 chunks.

Third, we extend the I/O service classes for each persistent data and modify the storage

provider class to create I/O services with our new classes when the configuration is set to

Azure. For small and medium files (PS1 - PS6), we load the remote blobs into memory

streams using BlobClientAzure class, and write the streams directly to remote blobs when

save is needed. For large files like PS7, we apply latency hiding policies to hide the latency

from players (Discussed in Section 5.1.1).

Forth, we assign different execution policies depending on the requirements of event logic.

For example, for player login event, we assign synchronous read for player data, because

the data must be ready before logging in the player. We cannot load the data in advance as
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we cannot predict which player will login next. The write process is asynchronous because

wait is not necessary.

For auto save event, we assign asynchronous write for all data so that the process does

not block the main thread. For server stop event, we assign synchronous write to wait for

all data to finish uploading.

5.1.1 Latency Hiding Policy for Region File

Region Files (PS7) contains a large number of chunk data, which leads to high latency

when reading the files. If the players move to a location that is not previously loaded,

an incomplete map will show up while being loaded. Additionally, the data is frequently

accessed, which can result in high bandwidth usage if the instance frequently requests the

files from cloud storage. As a result, a cache policy is necessary.

Opencraft has a default cache policy based on Guava Cache for efficiently accessing

multiple region files simultaneously. The default cache is between local filesystem and

memory. We extend the class and add a cache layer between local filesystem and remote

storage, making it a three-layer cache. The reason we keep local filesystem layer is that

the memory resource is not enough to keep all region file cache, the cache size is small

and expiry time is short. This results in frequent save to remote storage, leading to high

bandwidth usage. By using a local filesystem layer, we can delay the upload process to

save bandwidth.
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Figure 5.1: Process of Region File Cache (Read).

Figure 5.1 shows the read process of Region File cache, which is triggered by the change

of player location event. It checks which region file stores the current chunks, and finds
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the data, in the order of memory, local filesystem, and remote storage. If the data is found

in a layer that is not memory, the data is then cached to memory.

To improve the hit rate of memory cache, we also utilize a preloading policy. The

instance should not only cache the regions that are visible to players, but also those that

the players will likely visit. We use here a simple distance policy, that is to calculate

newLocations[] = currentLocation ± distance, where distance is a pre-defined value.

These new locations will likely be visited by the player. Then we check the region file

names of the new locations. If any new file name does not match the original one, the new

region files are cached in the same way.

Loaded
Chunks

(PlayerView)

Preload Chunks
(Simple Distance

Policy)

Unexplored
Chunks
(Infinite)

Figure 5.2: Demonstration of Simple Distance Preloading Policy.

Figure 5.2 demonstrates the simple distance policy in player’s view. The chunks in blue

are loaded by default, which is within the player’s view distance. The chunks in green is

the additional chunks preloaded by simple distance policy. The chunks in white represents

the infinite unexplored chunks.

Figure 5.3 shows the write process of region file cache. The write request is first written

into memory buffer in size of 4KB, which is the typical minimum write size of filesystems.

When write is complete, the data is stored directly into local file cache, so that memory

cache and be unloaded anytime safely. Upload to remote storage is triggered by events,
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such as auto save and server stop.
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Figure 5.3: Process of Region File Cache (Write).

5.2 Serverless Functions

In this section, we discuss our implementation details of serverless functions based on Azure

Functions.

One common way to migrate a monolithic system to serverless functions is to break down

the system into small services, which are loosely coupled and communicated via HTTP

requests by passing the needed variables [24].

Azure provides core tools for deployment and a Java SDK. Azure Function Core Tools

deploy serverless functions based on a set of properties, including the application name,

endpoint, datacenter region, operating system, subscription plan, and monitoring service.

Java SDK provides a set of definitions for a specific function, including the name, trigger,

response, event, and connection strings.

Making Opencraft serverless is a challenge because many services are tightly coupled

with references to a large number of classes and some of them are stateful. In this work,

we mitigate four game features to serverless functions, and our process for each function

include three steps. First, we identify the code segment that handles the game feature, and

move it to serverless function with Azure SDK. Second, we create a function invoker that

receives objects from the game, constructs requests, receives returns, and parses the returns

to objects. Third, we modify Opencraft to interact with the invoker. In this process, we

utilize a new scheduling policy to asynchronously interact with the invoker, and checks the

asynchronous results during game tick.

5.2.1 Player Status Operation Function

Player status operation service handles the requests for looking up player status, banning

and unbanning a player, changing the player role, and managing whitelist. The service

mainly concerns I/O operations with the specific player metadata, which is lightweight
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with few references to other game classes. Thus, it is easy to migrate to a serverless

function.

Our implementation includes the following steps. First, we analyze two classes Glow-

BanList and UUidList, which are the main classes for operating player status. We see that

the original process loads the metadata from files into Map during server initialization,

and dumps the Map to files whenever there is a change.

Second, we create a new Azure Function PlayerOperation, which listens to a HTTP

trigger, and operates low-level I/O operation with blob storage. The function provides an

API interface that accepts JSON as input. For each triggered request, the function parses

the input JSON, identifies the resource, operation, and additional information from the

request body. It performs I/O operation accordingly with BlobClientAzure and returns the

result. To reduce request size, besides implementing the original methods (getall, setall,

isban, expungeBan), the function provides methods for modifying a single resource (get,

ban, and unban one player).

Third, we overwrite the original methods in Opencraft. To read metadata, the method

sends a request to serverless function with HTTP client, then processes other logic with

the obtained results. When there is an operation on a player, the method sends the single

request to serverless function asynchronously. If an exception occurs during the process,

the methods fall back to the original one, i.e. dump the whole map, and send it to the

function. Also, expungeBan operation is removed from the MVE server.

Last, to automatically expunge bans when expired, we create a new Azure function

with 1-minute timer tigger. The function sends multiple expunge requests with different

resource types to PlayerOperation. Function PlayerOperation then performs expungeBan,

which unban players if their expiry time is before the current system time, by iterating

through the requested resource.

5.2.2 Player Login Handler

Whenever the server receives a login request from client, the server looks up the player

data, e.g. username and authentication information. If the player has played before, it also

looks up previous game data such as last location, inventory, bed location, player status,

and statistics.

We mitigate player status operation to serverless functions as discussed in Section 5.2.1.

We further mitigate the other process to serverless functions. The process is feasible

because Opencraft provides a data reader implementation. We move the data reader to

serverless function handler, and provide an API for looking up data.
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The Opencraft default scheduling policy is not capable for handling player login after

we move some logic to serverless functions. The reason is that the default policy waits for

asynchronously tasks to return results between different schedulers within a tick. In the

event of cold start of serverless function instances, which may take up to several seconds,

the default schedulers stall the tick loop while waiting for results for player login event.

We implement a new policy for handling player login. When the server receives a login

request from client, it starts a new Callable to retrieve data from serverless functions, and

stores the Futures in a ConcurrentHashMap. During every tick, the server checks whether

the Futures are done. If so, it processes other login logic, e.g. assigning the player into the

world, and sending related packets. To avoid the game tick being overloaded, player login

events are handled in sequence. Each tick the server only checks Futures once and processes

one Future login task. Only after the current login process is complete or cancelled, the

server starts to process the next one.

5.2.3 Environment Simulation Function

Environment Simulation includes time and weather simulation, which changes the game

time and weather as per time changes. The default implementation maintains several

counters that are increased every tick, and changes time and weather parameters based on

counters with random factors. If any condition changes, the server calls related events and

notifies players.

To make the environment simulated serverlessly, we first move the code segments that

handle the simulation to serverless functions, which includes going through the in-game

day cycle, changing weather parameters, and processing game master commands.

Second, to keep the data persistent upon function invocation, we store the data in

blob storage. The function handler reads history values from blob storage at the start of

invocation, and store the new values into blob storage at the end. By doing so, multiple

server instances can share the same simulation results.

Third, we modify the tick logic for environment simulation on Opencraft, which is sim-

imlar to player login as discussed in Section 5.2.2. Every thirty seconds, the server requests

the latest simulation results from serverless functions asynchronously with Java Callable,

and store the Futures with a ConcurrentHashMap. During every tick, the server checks

whether there are completed Future tasks. If so, the server gets the results, calls related

events, and notifies players.

Last, we keep the local simulation so that the players can observe the effect of commands

immediately. Upon receiving environment simulation commands, the server performs local
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simulation and broadcasts the results immediately to players, then it sends the local results

to serverless functions. The serverless functions take the local simulation results as offsets

and perform serverless simulation accordingly, then return and store the results.

5.2.4 Terrain Generation Function

Terrain Generation is one of the heavy computations when players explore the infinite

world. There is already one function implemented on AWS Lambda that accepts coor-

dinates, world seed, and other stateful objects as input, and returns the chunk data as

output.

We migrate the AWS Lambda function to Azure Function. First, replace the function

library to Azure function with HTTP trigger. AWS Lambda requires input and output

to be JSON, thus extra (de)serialization processes are necessary. However, for Azure

function, we can send any format of data. As a result, we remove the serialization that is

not necessary at Azure Functions to improve performance.

Second, we modify the function invoker. AWS Lambda provides a library with Function

invoker, while there is no in Azure Functions. Thus, we reuse our implemented invoker and

make it called by the function which loads generated chunks for all players during every

tick.

5.3 Gateway

We implemented a layer seven gateway prototype with MCProtocolLib [31], a library that

wraps network packets for both Minecraft server and client protocols. The gateway is the

entry point for policy-based packet forwarding between MVE clients and servers.

Figure 5.4 shows the flowchart of our implemented gateway. The gateway listens to a port

and accepts incoming connections with server protocol after start. Two packet handlers,

namely server protocol handler and client protocol handlers, are the main components of

the gateway. They work in an event-driven mode where incoming packets received from

game clients or servers are events that trigger the functions. The gateway maintains a list

of player info data in memory, which stores the current player states.

The server protocol handler acts as a server to game clients. There is one server

protocol handler per gateway. It identifies and handles mainly three types of packets.

First, LoginStart Packet is the first packet that the client sends during a login process,

which indicates a new connection from a client. If the gateway receives such a packet, it

looks up player information from the packet, performs the authentication process. Then, it
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Figure 5.4: Flowchart of Gateway for Policy-Based Packet Forwarding.

looks up the initial server id for the player according to server split policy, launch a client

protocol to connect to the server, and saves the session. The client protocol also contains

a packet handler, which will be discussed later.

Second, policy-related packets are to identify whether the player should be transitted to

another server. If the gateway receives such packets, it transits the players to a new server

according to the policy and notifies the player.

Third, packets that need to be forwarded are related to game contents. The gateway only

forwards In-Game packets received from MVE instances to the client. Other packets which

are processed internally, such as Handshake and KeepAlive, are ignored. The gateway looks

up whether or not the player is in game state. If not, it saves the packets and replays after

the player reaches in-game state.

The client protocol handler works as a client to game servers. There is one client

protocol handler per player. It works in a similar way as server protocol handler, which

receives packets from MVE instances, identifies the packet types, and performs actions

accordingly.

First, for in-game packets, the handler updates the player status to in-game, so that the

packet handler of server protocol can start to forward in-game packets.
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Second, it checks whether or not the packets should be forwarded. The client protocol

handlers only forward in-game packets. All other packets, e.g. Handshake, KeepAlive,

ServerDisconnect are handled internally in the gateway. Also, it ignores server initialization

packets such as ServerJoinGame so that the game client does not reload.

The gateway is highly scalable with its event-driven modes based on incoming packets.

The players connect to gateway with hostname, which is updated with DNS load balancer

that maps to different gateways based on their IP address.

5.3.1 Policy for Multiple Server Instances Routing

The terrain in Minecraft is infinite and is presented with coordinates x, y, and z. We

implement a simple policy based on the x and z coordinates of player locations, where

each server handles a part of the terrain. The players are redirected into different servers

based on their current position. We do not consider the y axis here because it has a bound

between 0 to 255 and it can only be reached with fly action.

Figure 5.5 demonstrates a policy to split terrain into several server instances. (0,0)

indicates the origin of coordinates. The arrow indicates the positive directions. For two

server instances, we split the infinite world into two halves, with line z at origin as the

dividing line. Similarly, for four server instances, four lines split the terrain with coordinates

where one of which is zero and the other is from zero to positive or negative infinity. Each

part of the terrain is still infinite after being split.

(x<0, z)

(x>0, z)

2 Servers 4 Servers

(x<0, z<0) (x<0, z>0)

(x>0, z<0) (x>0, z>0)
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z z
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(0,0) (0,0)

Figure 5.5: Demonstration of Splitting Terrain into 2 and 4 MVE Instances.

The policy-related packet is ClientPlayerPosition. When the client protocol packet han-

dler receives such a packet, it checks whether the player reaches the bound of terrain in
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the current server. If yes, the gateway notifies the player with messages and starts the

transition process.

The transition process first looks up the new server id according to the world bound of

each server. Then, it launches a connection to the new server and saves the session. Only

after the new session is established, the gateway disconnects the previous session. To replay

the player movement during the transitting process, the gateway sends a new ClientPlay-

erPosition packet with offset to new server, and sends a new ServerPlayerPosition packet

with offset to the client.

The handler caches the packets received before the new session is established and the

player reaches in-game state, and replays them After the player reaches in-game state. The

related packet handlers then process these packets accordingly.
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6

Benchmark Suite

In this chapter, we present a benchmark suite for benchmarking the serverless MVE proto-

type. We first define a set of requirements, and present the system design overview. Then

we discuss the implementation details. Finally, we present an overview of the metrics we

collect during the benchmark.

6.1 Requirements

Currently, there is no research in benchmarking a serverless MVE. Defining a set of re-

quirements for benchmarking a serverless MVE is difficult. We follow general guidelines

on benchmark [32], and adapt domain-specific benchmarks on MVE [8] and serverless [27].

R1 Relevance The benchmark should generate and submit suitable workloads that are

relevant to a serverless MVE, and collect metrics that are relevant to performance

variability.

R2 Fairness The benchmark should analyze performance on a class of compatible sys-

tems, i.e., serverless MVEs that utilize similar architecture. Also, the benchmark

should allow the comparison of a set of metrics based on different configurations.

There should not be a bias toward one system or one configuration.

R3 Portability The benchmark should run on general servers, regardless of specifica-

tion. The benchmark should be configurable to adapt different server specification

and operating systems.

R4 Usability The benchmark should be easy to set up and configure. The steps for

deployment, benchmarking, and result collections should require few manual involve-

ment.
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R5 Low Overhead The benchmark should not influence the system performance. To

obtain accurate benchmark results, the benchmark suite should not pose significant

overhead to the system performance.

R6 Reproducibility The benchmark results can be reproduced when feeding the same

workloads in the same environment. This guarantees the validity of benchmark

results.

6.2 System Overview

To satisfy the benchmark requirements, we design a benchmark suite. A high-level design

of our benchmark is shown in Figure 6.1, where the arrow indicates the data direction.

The benchmark suite includes three main components, benchmark server and benchmark

client for deployment and metric collection, and a tailor-made MVE client specifically

for benchmark purposes. The components are communicated with each other through

client/server architecture with reliable TCP connections, which can be used on systems

that utilize similar architecture (R2).
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Figure 6.1: Benchmark Suite Overview.

6.2.1 Benchmark Server

The benchmark server consists of three components, namely configuration, deployment,

and metric collection.
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The configuration file stores global parameters related to benchmark as defined by

users based on a template prior to benchmark (R4). We use JavaScript Object Notation

(JSON) format, which is a standard for structured data. Table A.1 shows the parameters

used in the configuration file. We define here the connection and authentication details for

all components of the benchmark suite, including benchmark setting, benchmark server,

benchmark clients running on MVE servers and clients, and serverless functions.

The deployment process automatically sets up and controls benchmark environments

on destinations, including MVE servers, MVE clients, and serverless functions. It mainly

uses SSH protocol, which is a standard service running in modern Linux distributions and

can be used for transferring files and running bash commands across platforms (R3). The

deployment scripts are written in Python 3. The process is as follows. First, it reads the

configuration of all MVE servers and clients, establishes SSH connections with them by

utilizing paramiko, which is an SSH module in Python.

Second, it transfers all necessary files to MVE Servers and Clients via SFTP. For MVE

servers, the files to be transferred include installation scripts, benchmark configuration,

benchmark client for MVE server, Opencraft server, and server configuration. For MVE

clients, the files to be transferred include installation scripts, benchmark configuration,

benchmark client for MVE client, and MVE client. To shorten file transmission time, we

check the MD5 hash for large files that already exist on remote components and match

them with local files. Only when the two MD5 hashes do not match, the files will be

transmitted.

Third, it executes installation scripts on all MVE servers and clients. The installation

script is written in bash, which is a standard shell in most modern Linux distributions.

The script is compatible with all operating systems that support bash shell. It installs

necessary software, including Python 3 runtime, openjdk for java runtime, and screen

for virtual consoles. After the deployment process is complete, users can choose to start

benchmark.

The benchmark process first starts a TCP socket, listens to a port, and waits for

incoming connections from benchmark clients. Second, it checks whether there are pending

iterations. If true, it starts benchmark clients on MVE servers and MVE clients after

all MVE servers are started. The benchmark clients start to collect metrics locally and

establish TCP connections with the benchmark server. The services are run through

detached screen sessions so that they do not block the main thread of the benchmark

server. Also, by using screen sessions, users can check the intermediate process by directly

interacting with them.
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When the benchmark server receives a new connection, it starts a new thread for handling

messages and records the connection details. Table A.2 shows the messages exchanged

between benchmark server and benchmark clients.

When an MVE client finishes its task, the benchmark server retrieves its metrics via

SFTP, removes it from record, and checks whether there are other active MVE clients for

the corresponding MVE server. If there is not, it sends shutdown command to the MVE

server and removes it from the record as well. The benchmark server then retrieves metrics

from the MVE server via SFTP. The reason to retrieve metrics after benchmark ends is

that sending real-time metrics influences network metrics, and may impact the network

conditions, which leads to performance overhead (R5).

Periodically, the benchmark server checks whether there are active MVE servers in the

record. If there is not, it retrieves all function metrics by calling Application Insight

API. The current iteration is considered complete. The benchmark server starts the next

iteration from the second process. When all iterations are complete, the benchmark server

ends.

6.2.2 Benchmark Clients

We implement benchmark clients in Python to run on the MVE server, MVE client, and

gateway respectively. We use subprocess.Popen() method to spawn new processes so that

we can perform underlying operations, such as recording process id and sending kill signal.

For system metric collection, we use psutil, which retrieves system metrics on a running

process from system counters. We record the counter data once per second. For application

metric collection, we use the internal event logging.

The benchmark clients first establishes a TCP connection with benchmark server. It

spawns a new process for related software based on their roles, e.g., MVE server, MVE

client, or gateway. After the software is started, it spawns a new process for metric collector.

Then, it starts an indefinite loop for receiving messages from the benchmark server.

When the task is finished, the benchmark client sends a message to notify the server.

When shutdown command is received, the benchmark client kills the two processes, sends

the file paths of metric collections to the benchmark server, and ends itself.

6.2.3 MVE Thin Client

The MVE thin client submits workload to the MVE server during runtime and terminates

itself when tasks are complete (R1). Our MVE thin client is based on YardStick [8], which
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provides by default some Executors that perform simple tasks, such as walking, breaking,

and building a block. Also, it provides pathfinding and collision avoidance.

We extends Yardstick in two ways. First, we add new features such as chatting and

teleporting. We do so by constructing new network packets with MCProtocolLib [31],

which is a library that wraps network packets for Minecraft protocols. Second, we add

experiment controllers to submit our workload, which we discuss on Section 6.4.

6.3 Overall Benchmark Process

The overall process of a benchmark is as follows. First of all, the user modifies the con-

figuration file to define necessary benchmark and authentication parameters. Then the

user runs the deployer, which automatically sets up the benchmark environment on MVE

servers, MVE clients, and serverless functions. After the environment is set up, the user

can start the benchmark.

After the benchmark is started, the MVE clients submit workload to the MVE servers

based on configuration. The MVE servers invoke respective serverless functions during run-

time depending on the workload. Metrics are collected asynchronously and stored locally

at a constant time interval so that the collection does not pose overhead for performance.

When the benchmark is complete, the benchmark server is notified and will retrieve metrics

from all benchmark clients. The user can perform data analytic on the collected metrics.

The experiment is repeated based on the pre-defined number of iterations.

In the event of failure, the benchmark server reports exception information and tries to

restart the benchmark.

6.4 Workload

Due to the lack of publicly available actual traces on MVE games, we do not have a real

world workload. Considering the implementation of our serverless MVE, we design two

player behaviors, namely Straight Walk Behavior, and Random Behavior, and use them

as the workloads for our benchmark. The goal of Straight Walk Behavior is to explore as

much terrain as possible with a given duration, while Random Behavior is to emulate the

random activities of players during actual gameplay.

Non-player workloads are the same as what we see when actually playing the game. In

this thesis, we only evaluate the serverless MVE with player behaviors. The non-player
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workloads stay constant between iterations to avoid influence on the results and provide

conditions for reproducing experiments (R6).

6.4.1 Straight Walk Behavior

The Straight Walk Behavior is to keep walking away from the spawn location towards

a fixed direction based on the bot ID, without doing anything else. The walking model

emulates bots to explore as many regions as possible in a provided time. Figure 6.2

demonstrates the walking directions, which are star-like. X and Z represent the longitude

and latitude coordinates respectively. The number represents the current bot ID, which is

increased every time a new bot joins.
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Figure 6.2: Walking Directions of Straight Walk Behavior.

Overall, for bot IDs between 0 and 7, we add a fixed distance to X, Z, or both. The

number can be positive or negative depending on the directions. For IDs larger than 7, we

add different distances to X and Z, which is a multiplier of the distance. Intuitively, the

bot walks towards the intermediate direction of the two nearby bots.

We notice that the pathfinding algorithm may fail because there are too many chunks

blocking the way between locations at two ends. The bot stops walking if no available

path is found. To prevent the bot from standing still, we set with Java Random a new

destination that is close to the source location and set the bot to walk there. After the bot

arrives in the new destination, it will attempt to walk towards the fixed direction again.
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6.4.2 Random Behavior

The Random Behavior is to perform common gaming actions, e.g., walk, break or build a

block, send a chat message, or change inventory in a random fashion. For each idle bot,

a random double number between 0 to 1 is assigned, with the current system nanosecond

as a random seed. The bot performs different actions based on which range the random

number falls into.

Table 6.1: Possibility of Different Actions on Random Behavior.

Possibility Action Detail
40% Walk Walk to a random destination with random speed in

range [0.1, 0.4]
30% Break / Build Break a nearby block, or place a stone on top. Each

operation has 50% chance.
20% Stand Stand still and do nothing
5% Send a message Send a message to all other players
5% Set inventory In creative mode, retrieve a random material and hold

it on hand

Table 6.1 present the possibility of different actions. Each action takes at least one

second. If the action is less than one second, the bot stands still to fill up one second

before proceeding next action. In random walk action, there is no boundary for walk

destination. Additionally, the walking speed is set to be between 0.1 to 0.4, which covers

the average walking speed under different walking scenarios, including slow walk and fast

run.

We set different possibilities for two reasons. First, we consider the game property.

Previous studies show that walking is an important and major action in games with virtual

environments, e.g., Second Life [33] and Pokemon Go [34]. Players walk to their interested

areas or walk to a gathering point for events. Then, interaction with the environment,

which can be represented by breaking or building a block, is the key element for a game

with MVE.

Second, we consider the system resource usage. Different actions result in different system

resource usage in the MVE server, for example, walking action requires more resources when

the players explore the indefinite terrain, while chatting requires fewer system resources.

With a higher possibility of walking and interactions with the environment, we can better

compare the resource usage and the variability.
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6.5 Metrics Collection

Table 6.2 shows a list of metrics collected during benchmarking. The metrics are grouped

based on their types, and the sources where the metrics are collected.

Table 6.2: An Overview of Benchmark Metrics. Legend: MVE Server Instance (SRV), MVE
Client (CLT), Serverless Function (FUN), Storage Account (STG).
Metric Type Component Details
CPU Usage System SRV, FUN CPU usage of MVE server
Memory Usage System SRV, FUN memory usage of MVE server
Disk I/O System SRV I/O usage of MVE server
No. of Packets Network SRV Number of network packets
Round Trip Time Network SRV Network latency
Tick Duration Application SRV Time taken to process a tick
No. of Players Application SRV Number of concurrent online players
Function Duration Application FUN Time taken to run a serverless function
Server Latency Application STG Internal latency of cloud storage
End-to-end Latency Application SRV, FUN

STG, CLT
Time taken finish a task. Different def-
inition on different components.

For metrics originating from MVE servers and clients, they are collected with benchmark

client as discussed in Section 6.2.2 and retrieved by benchmark server after the benchmark

completes. For metrics originating from cloud platforms, e.g., serverless function and

storage service, they are collected with the monitoring API.
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Experimental Setup

In this chapter, we present our experimental setup. We first present an overview of the con-

ducted experiments and the configuration of every components involved in the experiment.

We then discuss each experiment in detail.

7.1 Experiment Overview

We conduct experiment in two parts. First, we conduct microbenchmark (Section 7.4) to

study the performance variability of different components on Azure platform. This does

not require the game system to start. Table 7.1 shows an overview of microbenchmarking

experiments. Ref refers to the detailed discussion of the experiment and MF refers to the

main findings from conducting the experiment.

Table 7.1: An Overview of Microbenchmarking Experiments.

Experiment Ref Target MF
Function Runtime and Life-cycle Variability 7.4.1 Serverless Function MF1
Blob Storage Latency Variability 7.4.2 Blob Storage MF2
Storage and Serverless SQL Variability 7.4.3 Blob Storage, SQL MF3

Next, we conduct benchmark with real game systems (Section 7.5). Table 7.2 shows

an overview of macrobenchmarking experiments. MVE Systems as target means the

experiment is conducted on both the monolithic and the serverless MVE.

We define the monolithic MVE as the unmodified Opencraft server without using any

serverless function or cloud storage. While for serverless MVE, we define it as our im-

plemented serverless MVE prototype with cloud storage and all implemented serverless

functions enabled.
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Table 7.2: An Overview of Macrobenchmarking Experiments.

Experiment Ref Target MF
Effectiveness of File Cache Policy 7.5.1 File Cache Policy MF4
Scalability of Serverless MVE on One Instance 7.5.2 MVE Systems MF5
Variability of Fixed Workload on One Instance 7.5.4 Serverless MVE MF6, MF7
Scalability of Gateway with Multiple Instances 7.5.3 Serverless MVE MF9
Worse Cases of Player Perceived Latency 7.5.5 MVE Systems MF8

7.2 Configuration

We conduct experiments on the Azure cloud platform. We use three main cloud services,

namely serverless function, storage account, and virtual machines. We present the config-

uration we use in our experiment. Furthermore, we present the configuration of the MVE

server and client.

7.2.1 Serverless Function

Azure does not provide options to directly tune the performance for Azure Functions. The

specification of Azure Functions is shown in Table 7.3. We choose consumption plan for all

our functions because this plan provides the most common on-demand serverless service.

The consumption plan provides a fixed amount of resources, i.e. 1.5 GB RAM and 1 CPU.

Table 7.3: Specification of Azure Functions.

Option Value
Hosting Plan Consumption
Runtime Version 3.0.15828.0
Operating System Linux
Runtime Stack Java 8.0
Location Germany West Central

7.2.2 Virtual Machines

We choose Standard_D4s_v4 as the size of all virtual machines used in our experiments.

The plan comes with latest generation D CPU and is for general purpose. Table 7.4

shows the details of specification. From reading /proc/cpuinfo, the CPU model is Intel(R)

Xeon(R) Platinum 8272CL CPU @ 2.60GHz.
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Table 7.4: Specification of Virtual Machines.

Option Value
VM Size Standard_D4s_v4
vCPU 4
Memory 16 GB
Storage Type Premium SSD LRS
Operating System Ubuntu 20.04 x64

7.2.3 Storage Account

Unless stated otherwise, the storage account configuration used for our experiments is

premium block blob plan (Discussed in Section 7.4.2) with local redundancy. The default

access tier is hot. The account version is V2. Also, all storage requests are communicated

with SSL, because it is the default option in the Web today.

7.2.4 MVE Server and Client

For reproducibility, all experiments were conducted on the same world, i.e. the same world

seed. We assign for all MVE servers a random world seed 6572920767464630924, which

we retrieve during experiment warm-up. The world is the default type of generation that

includes various landscapes. With the same world seed, the same world is presented during

each experiment. If we feed the same bot behaviors, the results are the same.

The server authentication service is turned off so that our MVE thin client can emulate

players to connect to the server during experiments without prior registration.

For showing in-game graphic content, we use the official Minecraft:Java Edition client.

The version is 1.12.2. All configurations are default.

7.3 Metrics

Table 6.2 shows a list of metrics collected during benchmarking. Our evaluation focuses

on three types of metrics: metrics of cloud services provided by the platform, system and

network metrics of the virtual machines used for running MVE services, and application

metrics retrieved from MVE servers and clients. In this section, we discuss important

metrics and define game states.
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7.3.1 Latency: Using Cloud Services

We discuss the important metrics of cloud services we use in our implementation. The

metrics are provided by either Application Insights or Azure Monitor.

Function Duration. Two factors directly impact the performance of a serverless sys-

tem: the execution time of each invocation, and the latency to invoke the function. The

first factor is the internal runtime of a function, which is determined by the underlying

hardware of the serverless platform. The second factor includes the latency of network and

the latency that the serverless platform routes the requests to specific function handlers.

The two factors sum up to end-to-end latency of invoking a serverless function.

Storage Account. Azure Monitor for storage account provides two key metrics: server

latency, which is the latency of processing a request internally, and Azure end-to-end

latency, which is the latency between a request is received from a client and an acknowl-

edgement is received from the client. However, we notice that Azure does not provide raw

data points for these two metrics. One of the aggregators, including maximum, minimum,

average, and total, must be applied for a time interval. The minimum interval is one

minute.

Java End-to-End Latency

Request

Azure Blob Storage

Return

Java
BlobClientAzure

Azure Server Latency

Ack

Azure End-to-End Latency

Timestamp

Timestamp

Figure 7.1: Different Latency Metrics with Timestamp.

Additionally, we present Java End-to-End Latency, which is the latency between a re-

quest is sent from blob client and the file is received from blob storage. Figure 7.1 shows

three latency metrics on timestamp for one request, where the grey blocks indicate the

included events.

7.3.2 Maximum Players: Scalability of the System

One common metric to measure the scalability of a system is the number of users. In this

work, we measure scalability as the maximum number of concurrent players performing

actions. We compare two systems with an increasing number of emulated players perform-

ing actions based on the behavior models. If one system supports more players before it
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is overloaded than the other one, we say that the scalability is improved on this system.

The approach is widely used to measure the scalability of interactive systems, e.g., online

games [35] and web applications [36].

In practice, we approximate the maximum number of concurrent players as the number

of players at the time before the system is overloaded. The reason is that the system cannot

connect more players while providing the guarantee of QoS when it is overloaded. For game

instances, we use tick duration to indicate the overload state (Discussed in Section 7.3.3).

7.3.3 Tick Duration: Overload State

We define overload state as the first tick that is over 50 ms with a rolling average of 50

ticks, which are 2.5 seconds if the server is not overloaded. The reason is two-fold. First,

the server is run at a tick rate of 20 Hz, which is invoked every 50 ms. If a tick does not

finish within 50 ms, the next tick is delayed, which may leads to delayed of overall game

update.

Second, instantaneous ticks over 50 ms do not immediately cause the server overloaded,

because the next tick duration may be significantly lower, which brings the game loop to

normal and is not noticeable to the players. Thus, we apply a rolling average to the data

and focus on the values over 50 ms.

7.4 Microbenchmarking

In this section, we discuss the mirobenchmarking experiments in detail. We evaluate the

performance variability of serverless function as per invocation intervals, and the variability

of different events involved in the life-cycle of invoking a serverless function (Section 7.4.1).

We compare the performance between three cloud storage solutions: standard and premium

blob storage account (Section 7.4.2), and serverless SQL (Section 7.4.3).

7.4.1 Function Runtime and Life-cycle Variability

In this experiment, we evaluate the performance variability of Azure Functions by sending

the same requests to the target functions multiple times in a fixed interval. The requests are

sent from Azure VM. To avoid interference, all functions with timer triggers are disabled.

Also, we pre-warm the worker so that the result does not include initialization time. As

we feed the same request during every invocation, the latency is expected to have low

variability in ideal conditions.
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We conduct experiment on function TerrainGeneration. The request is constructed with

the same coordinates x and y, world seed, and other stateful objects. The function generates

the requested chunks and returns the same chunk data upon each request. The function

only performs internal computation and does not involve other components on the cloud

platform.

During the experiment, two performance metrics are logged: the function runtime (du-

ration) of each invocation, which is provided by Application Insights, and the end-to-end

latency of a function invocation. The experiment is run with three invocation intervals:

five seconds, one second, and 0.1 seconds. The function is invoked 720 times per invocation

interval.

Additionally, We look into the events during the life cycle of a function invocation.

Although several events occur when a function is called on a pre-warmed worker, Azure

Application Insights only provide logs for three events, namely Executing, Invoked, and

Executed. However, it does not provide runtime for these events. We manually calculate

the runtime of the first two events, as the time difference of one event and its next event.

7.4.2 Blob Storage Latency Variability

In Azure Blob Storage, a basic setting directly impacts performance: standard and pre-

mium performance. In this experiment, we study the impact of reading both small and

large files on two performance plans. We do not consider the write performance because

write operation can be fully asynchronous in our serverless MVE prototype, which does

not impact the overall performance. While for some cases, the players must wait for the

read operation to complete, which directly impacts the overall performance.

The experiment is to download the same files with fixed intervals from storage accounts

with standard and premium settings respectively. We consider use cases with small and

large files on the serverless MVE prototype. For small file, we choose player metadata

banned-players.json, which is 646 Bytes. For large file, we choose region data r.-1.-2.mca,

which is 36.68 Megabytes.

The experiment is conducted on Azure VM with a customized Java program which calls

BlobClientAzure class (Discussed in 5.1). Considering the limitation of Azure Monitor, we

run experiments with a one-minute interval and retrieve the values with total aggregator

every minute. The total value is the raw data because there is only one download activity in

this minute, which involves multiple requests, and their sum represents the overall latency

for this download activity. For each type of file, we download 120 times.
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7.4.3 Azure Storage and SQL End-to-end Latency

We conduct an experiment to compare the performance between Azure premium storage

account and serverless SQL plan. We invoke the two storage back-ends with a Java program

that invokes storage back-end classes (Discussed in 5.1). The program retrieves the same

player data from both blob storage and SQL back-end.

The duration between data request is sent and data is retrieved from storage back-end

is the end-to-end latency. We conduct experiments with request intervals: 0.1 second, 1

second, 5 seconds, and 2 hours so that we can study performance per access frequency. We

log the end-to-end latency.

Unlike storage account, Azure monitor only provides the percentage of CPU and I/O us-

age for SQL, which cannot represent the internal performance because we cannot relate the

resource percentage to processing latency. Thus, we study the performance by analyzing

the end-to-end latency.

7.5 Macrobenchmarking

In this section, we discuss the macrobenchmarking experiments in detail. We evaluate the

effectiveness of the file cache policy for reading data from cloud storage (Section 7.5.1).

We evaluate the scalability of the serverless MVE with one instance (Section 7.5.2) and

gateway with multiple server instances (Section 7.5.3) by feeding an increasing amount

of workload. We study the performance variability of the serverless MVE by feeding a

fixed workload (Section 7.5.4). Finally, we evaluate the worst cases of end-to-end latency

perceived by players during events (Section 7.5.5).

7.5.1 Region File Cache Policy

We implement a three-layer cache policy for I/O operation of the region file (Discussed in

Section 5.1.1). We conduct an experiment to study the overhead of using cloud storage

and the effectiveness of the implemented cache policy.

The experiment is run with one server instance on Azure VM. We log the time of server

event which reads a chunk from the region file. From here our implemented I/O service

tries to look it up from cache. In case cache is hit in either memory or local file, the latency

is lower than 50 ms, which is an acceptable latency for an MVE game. In case of cache

miss, which means that the player has to wait for the file to be retrieved from remote, the

latency will be over 100 ms, leading to degradation of player experience.
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We assign eight bots to join at the start and walk ten minutes with Straight Walk Model

(Discussed in Section 6.4). Prior to the actual experiment, we pre-run the experiment to

generate the corresponding region files, which will be accessed with the same bot activities.

Each region file is at least 1 Megabyte after preparation. The generated region files are

stored in blob storage and are re-used for every iteration.

We conduct actual experiments with three configurations, namely local storage, remote

storage without cache, and remote storage with simple distance cache. For experiments on

remote storage, all local file cache is deleted before each experiment so that we include the

latency of downloading the files in our results. Autosave is disabled so that the files will

not be changed. The experiment is repeated four times for each configuration, and we log

the latency with EventLogger in Opencraft server. The events during server initialization

are excluded from the results as they are not perceived by players.

7.5.2 Increasing Workload for MVE Systems with Single Instance

We compare the system resource usage between the monolithic MVE and the serverless

MVE prototype, to see if the serverless technology benefits MVE.

We aim to get insight into how the two systems handle increasing workloads and how

many players the systems can support before overloaded. We first feed the server with

Straight Walk Behavior workload. Fifty bots gradually join the server at a ten-second

interval. Each bot walks away from a fixed spawn location at a fixed speed with Straight

Walk Model after it joins (Discussed in Section 6.4.1). We use two walking speeds, three

blocks per second, which is walking slowly, and eight blocks per second, which is running.

Each iteration runs for ten minutes.

Next, we feed the server with sixty bots performing Random Behavior. The bots gradu-

ally join the server at a ten-second interval. After a bot joins, it performs random behavior

based on the random number during each task (Discussed in Section 6.4.2). Twenty itera-

tions are run for the random behavior workload and average cases are considered.

7.5.3 Increasing Workload for Serverless MVE with Multiple Instances

In this experiment, we evaluate the scalability of our gateway prototype with multiple

server instances. We run experiment with five configurations: 1 server without gateway, 1

server with 1 gateway, 2 servers with 1 gateway, 4 servers with 1 gateway, and 4 servers

with 2 gateways. All serverless features are enabled for the components.
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We feed an increasing number of bots performing Straight Walk behavior, and log the

maximum supported players before any one of the components is overloaded. As the

gateway is event-driven and does not have a tick loop, we approximate the overload state

with CPU resource usage, which is correlated with tick duration with MVE servers as

discussed on 8.5.

Each experiment is repeated five times and we consider the mean value of maximum

supported players of all iterations.

7.5.4 Fixed Number of Players for Serverless MVE

We study the performance variability of serverless MVE with a single server instance by

feeding a fixed number of players. We conduct the experiment on the serverless MVE

system, as defined in Section 7.5.2.

During each iteration, twenty bots join the server together and perform Straight Walk

and Random behavior for ten minutes. The straight walk behavior produces an almost

same routine under the same world with a fixed seed, thus the workload is considered to be

fixed. With a high number of repetitions, we expect that the variability can be generalized.

While random behavior produces different results on different iterations because of the

random nature.

For each behavior, the experiment is run for fifty iterations. We study the variability

within iterations and between iterations. The bots do not cause the server to be overloaded

under both behavior models as discussed in Section 8.5.

7.5.5 Worst Cases of Player Perceived Latency

Although latency hiding policy is applied for most serverless function invocation and cloud

storage access, some parts of requests remain synchronous in the aspect of players, i.e. the

player must wait for the executions to finish before they can observe the effect.

For example, when players log in, the server retrieves player data asynchronously, which

does not impact the overall performance of the server. However, in the aspect of players,

they must wait until the player data is retrieved and verified before they can play. The

additional wait time is the overhead of using serverless technology.

Another example is the additional latency of player operation after the command is sent.

The server offloads the execution to serverless function asynchronously, however, there is

additional time for the system and the players to observe the effect of commands.
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We conduct an experiment to study the overhead. We assign twenty bots who join the

games and perform Random Behavior. We log the end-to-end latency of login, which is

the latency between the time when the bot sends a login request and the time when the

player is in game state.

One of the bots is the game master. Every thirty seconds, it bans a random player or

check the list of banned players. We log the end-to-end latency between the time when

the game operator sends the command and the time when the game operator observes the

effect.

The experiment is run on both monolithic and serverless systems so that we can study

the overhead of using serverless technology.
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Evaluation

We conduct experiments shown in Table 7.1. In this chapter, we present and discuss the

results we collect from conducting these experiments. We first present an overview of our

main findings, then we discuss them in detail.

The main findings (MFs) of micro benchmarking are:

MF1 The performance variability of serverless functions is high under all invocation inter-

vals on pre-warmed function instances. The variability is caused by both the internal

process of the function and the latency to invoke it. The maximum latency to invoke

the function is up to three times the mean value.

MF2 All storage back-ends on Azure platform present high performance variability caused

by both the internal process and the network latency. As a result, latency hid-

ing policies are necessary when using cloud storage. There are large differences in

performance on different storage back-ends, for example, premium storage account

outperforms standard one in terms of lower and more constant latency.

MF3 Azure Storage Account outperforms Azure SQL Serverless Plan as storage back-end,

in terms of lower overall latency, lower variability, lower cold start time, and lower

cost. We conclude that we should use Premium Storage Account as our storage

back-end.

The main findings (MFs) of benchmarking the real system are:

MF4 The game world becomes invisible in case of high reading latency from cloud stor-

age and the player has to wait, which significantly impacts the gaming experience.

Our three-layer cache policy for reading data from region files successfully hides the

latency of accessing remote data and mitigates the overhead.
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MF5 Serverless architecture improves the scalability of MVEs. Compared to the mono-

lithic system, the serverless MVE prototype with one server instance supports more

players before the server is overloaded, which is mainly constrained by CPU resources.

The improvement varies between 51% to 167%, depending on player behavior.

MF6 Player behavior affects system performance variability. For a fixed straight walk

workload, the trending of tick duration is highly similar between iterations, with a

different variance on actual values caused by the shared CPU resource. Meanwhile,

there is no pattern on the trending of tick duration between iterations with random

behavior workload.

MF7 The high variability of latency on serverless functions does not negatively affect the

performance of serverless MVE, with effective latency hiding policies including re-

source preloading and asynchronous invocation. Instead, the performance variability

of serverless MVE is mainly caused by the internal process of the server.

MF8 Players observe additional mean latency between 3% to 518% on the serverless MVE

depending on event types. Under worst cases, the latency can take up to 6.4 seconds,

caused by cold start of serverless function. We conclude that it does not significantly

impact player experience based on previous survey on waiting time.

MF9 Connecting players through a gateway improves the scalability of the game. We find

that all gateways handle the same amount of workloads, while game instances handle

different amount of workload at the same time, which indicates that we need a more

efficient policy to split players into different instances.

8.1 MF1. High Function Runtime Variability

Figure 8.1 shows the experiment result of function TerrainGeneration. The y axis repre-

sents the latency in milliseconds. The x axis represents the invocation interval. The box

shows the range between the 25-th and 75-th percentile. The outliers are defined as outside

1.5 times the interquartile range. The boxes are grouped based on the invocation intervals

as shown in x axis.

We can see that there are many outliers on both metrics under all invocation intervals.

Specifically, the maximum value is up to 3.18 times the median value on five-second interval.

This indicates that performance variability is high when the function is executing the same

amount of workload.
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Figure 8.1: Function Performance Metrics
(TerrainGeneration).

5s 1s 0.1s
Invocation Interval

0

200

400

600

800

1000

La
te

nc
y 

(m
s)

Metric
Function Duration
Executing Phrase
Invoked Phrase

Figure 8.2: Latency of Events During
Function Invocation (TerrainGeneration).

The performance is better and the variability is lower when the invocation interval is

shorter. Figure 8.2 shows the latency of events during the life-cycle of function invocation.

When the invocation interval is five seconds, there are many outliers on Executing and

Invoked phrase, with maximum latency over three times the mean value. The outliers are

fewer and lower with one second and 0.1 seconds.

The overall function duration is mainly introduced by Executing phrase, which schedules

and routes incoming HTTP requests to function handlers. Azure does not provide details

of how it works. We conjecture that the underlying scheduling system sets a higher priority

for functions that are accessed more frequently, which results in requests being routed faster

to the function handler.

8.2 MF2. High Latency Variability on Blob Storage

Figure 8.3 shows the box plot of performance metrics of downloading a small file. The

outliers are defined as outside 1.5 times the interquartile range. The graph shows that for

both service plans, Azure server latency and Azure End-to-End latency metrics are highly

similar, which indicates that the latency is mainly introduced by Azure internal process,
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instead of network.
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Figure 8.3: Latency of Downloading
Player Data (646 B) from Blob Storage.
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Figure 8.4: Latency of Downloading Re-
gion File (36.68 MB) from Blob Storage.

Figure 8.4 shows the performance metrics of downloading a large file. In contrast to the

small file, the overall latency is mainly introduced by Azure End-to-End latency, which is

highly impacted by network. The result is expected because it takes more time to actually

transfer a large file than preparing it. Among the two service plans, premium outperforms

standard in all three metrics.

The performance variability is very high for downloading a small file in standard plan.

The maximum value is five times higher than the average one. In premium plan, the

performance variability is lower, with maximum value doubled as the average one. For

downloading a big file, both service plans show high overall performance variability. In

standard plan, the variability is caused by both internal processing and network. While

in premium plan, the variability is mainly caused by network. The result matches with

Azure’s service level agreement, which guarantees significantly lower and more consistent

internal latency [37] on premium plan.

When downloading a small file, Java End-to-end latency is significantly higher than

Azure End-to-end latency in all cases. We look into network packet trace and calculate

56



8.2 High Latency Variability on Blob Storage

the time spent on different events. Figure 8.5 shows the stacked bars of different events for

downloading small and big files on two storage plans, where the time spent on sent request

is the time between the client sends the packet and the client receives the first TCP ACK

from server. The time spent on received messages is the time to receive the actual files

from the server. Other packets refer to other packets during the TCP connection.
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Figure 8.5: Percentage of Time Spent on Different Events when Downloading Files from
Blob Storage.

The time spent on Send is the extra latency in addition to Azure End-to-End latency.

For downloading a big file, the introduced latency is not significant as it only takes a small

percentage of the overall latency. The result is expected because the time to send requests

for retrieving files from remote storage is basically the same, regardless of file sizes, thus

it takes a larger percentage if the file size is smaller, where the time to download the file

is smaller.

Azure defines different price policies for standard and premium plans [38]. To summarize,

for hot data, premium plan is around 9.9 times more expensive than standard in storage

but 41% cheaper in request. In terms of 95th percentile latency, premium plan has 48%

reduction in overall latency for downloading a big file. The number is 63% for downloading

a small file. Considering the I/O services in a serverless MVE, most files are small and

frequently accessed, which benefits from the premium plan pricing and the performance

improvement. Thus, we conclude that we should use premium plan of storage account on

a serverless MVE for better performance.

Last, due to the performance variability of cloud storage, which does not provide a

consistent time for accessing a remote file and the overhead of the network stack, we
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should apply latency hiding policies for reading remote files whenever possible.

8.3 MF3. Premium Storage Account Outperforms Serverless
SQL

Figure 8.6 shows the box plot of end-to-end latency to retrieve the same small data (player

data) from Azure premium storage and serverless SQL with 0.1-second, 1-second, 5-second,

and 2-hour request intervals respectively. For better visualization, we split the y-axis into

two parts, where the y limit of the upper part is between 140 to 90000, while the lower

part is between 0 to 140.
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Figure 8.6: End-to-end Latency to Retrieve the Same Data from Two Storage Back-ends
(Premium Storage Account and Serverless SQL).

The performance is similar on premium storage across all invocation intervals, and the

variability is low, which matches our results on Section 8.2. We look into the mean values

of end-to-end latency across all invocation intervals except 2-hour. Surprisingly, the value

is better in Premium Storage than in Azure SQL under all cases. The mean value for

Premium storage back-end is 18.7 ms, while it is 45.9 ms for Azure SQL. Premium Storage

account archives 59.3% lower overall latency than serverless SQL.

The end-to-end latency with two-hour invocation interval indicates the cold start time.

The mean value is 82 ms on storage account, which is three times the value without cold

start. However, the mean value is 42.4 second on serverless SQL, which is over 900 times
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the value without cold start. This indicates that the cold start time is significantly high

on serverless SQL, which impacts the server performance.

Although the two back-ends utilize different pricing policies, i.e. storage account charges

based on requests, while Serverless SQL charges by CPU seconds, we can compare the

approximate cost. For reading data 10,000 times, premium storage account charges for

0.0020 EUR. We approximate the reading frequency as one request per second, which

results in a cost of 1.34 EUR on Serverless SQL. In the aspect of data reading, Serverless

SQL charges 670 times higher than storage account. Both storage back-ends charge for

space based on per-GB pricing, which is 0.16445 EUR for premium storage and 0.15 EUR

on Serverless SQL. Overall, Serverless SQL charges slightly lower in space, but much higher

in reading data.

Supposed there are one million of players in the system, which are approximately 700GB

of data, and there are one hundred thousands of login events for ten hours every day, we

calculate the total cost of one month. The price of storage is 115 EUR on premium storage

and 105 EUR on serverless SQL. The price of accessing is 0.6 EUR on premium storage

and 145.2 EUR on serverless SQL. The total cost is 115.6 EUR on premium storage and

250.2 on serverless SQL. The serverless SQL is 53.8% cheaper.

We conclude that we should use Azure Premium Storage Account as the storage back-

end for the Serverless MVE. Compared to Serverless SQL plan, storage account provides

better overall performance, lower variability, lower cold start time, and lower cost.

8.4 MF4. Region File Cache Policy Successfully Hides Re-
mote Reading Latency

Table 8.1 shows the maximum, 99.67-th percentile, 99-th percentile, and minimum latency

results of reading a chunk from I/O service, with different storage settings, including local

storage, remote storage without preloading policy, and remote storage with simple distance

policy.

Table 8.1: Different Percentiles of Latency of Reading a Chunk from Region File When Using
Different Storage Settings. All Values are Presented in Milliseconds.

Storage Setting Max 99.67-th 99-th Min
Local Storage 26.6 9.3 4.6 0.0054
Remote Storage, No Preloading Policy 464.3 114.8 18.1 0.0728
Remote Storage, Simple Distance Policy 41.6 23.9 16.3 0.0715
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When using remote storage without preloading policy, around 0.033% of chunk reading

events take more than 100 ms. Although the number is small, we argue that the high

latency should be mitigated for two reasons.

First, it significantly impacts game experience. When a player moves to a chunk whose

region file is not loaded within 100 ms, the world becomes invisible to the player. Figure 8.7

demonstrates the in-game graphic of such an event with Minecraft client. The players

cannot perform any actions and have to wait before the world becomes visible again.

Figure 8.7: In-game Graphic When World Becomes Invisible to Players.

Second, if we consider the worst case in the real world, the occurrence is frequent.

Assuming a player sprints in a surface without blocking, he can go across five blocks per

second. It takes around seven seconds to traverse a region file with a straight line. If there

is no preloading policy, and there is no other player that has previously visited the edge,

the region file needs to be retrieved from the remote. If the time to retrieve the remote

region file is longer than 100 ms, the player will see an invisible world every seven seconds.

With our simple distance preload policy, the 99.67-th latency is 23.9 ms, and the max-

imum latency is 41.6 ms, which is an acceptable number. This indicates that our policy

successfully hides the remote cloud storage latency from players under normal movement

behavior.

Additionally, the local storage performs best with 99th latency at 4.6 ms and maximum

latency at 26.6 ms. The latency variability of remote storage with preload policy is higher

than local storage. The reason is that more I/O operations are involved when using remote

storage, resulting in overhead. For example, when the server is reading a chunk from one

region file, another thread may be downloading another region file from remote storage
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for preloading purposes. This leads to I/O interference, resulting in higher variability in

remote storage with preloading policy than local storage.

8.5 MF5. Serverless Improves the Scalability of MVE

The scalability of MVE is measured as the maximum number of players before the server

is overloaded. Figure 8.8 shows the tick duration with increasing straight walk workload

where bots walk at a fixed speed of three blocks per second. We apply a fifty-tick rolling

average, which is 2.5 seconds if the system is not overloaded, to tick duration figures. The

span in red indicates that the system is overloaded and no longer player-able, which is

defined as the first tick that is over 50 ms with a rolling average.
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Figure 8.8: Tick Duration with Increasing
Straight Walk Workload.
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Figure 8.9: CPU Usage with Increasing
Straight Walk Workload.

The monolithic system starts to overload at 170 seconds, which has seventeen bots. The

serverless system starts to overload at around 330 seconds, which has thirty-three bots.

This indicates that the serverless system support 94% more players than the monolithic

system before the server is overloaded.

Figure 8.9 shows the normalized CPU usage of the monolithic system and serverless

system with increasing straight walk workload. Every 25% represents a fully utilized core.

The CPU usage is increasing for both systems, which is expected as system resource is

increasing with more workloads.

While matching the tick duration with CPU usage, we can see that for the monolithic

system, the CPU usage reached 82% when the system is overloaded, and continue to

slowly increase overtime. For the serverless system, the CPU usage reaches 90% when the
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system is overloaded, and continue to increase to 100%. This indicates that the maximum

supported player is limited by CPU resource, and our serverless system successfully offloads

a part of heavy computation task to serverless functions.
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Figure 8.10: Memory Usage with Increas-
ing Straight Walk Workload.
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Figure 8.11: Packet Per Seconds with In-
creasing Straight Walk Workload.

We look into other system resource usage. Figure 8.10 shows the memory usage in

percentage for two systems. The memory usage is increased when more bots join the game

and more chunks are explored, with the maximum at 12%. This indicates that memory

usage is not the factor that impacts the overall system performance. Also, there is no

significant difference between the two systems. We conclude that the serverless system

does not impact memory usage.

Figure 8.11 shows the packet per second for both sent and received directions of the

two systems. The serverless system has higher PPS in both directions, especially in receive

direction. This is expected because the serverless system receives data from remote services,

e.g. cloud storage and serverless function.

Next, we look into the maximum number of players with increasing run workload where

bots run with a fixed speed of eight blocks per second. Figure 8.12 shows the tick duration of

the experiment. The maximum number of players is twelve on the monolithic system, which

is lower than the slow walk workload. While the number is thirty-two on the serverless

system, which is similar to the slow walk workload. The serverless system supports 167%

more players.

The change in the maximum supported players is reasonable. When the bots walk at

a faster speed, more terrain is explored within the same duration, resulting in heavier

computation on the monolithic system caused by terrain generation. This part is offloaded
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8.6 High Variability of Serverless MVE

to serverless function on the serverless system, thus the maximum number of supported

players is similar.
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Figure 8.12: Tick Duration with Increas-
ing Straight Run Workload (8 Blocks / Sec-
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Figure 8.13: Number of Players Before the
System Under Test is Overloaded with Ran-
dom Behavior.

Finally, we look into the maximum number of players on two systems with Random

Behavior workload. Figure 8.13 shows the number of players before the system under test

gets overloaded among twenty iterations. The y axis represents the maximum number of

players before the server is overloaded. The x axis represents the system under test. The

box shows the range between the 25-th and 75-th percentile. The whiskers represent the

lower 25% and upper 25%. The outliers are defined as outside 1.5 times the interquartile

range.

There exists high variability on maximum supported players, which is expected because

of the random nature. Overall, the serverless system performs better. If we consider the

medium value, which is 37 for monolithic system and 56 for serverless system, the serverless

system can support 51% more players than the monolithic system. The improvement is less

than Straight Walk Behavior, where terrain generation consumes most system resource.

8.6 MF6. High Variability of Serverless MVE

Figure 8.14 shows the tick duration with a rolling average of 50 ticks of all iterations of

Straight Walk and Random behaviors. Figure 8.15 shows the normalized CPU usage of

all iterations on two behaviors. We highlight three iterations, 1, 23, and 47 to get more

insights.
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8. EVALUATION

Figure 8.14: Line Plot of Tick Duration
of All Iterations.

Figure 8.15: Line Plot of CPU Usage of
All Iterations.

Player behaviors impact the variability over time within one iteration. With Straight

Walk behavior, the trending of tick duration among iterations is similar, with different

variance on the actual tick duration values. At the start, the tick duration goes up as

players join the server. Then it becomes stable. At around 210 seconds, there is a spike

among all iterations. After that, the tick duration becomes stable with a different degree

of variability.

Except for ticks at 210 seconds, most ticks stay under 50 ms, which indicates that the

server is not overloaded most times. Some iterations, for example 23, have ticks over 50

ms duration. As shown in Figure 8.15, the value of tick duration is highly correlated with

CPU usage. We conjecture that this is due to the shared CPU resource, which provides

different performance over time.

While with Random behavior, the tick duration goes up and down without pattern among

all iterations. The result matches the random nature. Also, not all iterations present the

spike at 210 seconds, and the spike values are lower than Straight Walk Behavior.

The spike at 210 seconds is caused by unloadOldChunks event, which unloads chunks that

are no longer within view distances of players from memory. The event is called every five

minutes on the server, which matches the time after adding 90 seconds which were excluded

due to server initialization. If there is a large number of chunks to be unloaded, the system

is slowed down. At straight walk behavior, there are many chunks to be unloaded as the

players are walking towards a fixed direction. While at random behavior, it is uncertain
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8.7 Serverless Functions Do Not Negatively Impact Serverless MVE

whether the players walk away from the spawn location, thus the spike does not always

exist. This indicates that a more efficient scheduler is needed to unload old chunks.

8.7 MF7. Performance Variability of Serverless Functions
Does Not Negatively Impact Serverless MVE

Figure 8.16 shows the box plots of tick duration for all iterations under two behavior models.

The x-axis is the behavior model, and the y-axis is the raw data point of tick duration in

milliseconds. The y-axis is broken into two parts, where the upper part indicates values

between 250 to 3100 ms, and the lower part indicates values between 0 to 250 ms. The

box shows the range between the 25-th and 75-th percentile. The outliers are defined as

outside 1.5 times the interquartile range.

Figure 8.16: Box Plot of Tick Duration
among All Iterations.
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Figure 8.17: Box Plot of Function Dura-
tion among All Iterations.

There are fifty values on each behavior among all iterations on the upper part. We look

into each iteration and find that there is exactly one such value on each iteration, which is

caused by unloadOldChunks as discussed in Section 8.6.

Except for the extreme values on the upper part, the variability of the values on the

lower part is high if we consider the outliers. There are more outliers on random behavior,

which indicates that it presents more performance variability.

Figure 8.17 shows the function duration of two functions among all iterations under two

behavior models. The x-axis is the behavior model, and the y-axis is the raw data point
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8. EVALUATION

of function duration in milliseconds. The y-axis is broken into two parts, where the upper

part indicates values between 800 to 14000 ms, and the lower part indicates values between

0 to 800 ms. The configuration of boxes are same as Figure 8.16.

We can seet that the variability is high, which matches the result in Section 8.3. There

is no siginificantly different between two behavior models in function duration. Extreme

values exist on the upper part, with maximum values 11.7 seconds with Terrain Generation

function and 10.1 seconds with Player Operation function. These extreme values are caused

by cold start of function instance, which is started automatically by Azure Functions to

support more requests.

Despite the high extreme values and high variance in the performance of functions, it

does not directly impact the tick duration of the game (lower part of 8.16), which does not

correlate with function duration. The reason is that we apply proper latency hiding policies

when invoking the serverless functions, i.e. preloading and asynchronous invocation. We

conclude that the performance variaibility of functions does not negatively impact the

MVE system.

8.8 MF8. Worst Cases of Player Perceived Latency Does Not
Significantly Impact Gaming Experience

Figure 8.18 shows the end-to-end latency of six events, namely login, show ban list, ban,

and unban an player, set weather to clear, and set weather to thunder under the monolithic

and serverless MVE systems. For better visualization, we break the y axis and set different

scales for upper and lower parts.

Compared to the monolithic system, the latency under the serverless system is higher and

the variability is higher for all events, which is caused by the additional latency between

the server and remote services, and the variability of the serverless function and cloud

storage (Discussed in Section 8.1 and 8.2).

Considering the mean values, the serverless system adds 134%, 456%, 88%, 518%, 3%,

and 24% for login, list ban, ban, unban, set clear weather, and set thunder weather events

respectively. The additional latency for set weather events is lower than others. The reason

is that local environment simulation is enabled to return simulation results immediately,

while retrieving results simulated by serverless functions with local simulation offset (Dis-

cussed in 5.2.3). For other events, there is no local simulation because the data is only

stored and verified remotely for consistency.
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Figure 8.18: End-to-end Latency of Events Measured at Client.

We also see various box sizes for different events, which indicates different degree of

performance variability. The reason is that different event types involve in different number

of invocations of cloud services. For ban a player event, there is one invocation of remote

service: the game instance submits the ban request to serverless function. The serverless

function returns immediately while writing the ban data in blob storage. For unban a

player event, there are three invocations: the game instance checks whether the player is

banned through the serverless function, which waits for data from blob storage, and instruct

actual unban if the ban data exists. With more cloud services involved, the performance

variability is higher.

For show ban list event, the execution time is different during each invocation, because the

number of banned players are different. Thus it also has high variability. The performance

variaibility is caused by the internal process.

If we consider the worse case, it is 6499 ms on banlist event and 2425 ms on login event,

which are caused by cold start of function instances.

Although the additional latency looks high, we conclude that the latency is acceptable for

these events and that serverless technology benefits MVE for its performance gain for two

reasons. First, because the events and function invocations are handled asynchronously,

the additional latency is only observed by players. It does not slow down the server. Thus,

the server benefits from the performance gain as discussed in Section 8.5 without being

impacted by these events.
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8. EVALUATION

Second, except for login, the events do not block gameplay, i.e. the players can per-

form other in-game activities while waiting for the results of the commands. The player

experience is not degraded while waiting for the results.

For login events, players must wait until the event is complete before they can start

gameplay. During the process, the player is presented with a loading screen. According to

a discussion on forum [39], players can tolerant between thirty seconds to a few minutes on

the loading screen. In our case, even with function cold start, the latency stays under the

range. Thus, we conclude that the overhead does not significantly impact player experience.

8.9 MF9. Gateway with Multiple Instances Improves Scala-
bility

We measure the scalability of gateway with multiple instances as the maximum number

of players before any worker is overloaded. Figure 8.19 shows the maximum number of

supported players performing Straight Walk behaviors with an increasing number of work-

ers. We present the mean values among five iterations for each worker configurations. The

x-axis indicates the number of workers and their roles.
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Figure 8.19: Maximum Number of Players with Increasing Number of Workers (Straight
Walk Workload).

There are two types of workers, namely gateway and server instances. For one server

with one gateway, the result is the same as one server without gateway (33). The reason

is that the sole server is overloaded while handling the same number of players.
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8.9 Gateway with Multiple Instances Improves Scalability

The maximum supported players are 57 for two servers with one gateway, which is an

increase of 72%, and 75 for four servers with one gateway, which is an increase of 127%.

Both results are lower than the sum of maximum supported players of independent server

instances, with 13.6% lower on two servers and 43.1% lower on four servers. After we add

one additional gateway to the four server configuration, the maximum supported players

are increased to 117, which is an increase of 254% compared to one server with one gateway.

Figure 8.20 shows the normalized CPU usage of four servers with one gateway of one

iteration, where each 25% represents a fully utilized core. The gateway is first overloaded

with over 97% CPU utilization. This indicates that the gateway is the bottleneck. Also,

we can see that different CPU usage on different server instances over time, with instance

1 utilizing the highest CPU resource. This indicates that the servers are not handling the

same amount of work at the same time. The result is reasonable because our workloads

only assign bots to explore the terrain. Different chunks on the terrain contain different

amounts of data, depending on the chunk types. Instance 1 handles the chunks which

consume most resources.
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Figure 8.20: CPU Usage of 4 Servers with
1 Gateway.
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Figure 8.21: CPU Usage of 4 Servers with
2 Gateways.

Figure 8.21 shows the normalized CPU usage of one iteration with four servers with

two gateways, where each 25% represents a fully utilized core. The gateway is no longer

the bottleneck. Instead, instance 1 becomes the bottleneck while the other instances have

relatively low CPU usage. This is the same situation as Figure 8.20 where the CPU

utilization on instance 1 is the highest. Also, we can see that the CPU usage on gateway

0 and 1 are highly similar, which indicates that the work is evenly split.
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We conclude that the layer seven gateway improves the scalability of MVEs. The gateway

is highly scalable, with each one processing the same amount of workload. However,

different server instances handle different amounts of work at a time, which indicates that

we need a more efficient policy to assign players to different servers so that different game

instances have similar amount of workloads at the same time, which further increases the

scalability.
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9

Conclusion and Future Work

9.1 Conclusion

Video gaming has been a mainstream and fastest-growing media over the last decade.

Minecraft is one of the most popular games with its featured Modifiable Virtual Environ-

ment (MVE), which allows players to interact and modify the virtual worlds in real-time.

However, despite its large number of players, previous research shows that it does not scale

well. Serverless technology provides the advantage of automatic scaling, which has the

potential to address the scalability challenges of MVEs.

In this thesis, we study how serverless technology benefits MVEs and how performance

variability impacts the system. We design and implement a serverless MVE prototype

based on Opencraft and Azure Cloud platform. We first migrate the file I/O services to

remote cloud storage and apply latency hiding policies. Then we migrate some computation

tasks to serverless functions. Finally, we implement a layer seven gateway to redirect

players to different server instances and split the infinite terrain to different servers based

on coordinates.

We design and implement a benchmark suite to evaluate the serverless MVE prototype.

We conduct both microbenchmarking on services hosted on cloud platforms, with a focus on

the performance variability of cloud services, and macrobenchmarking on the real system,

focusing on four aspects: effectiveness of latency hiding policies, scalability, performance

variability, and the worst cases perceived by players. We design two emulated player

behaviors as workloads, namely Straight Walk, which stresses the server while exploring

the infinite terrain, and Random, which mimics the random behaviors of real players.

The microbenchmarking result shows that the performance variability is high on all cloud

services, including storage back-ends and serverless functions, caused by the underlying
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scheduling policy of the platform and the network fluctuation to invoke them.

The macrobenchmarking result shows that serverless technology improves the scalability

of MVEs. It benefits MVEs in terms of supporting more players by offloading heavy

computation tasks to serverless functions for automatic scaling. The improvement varies

per player behaviors. Additionally, the performance variability of the serverless MVE is

mainly caused by the CPU resource of virtual machines and the internal process of MVEs.

With proper latency hiding policies and asynchronous invocations, the high variability of

serverless functions and blob storage does not negatively impact the serverless MVE. In

the worst cases of specific events involved in the cold start of function instance where the

players have to wait for the results, the player experience is not significantly impacted.

Furthermore, we show that redirecting players to multiple game instances which han-

dle the same world through our implemented layer seven gateway further improves the

scalability. Our first step of serverless MVE prototype shows that it has the potential for

MVEs to support millions of players with serverless technology and effective latency hiding

policies.

9.2 Future Work

In this thesis, we show that serverless technology improves the scalability of MVEs and

does not negatively impact the performance and game experience. Here we present three

future work directions.

First, our current implementation only migrates some parts of the computation tasks

to serverless functions from the monolithic system. The computation tasks that remain

on the monolithic still consume server resources. As shown in the evaluation results, the

scalability is mainly limited by the CPU resource. In the future, we can offload more

tasks to serverless functions, so that the CPU resource usage of the instance is lower. This

further improves the scalability of MVEs.

Second, we implement the serverless technology on one MVE system Opencraft and we

evaluate it on the Azure cloud platform. The vendor lock of serverless development limits

the deployment to different platforms. In the future, we can implement it on different MVE

systems and different cloud platforms, so that we can study and compare the performance

variability.

Third, the main component of the MVE instance is the tick loop. The default scheduler

that ticks the instance does not consider serverless technology and cloud storage. It assumes

that the task duration is short and waits for the asynchronous result between schedulers.
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9.2 Future Work

This results in a long tick duration. In this work, we mitigate it by utilizing a new

scheduling policy that postpones the task to future ticks when the results are available.

In the future, we can implement a new scheduler that considers all the cloud components.

The new scheduler also benefits the layer seven gateway for game content synchronization

and player redirection.
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Appendix A

Technical Details

Technical Details of Benchmark Suite

We discuss benchmark suite in Chapter 6. We attach the technical details of the bench-

mark suite in Appendix. Table A.1 shows the details of configuration file used on our

implemented benchmark suite. Table A.2 shows the exchanged messages between bench-

mark server and clients via TCP socket. The benchmark server controls clients and the

clients notify the server through messages.

Source Code

The code of this project is open source and is available in the following Github repositories.

• Serverless MVE: https://github.com/atlarge-research/opencraft-dev/tree/feature/serverless-

azure

• Layer Seven Gateway: https://github.com/JyQuery/opencraft-gateway

• Extended Yardstick: https://github.com/atlarge-research/yardstick/tree/feature/serverless-

azure-exp

• Benchmark Suite: https://github.com/JyQuery/mve-bench
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Table A.1: Details of Configuration File on Benchmark Suite.

Component Parameter Details
Benchmark iteration The number of benchmark iterations
Benchmark mvepath The relative path of MVE files
Benchmark resultpath The relative path of result files
Benchmark exp. num. The experiment number of the benchmark
Benchmark players count The number of emulated players
Benchmark delay Delay between the start of different components
Benchmark Server IP IP address of the benchmark server
Benchmark Server port Network port of benchmark server
Benchmark Server timeout TCP sockets connection timeout (default: 30)
MVE Server IP, port IP address, SSH port of MVE servers
MVE Server game port Game port of MVE servers (default: 25565)
MVE Server login System login and password of MVE servers
MVE Client IP, port IP address, SSH port of MVE clients
MVE Client login system login and password of MVE clients
MVE Client mveserver The MVE server that the client connects to
MVE Gateway IP, port IP address, SSH port of MVE Gateways
MVE Gateway game port Game port of MVE gateways
MVE Gateway mveservers The servers which the gateways concern
Functions name The function name as defined
Functions applicationId The application ID of the function
Functions apiKey The API key for accessing application insights

Table A.2: Details of Exchanged Messages through TCP Socket on Benchmark Suite.

Message Parameter Event Details
Hello mveclient/server Connection

established
Benchmark server identifies type of the
other end of connection based on this
message

Result metric locations Task com-
pleted

Send metric locations to benchmark
server so that they can be retrieved

Keepalive None Benchmark
executing

Keep TCP socket alive, useful for net-
works behind NAT

Bye None Benchmark
completed

Notify the other end before closing the
connection
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