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Abstract

Minecraft is one of the best selling game of all time, and has inspired the development of
a multitude of games with similar features, known as Minecraft-like games. Prior research
has shown that Minecraft-like games do not scale well to large amounts of concurrent
players. Many server operators choose to deploy using cloud computing services, either
to gain access to powerful hardware or to have a stable and persistent network configura-
tion. Additionally, prior research has theorized that the scalability of Minecraft-like games
can be improved by using serverless operations to compute some game operations on the
cloud. Despite the benefit of access to large amounts of resources, cloud computing has
been shown to result in high amounts of performance variability. Measuring and reducing
performance variability is crucial to real time services such as Minecraft-like games, as
performance instability can severely harm player experience. However, there is currently
no available tool to measure the performance variability of cloud deployed Minecraft-like
games, making it difficult to effectively compare the performance of different cloud com-
puting providers as well as measure the benefit of serverless scaling techniques. In this
work, we design the Meterstick benchmark and use it to measure the performance vari-
ability of commercially available cloud computing services, and how this variability effects
Minecraft-like games. We find that cloud computing environments introduce variability
to the operation of Minecraft-like games both over time and between iterations, and that
the extent of this variability is dependent on the choice of Minecraft-like game and cloud
computing provider.

Keywords cloud computing, benchmark, Minecraft, distributed systems, online
gaming.

1 Introduction

The revenue of the global gaming industry grew throughout 2020 to around 180 billion
USD, a value greater than the global movie and TV revenue combined [38]. As a large
sector in the entertainment industry, video gaming has become an integral part of every
day life, as well as a communicative tool with vast international influence. However, video
games as a online service represent a largely unsolved optimization challenge. The player
experience of many popular online games is dependent on real-time networking with very
small response times, and there is no set protocol that can be used for all game networking.

A game of particular interest in both the industry and field of network optimization
is Minecraft. As one of the best selling game of all time [33] and reporting over 131 million
players per month [32], Minecraft is a game with undeniable societal influence. This is
especially true as Minecraft has not only functioned as an entertainment medium, but as
a platform for social movements with a broad spectrum of causes, from seeking to build
the entirety of Earth [4], visualization tools for metabolic pathways [17], to creating safe
spaces for autistic players [2, 27], and facilitating an in-game haven for press freedom to
fight against real world censorship [25].

Additionally, Minecraft’s popularity has inspired a variety of new games with sim-
ilar features, known as Minecraft-like games. Notable examples are No Man’s Sky [12],
Astroneer [29], Terraria [24], and Space Engineers [15].

However, the social potential of Minecraft-like games is limited by lack of scalability.
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The multiplayer services of Minecraft-like games operate using a server-client architecture,
in which a majority of game operations are calculated within the server and then sent
to clients. Each server acts in isolation with no interactions with other servers. Prior
research has shown that Minecraft-like game servers do not scale well, managing to support
at most a few hundred players, and usually showing performance decreases before that
maximum [35]. This is opposed to other massively multiplayer games, where concurrent
players on one server can reach many thousands, and the server instances can be seamlessly
moved between [39].

Server operators have the choice to host using commercially available cloud computing
providers. Mojang itself, the company that develops Minecraft, chose to host Minecraft
Realms, their server hosting service, on Amazon Web Services [36]1 rather than their own
hardware. While they have not stated the reasoning for doing so, it can be assumed this
decision not taken for horizontal scalability as Realms has a per-server max player limit
of 10. Instead, this decision enabled quick vertical scaling when deploying servers for new
users.

From a consumer, rather than corporate, perspective, the option of cloud deployment
instead of self-hosting would be taken to gain access to more computational power without
a large budget, or to have a stable network configuration that allows players to connect
without going through a host’s home network. While there is no available data on the
amount of server operators choosing to host on cloud environments, the popularity of doing
so can be seen in the growing plethora of cloud computing services specifically marketed
for Minecraft or other Minecraft-like games. An incomplete sampling of these services is
available in Appendix A.

Aside from the existing practice of hosting the entire Minecraft-like game server in
a cloud environment, research on new scalability techniques for Minecraft-like games has
theorized that computing specific sections of the Minecraft-like service in the cloud using
serverless computing providers can increase performance [7].

Thus, many individuals and corporations host Minecraft-like games in commercial
cloud environments, and this amount may grow further if serverless techniques prove viable
and cost effective. However, while cloud computing does provide benefits in the forms of
computational power and network stability, it also introduces a set of new challenges.
Commercial cloud computing services operate largely as a black box, with the user of
the service having no way of telling how many other users the service is being shared
between, or how resources are allocated between them. This lack of transparency is crucial,
as it has been shown that cloud computing can lead to high amounts of performance
variability [34, 5, 16, 30].

1.1 Problem Statement

Since Minecraft-like games are real-time services, they require short and consistent re-
sponse times to maintain quality of service for players. This means that measuring
performance variability is important to the operation of a Minecraft-like service. How-
ever, despite the number of Minecraft-like services that utilize cloud computing, there is
no currently available tool to benchmark the performance variability of cloud deployed

1In early 2021 Mojang migrated Realms entirely to Microsoft Azure.
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Minecraft-like servers. Thus there is no easy method of comparing the performance ben-
efits of different cloud computing services.

1.2 Research Questions

Accordingly, in this thesis we aim to answer the following main research question: what
is the performance variation introduced to Minecraft-like games when operating in cloud
environments? We then split this main research question into three research questions:

RQ1 (Section 3): How to design a benchmarking tool for cloud-deployed Minecraft-like
games
To allow fair and reproducible comparison between the performance variation pro-
files of both Minecraft-like games and cloud computing providers the design of a
benchmarking tool is required to be applicable to many Minecraft-like games and
cloud providers. As the implementation and interfaces of these systems vary, the
design of such a system is not a simple process.

RQ2 (Section 4): How to realize this benchmarking tool
There are no standardized methods of translating a systems design in a prototype,
but the implementation needs to address important challenge applicable to bench-
marking in the context of distributed systems, relating to synchronization, network-
ing and reproducibility. This includes implementation details that allow for easy
extension of the benchmarking tool for new Minecraft-like games or cloud providers.

RQ3 (Section 6): What is the performance variation of Minecraft-like games operated in
real-world cloud environments
The exploration of this question requires first finding a representative set of exper-
imental variables. This includes choice of Minecraft-like systems, cloud deployment
environments, hardware within those cloud providers, and the workloads that are
used within the Minecraft-like games, such as choice of world and player behaviour.
Finding what instances are representative of a variable in a real world setting is
challenging, as in many cases there is no quantitative source to provide an objective
answer. Once these experimental variables have been decided upon, it is then neces-
sary to design an experimental method that measures the impact of these variables
using the benchmarking tool.

When exploring these research questions, we utilize the following research methods:

M1 For RQ1 we apply the iterative AtLarge design methodology to create a benchmark-
ing tool design [13], as well as methodologies specific to benchmarking that guide
choice of metrics, workloads and baselines [23, 11].

M2 As there is no standard method of converting a systems design into a prototype,
we use the AtLarge prototyping methodology for RQ2 to iteratively implement the
Benchmarking tool piece by piece, continuously integrating segments of the tool to
solve the realization challenge.

M3 We answer RQ3 by using an experimental method that evaluates appropriate quan-
titative system and application level metrics in controlled, reproducible, but still
representative settings [11].
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Figure 1: Overview of a Minecraft-like MVE system.

1.3 Main Contributions

Following from our set of research questions and methodologies, the contributions of this
thesis are as follows:

C1 Define performance variability in the context of cloud-deployed Minecraft-like games.

C2 Design a tool to measure performance variability of cloud deployed Minecraft-like
games.

C3 Implement a prototype of this tool and show its efficacy.

C4 Evaluate the performance variability profile of different cloud computing services
and Minecraft-like services.

2 Background

In this section we introduce relevant background information relating to Minecraft-like
games and the operation of cloud environments.

2.1 Modifiable Virtual Environments (MVEs)

Minecraft-like games include any video game that utilizes both a server-client multiplayer
system and a Modifiable Virtual Environment.

A Modifiable Virtual Environment or MVE is a type of game world that allows the
player to freely add or remove sections. Often these systems are voxel-based, comprised of
discrete blocks that can be created or removed. Additionally, MVEs generally incorporate
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Figure 2: Cloud computing in the context of Minecraft-like games.

some form of dynamic nature, with sections of the environment changing over time without
direct player influence. This is used to facilitate common game features such as simulating
gravity, lighting or pathfinding.

Figure 1 depicts the general structure of a MVE service. A majority of the computa-
tion for an MVE in a Minecraft-like game is done by the server (component 2), rather than
the client (component 1). The creation, modification, and maintaining state consistency
of an environment is all done server-side. This centralized structure is common, even
ubiquitous, in the implementation of MVE services due to the modifiable property of the
environment. It is not possible to make assumptions on the state of the environment at any
given time, at any given moment large sections of the world can be changed. Thus, other
architectures, such as peer-to-peer, may introduce prohibitively high amounts of overhead
and latency from having to duplicate world data upon each update and maintain state
consistency between users.

2.2 Cloud Computing

Cloud computing is the practice of having sections or the entirety of programs be run on
virtual machines within distributed computer systems, usually a data center with a large
amount of computational resources. We show a simplified overview of this architecture
in Figure 2. This setup allows users without access to necessary computational power or
network stability to run intensive workloads. There are many cloud computing providers
in operation, with the largest by market share being Amazon Web Services, Microsoft
Azure, Google Cloud and Alibaba Cloud [26]. A key reason to use these Infrastructure as
a Service (IaaS) providers is the ease of resource management: virtual machines can be
created or extended quickly with minimal interruption to existing programs.

2.3 Resource Allocation and Scheduling

This elasticity in resource management that IaaS promises can cause problems. Because
these cloud computing services have many users with varying computational needs that
may change rapidly, all commercial IaaS providers utilize automated scheduling policies to
allocate computational resources [5, 16, 30]. However, the information on what allocation
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policy is used and how many users the resources are being shared between is not provided
to the end users. This means it is difficult for any user to make any assumptions on
available computational power at any given time, the cloud computing provider could be
overloaded and throttling some processes to allow preferred ones to execute, or could be
under capacity and able to give a given process all necessary resources.

Adding to the difficulty, cloud computing performance is heavily reliant on the inter-
nal networking of the data center, and even computationally trivial processes can generate
large amounts of network traffic between computing clusters [34]. Additionally, it is chal-
lenging to predict when a service will require more resources, as often this is dependent on
external societal factors, such as the scheduling of an social event or even failures within
an unrelated datacenter causing services to balance load to other locations.

2.4 Yardstick

The Yardstick project [35] created a benchmark tool to evaluate the scalability of Minecraft-
like games by connecting increasingly large amounts of emulated players and observing
how network and system metrics changed.

Within the Yardstick benchmark there is a component to facilitate the emulation of
players with differing in-game behaviour, we extend and adapt this component for use in
Meterstick (see Section 4.4).

3 Design of Meterstick

In this section we introduce the design of Meterstick, our benchmarking system for perfor-
mance variation in cloud deployed Minecraft-like games. We define a set of requirements,
and discuss both the system design and design considerations.

3.1 System Requirements

We outline 8 design requirements. The first three are requirements specific to the bench-
marking of cloud deployed Minecraft-like games. The last five relate to the benchmarking
of computer systems in general and are taken from existing guidelines [37, 14].

R1 Reproducible measurement of performance variability: Though the benchmarking
tool measures performance variation over time, the results must still be reproducible
such that the same system with the same workload gives similar results.

R2 Validity of workloads: The workload of the server, including the network load, in-
game world, and player behaviour must be accurate to real world settings.

R3 Completeness of experiments and metrics: There are many variables involved in
the operation of a cloud deployed Minecraft-like game. The benchmark should be
able to operate different experiments in order to isolate and measure many of these
variables, with suitable metrics.

R4 Fairness: The benchmark should provide a fair assessment for compatible systems.
In particular, bias towards any one system should be limited.
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Figure 3: Design Overview of Meterstick

R5 Ease of Use: The benchmark should be easy to configure and use such that applying
the benchmark to new compatible systems is simple for future researchers.

R6 Clarity: The benchmark should choose and present results in a way that is logical
to display the performance of the target system.

R7 Representativeness: The benchmark should be comprised of workloads and metrics
representative of real-world use cases.

R8 Portability: All segments of the benchmark should run on different cloud platforms.

3.2 Design Overview

We give an architectural overview of Meterstick in Figure 3. As we design a benchmarking
tool, we additionally define a benchmarking technique, which includes the experiment
configuration (Section 3.3), metrics to measure, and how to measure them (Section 3.4).

The steps of the benchmarking process and the corresponding design of Meterstick
fulfill the requirements listed in Section 3.1. Meterstick is capable of testing any Minecraft-
like game that is compatible with the Minecraft protocol and metric externalizing tool (see
Section 4.3), and as such is both fair (R4) and easily extensible to new systems (R5).

In order to operate in a cloud environment, the design utilizes a deployment tool
(component 3) that facilitates the operation of both the Player Emulation and Minecraft-
like game via the use of the established networking protocols. File copying and systems
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Parameter Step Effect

IPs Deployment Changes what nodes Meterstick connects to
SSL Keys Deployment Authenticates Meterstick
Servers Deployment Changes what Minecraft-like games are tested
World Deployment Changes what world the servers run
File Locations Deployment Changes where deployment sends files
Resume Deployment Specifies to resume a previous experiment

Ports Metric collection Specifies what IP ports Meterstick uses
JMX URLs Metric collection Specifies JMX URLs for metric externalization
JMX Ports Metric collection Specifies a range of JMX ports

RAM Experiment Specifies the max RAM passed to JVM
Number of Bots Experiment Specifies how many players will be connected
Player Behaviour Experiment Changes emulated player behaviour
Duration Experiment Changes how long an iteration lasts
Iterations Experiment Specifies how many iterations will be run

Table 1: List of configurable parameters. Step refers to the stage of the bench-
mark process that is effected.

level concerns are operated through an authenticated connection, and the operation of
nodes during the experiment is controlled by a small unauthenticated server (component
1). Thus, the tool is capable of benchmarking on any set of nodes that support suitable
networking protocols, as well as the programming languages Bash, Python and Java. As
this is true on any modern cloud provider, Meterstick is portable (R8).

To measure the performance of Minecraft-like games under a realistic workload (R7,
R2) Meterstick connects emulated players that move realistically (component 4), and runs
the Minecraft-like game with a representative world workload (discussed in Section 5.2).

To ensure that the benchmarking results are both logically displayed and reproducible
(R6, R1) Meterstick is capable of supporting many types of experiments to isolate specific
variables (R3). Since Meterstick’s design utilizes a controller server and client system
(components 1 and 5), the behaviour of each node can be remotely controlled and easily
adapted for each experiment, and experiments can be extended to many nodes.

3.3 Configuration Parameters

Meterstick is highly configurable, a list of configuration parameters are given in Table 1.
By adding servers into the servers folder, new systems can easily be added. Similarly, since
the deployment process simply copies the servers folder to the remote node, the world that
the Minecraft-like games run can easily be configured by copying in a new world folder.

The experiment can be configured by specifying the duration, number of iterations,
what servers to run, how many players to connect and the behaviour of those players.
Since the IPs of the nodes that the deployment tool connects to can be anywhere that
is network accessible, nodes can be chosen that are geographically distant or within the
same datacenter in order to measure (or avoid) the performance impact caused by public
network infrastructure.
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3.4 Metrics Collected

The common metric for judging the performance of a Minecraft-like game is tick time.
A tick is the measurement of time for one iteration of the game loop. Within this loop,
all Minecraft-like games compute a series of environment processes, receive packets from
clients, and then send state change packets to all clients. For each Minecraft-like game,
there is a threshold in tick time where the game loop takes too long and the server cannot
compute all state updates it needs to send to the clients. This results in stuttering,
rubber-banding, and lag for players. For as long as tick times are above this threshold,
the Minecraft-like game is considered in an overloaded state. Because tick time is an
internal measurement of Minecraft-like games, it is necessary to externalize it so it is
visible to metric collection instruments.

Another application level metric measures server performance by observing the round
trip time between server and client. Minecraft-like games are sensitive to network delay.
The client section of a Minecraft-like game performs few game operations itself, instead
sending the result of player input to the server and rendering the state updates that
the server responds with. This means that the in order for a given player action to be
processed and then results displayed for the player, the action must be sent over network
to the server to an input queue, processed by the server, its result put in an output queue,
and then sent back over the network to the client. Thus, every action has a delay of more
than twice the network latency between the client and server. We measure this round trip
time by observing the elapsed time between a sent chat message and the servers response
(see Section 4.4)

Additionally, systems level metrics such as CPU utilization, network activity, process
thread counts, and disk I/O are collected on the node running the Minecraft-like game to
avoid relating performance solely to application level metrics.
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Figure 4: Deployment module operation by step.

4 Implementation

In this section we discuss the implementation details of the Meterstick design shown in
Section 3 (with a focus on components 1, 3, 5, and 7). We implement Meterstick as three
main modules: deployment, control, and metric collection. We discuss each in turn, and
then describe our changes to the Yardstick tool.

4.1 Deployment Instrument

The deployment script is written in bash, we depict its operation in Figure 4. The de-
ployment process has five main steps, in the first configuration parameters, IP addresses
and SSL keys provided by the user are read from file. In the next step the relevant worlds
are copied to server folders. Then in step three the Minecraft and Yardstick resources
are copied to their respective remote VMs via SCP, and in step four the control servers
and clients are activated through SSH. Finally, in the final step, which takes place after
the experiment has concluded, the deployment module copies the results to the local file
system for analysis by the user.

As cloud environments are complex, errors from configuration, deployment, network-
ing and authentication are common. Thus, the deployment tool has the ability to resume a
previously canceled experiment, provided the user-supplied configuration and IP addresses
have not changed. It does so by first retrieving partial results, then calculating how far
the previous run had gotten, and resuming from the cutoff point.
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Message Effect Dest Ack

set server:server Specifies name of server YS/MC Yes
set jmx:jmx url Specifies JMX URL MC Yes
iter:iteration Specifies what iteration to start at YS/MC Yes
initialize Starts the selected server MC Yes
log start Starts metric logging tools MC Yes
log stop Stops metric logging tools MC Yes
stop server Stops running server MC Yes
connect Starts player emulation YS Yes
convert Converts metric bin files to CSV YS Yes
ok Acknowledges the previous message Controller No
keep alive No-op, keeps TCP connection open MC/YS Yes
err:error Previous message has caused error Controller No
exit Stops the controller client MC/YS No

Table 2: List of controller messages. Dest specifies what nodes the message
is for where YS is player emulation and MC is the server node. Ack specifies
if the message requires an acknowledgement.

4.2 Control Servers and Clients

The controller server is a Python script responsible for the operation and synchronization
of the benchmark, as well as error reporting if one of the controller clients encounters a
problem. We depict the overview of the control server and client modules in Figure 5,
and the set of control messages exchanged through TCP in Table 2. The player emulation
controller clients are responsible for configuring, activating, and retrieving the metrics
from their respective tools.

Minecraft control
client

Yardstick control
client

Controller server

Experiment
loop

Minecraft-like GameYardstick player
emulation

Application Metric
Collection

System Metric
Collection

Control messages Network ConnectionSubprocceses

Experiment
parameters

VM Running MinecraftVM Running Yardstick Local System

NewUnchangedModified

Figure 5: Control server and client module interaction.
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4.3 Metric Collection Instruments

In Figure 6 we depict the instruments and processes for collecting systems and application
level metrics.

To measure tick time (see Section 3.4), which is an internal measurement to the
Minecraft-like service, it must be externalized. We do this using Java Management Exten-
sions (JMX ), which exposes metrics within the Java Virtual Machine by using a network
API with an associated JMX URL and port. Activating JMX requires the Minecraft-like
service to be started with a set of JVM arguments [22], and each Minecraft-like service
has a specific JMX URL2.

Connecting to and collecting the metrics from the Minecraft-like game server is done
using a jar packaged with the java standard library JMXConnector class. Since tick time
is internally stored as a circular linked-list of length 100 in the Minecraft-like service (5
seconds worth of ticks), this jar samples at a rate of once per 2.5 seconds. This way, the
changes in the tick times array are the ticks that have occurred since the last sample, and
the amount of new ticks can easily be discerned.

The measurement of both systems level metrics such as CPU utilization and network
traffic is done using a python script with the PSUtil library [28], at a sampling rate of
twice per second.

Both the JMX and PSUtil metric collection instruments continuously sample their
metrics as well as associated timestamp and write these to a log file, and continue to do
so until they are sent a termination signal by the controller client.

2For most Minecraft-like services using the Minecraft protocol, this URL is
net.minecraft.server:type=Server, but it can easily be discovered with JConsole or other Java man-
agement tools.
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4.4 Yardstick Player Emulation

We extend the Yardstick player emulation tool in two ways, we add new player behaviour
to suit our experimental method (see Section 5.2) and we adapt the Yardstick network
message logging to additionally capture the contents of chat messages.

To measure the round trip time between player and server at an application level
we have one player send random chat messages to the server at a fixed 1 second interval
frequency in both of the player behaviours we use. Yardstick logs packets that each player
sends or receives to file, along with timestamp. We add to this logging functionality the
ability to capture relevant chat text for each chat message that is sent or received.

Thus, we find the round trip time as the difference in timestamp between the outgoing
chat message packet and the server response with the same message.

5 Experimental Setup

In this section we outline the design of experiments to measure performance variation
using Meterstick.

5.1 Systems Tested

We run experiments on three environments and measure the performance variability of
three Minecraft-like games.

5.1.1 Minecraft-Like Games

We select three Minecraft-like games that use the Minecraft protocol: Minecraft itself,
Forge, and PaperMC. Our selection criteria used to decide upon these services is both
popularity and utility.

We chose the official, “Vanilla,” Minecraft server [21], as it is the default service that
most users and hosts operating Minecraft servers employ. This includes users of the server
hosting service Realms, which is advertised inside the Minecraft client [20]. Notably, the
Vanilla service does not allow for gameplay modifications of any kind.

The second is the Forge server, which extends the Minecraft protocol with an API
supporting community made gameplay modifications (“mods”). Forge is the most popular
server for operating modified services [10]. Of the top 50 most downloaded Minecraft
mods, only 5 are not exclusive to the Forge API, and of those 5, only 1 is not available on
Forge [6].

The third is the PaperMC server, which we chose as it is marketed as a high-
performance alternative to the Vanilla server [31]. PaperMC does not support mods,
but it does support server-side “plugins” that modify the functioning of the game without
changing the Minecraft protocol. While the PaperMC project provides no quantitative
figures on what performance gain it gives compared to the Vanilla server, it does provide
a list of optimizations, including extensive changes to threading models and environment
processing.
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5.1.2 Cloud Computing Providers

The commercial cloud providers used in the experiments are Amazon Web Services (AWS )
and Microsoft Azure. We decided on these services based on their percentage share of the
cloud computing market, where AWS has 32% and Azure has 20% [26]. Additionally, to
provide a controlled environment baseline to compare against, experiments were run on
the DAS-5, a distributed super-computer for academic and educational use [3].

On AWS and Azure it is possible to select specific configurations of hardware. To
ensure that the configurations we use in the experiments were representative of real world
settings, we selected options based on both official and community recommendations. For
a full list of sources that motivated our choice of hardware, see Appendix A.

On AWS we use a “T3.Large” node, which offers two vCPUs and 8GB RAM [1].
On Azure we use a “Standard D2 v3” node, which also provides two vCPUs and 8GB
RAM [18]. Nodes were selected within the same subnet to reduce variation caused by
network delay (except for the experiments where this was measured).

The DAS-5 nodes used each have 16 cores and 64 GB RAM (though RAM usage is
limited to 4GB by the -Xmx JVM argument in all experiments).

5.2 Experiment Workloads

In Minecraft-like games, the workload of a server is a combination of players and world.
In this section, we outline what workloads were used in the experiments and our selection
criteria for representative workloads.

5.2.1 Emulated players

The player contribution to the workload of the server comes from both amount of players
and the behaviour those players exhibit.

For player count, we use a fixed number of 25 players in each experiment. We do not
have access to data on the average number of players on dedicated server instances, and
the data that is available on server player count generally reports the total number across
combined networks with many servers, rather than single servers. Instead, this number
is selected from the Minecraft Wiki’s dedicated server recommendation [19] as well as the
recommendations from the Minecraft server providers listed in Appendix A.

We run experiments with two types of player behaviour: bounded random and run
away. These two behaviour types were picked to be both representative and reproducible.
With bounded random, each player moves continuously within an area of fixed size. In
each experiment using this behaviour, this bounding area size was set at 32 voxels wide.
Additionally, the seed of the random generator is fixed, such that on the same map every
iteration yields the same player movements.

With the run away behaviour type, each player is assigned a direction vector out of 8
compass directions. For the duration of the experiment, each player moves quickly in that
direction. In order to avoid getting stuck on obstacles, the direction vector is randomly
adjusted by a small margin when the player gets stuck. This behaviour also uses a fixed
seed for random generation, so multiple iterations yield the same behaviour.

Additionally, in both the bounded random and run away behaviours, a single player
is selected to stand still at the location they are added into the game world. We use this
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(a) Baseline world (b) FutureCity world

Figure 7: Screenshots from worlds used in experiments.

player’s network message data to allow comparison between experiments with different
player behaviour.

5.2.2 World

As all Minecraft-like games utilize a largely procedurally generated modifiable virtual envi-
ronment, the specific layout of that environment must be controlled when benchmarking.
In our experiments, we run the Minecraft-like services with two different game worlds:
a baseline, freshly generated world with no modifications, and a community made map
named “Future City.” Figure 7 shows in-game screenshots of these worlds.

The performance requirements of the MVE change by what world they operate. To
have a control world with minimal performance impact that is still a realistic use case, we
create a ‘baseline’ world. This world is freshly generated by the Minecraft-like game with
the default options (and seed: -392114485) and has not been modified.

To analyze the impact that the world has upon Minecraft-like game performance
variability, we also run experiments with a more complex map: a community made world
called “Future City.” This map has 492 thousand downloads on the website MinecraftMaps
and has a size of 113MB [40]. For comparison, the baseline world is 5.4 MB.

The Future City map contains many complex structures as well as many player-
made “Redstone” devices, that add dynamic functions to the world. For instance, there is
a large, functional clock in the center of the city built in the map. Such dynamic systems
should increase the resource requirements of this world.
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5.3 Experiments

Name Section Variables Changed Variation source measured

Internal Variation 6.2, 6.4 None Over time
External Variation 6.2 Iterations, Duration Between repetitions
World 6.6 World World workload
Behaviour 6.3 Behaviour Player behaviour
Network 6.5 Location Network delay

Table 3: List of experiments. Section refers to where we analyse experiment
results.

Parameter Values

Hardware DAS-5, AWS, Azure
MVE Vanilla, Forge, PaperMC
World Baseline, FutureCity
Behaviour Bounded Random, Run Away
Players 25
Iterations 1, 50
Duration 300 seconds, 50 seconds
RAM 4GB
Locations Paris, California

Table 4: Experimental parameter configuration. Values in bold are used unless
otherwise indicated.

We give a list of experiments in Table 3. We run experiments by first establishing a
baseline experiment that measures the Internal Variation over time. Subsequent experi-
ments then change single variables to measure isolated impact on performance variation.
We outline the experimental parameters in Table 4, where experiments use the values in
bold unless otherwise indicated.
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6 Evaluation

In this section we present and analyze the data collected from running the experiments in
Table 3.

6.1 Overview

Our main findings are:

MF1 Minecraft-like games exhibit high amounts of performance variability in real-world
cloud environments (Section 6.2). We find that cloud environments introduce per-
formance variation both over time and between iterations, up to a 100ms variance
in server tick time. Of the cloud environments tested, Azure introduced the most
variability.

MF2 Player behaviour significantly increases performance variation of Minecraft like games
(Section 6.3). When emulated players run away in all directions, each Minecraft-like
game becomes increasingly more overloaded over time, in both cloud environments
and dedicated hardware. In the Azure environment, each server tested exceeds max-
imum tick time by up to 250ms.

MF3 Limited CPU resources effect each Minecraft-like game differently (Section 6.4). Rep-
resentative cloud environments have limited vCPU count, which causes Minecraft-
like games to utilize 50% to 75% fewer threads compared to dedicated hardware.
We observe that the Minecraft-like games tested show two main behaviours in the
presence of this reduced thread count.

MF4 Cloud environments increase variation in round trip time (RTT), especially when
the Minecraft-like game is in an overloaded state (Section 6.5). In the Behaviour
experiment, where each server becomes increasingly overloaded, there is higher vari-
ation in RTT between players and the server. In the Forge and Vanilla servers on
AWS, the interquartile range of RTT grows to 50ms from the 20ms in the Inter-
nal Variation experiment. Additionally, we find that geographical distance between
nodes does not increase RTT variation but introduces a fixed offset equal to twice
the network latency. Finally, we find that server network bandwidth is limited by
CPU utilization.

MF5 Complex game worlds marginally increase the performance requirement of MVEs
(Section 6.6). When using a complex game world, each Minecraft-like game exhibits
slightly increased variation in tick time of around a 15ms addition to tick time
interquartile range, as well as a higher frequency of outlier ticks of high duration.
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Figure 8: 2.5 second sliding window average of tick time for each Minecraft-
like game and cloud provider combination over one iteration of 300 seconds.
Peaks 50ms greater than the sliding average are marked.
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Figure 9: Violin plot of tick time over one iteration of 300 seconds. Black
line depicts arithmetic mean.

6.2 MF1: Minecraft-like games exhibit high amounts of performance
variability in real-world cloud environments.

In Figure 8 we depict the tick time data collected during the Internal Variation experiment.
It shows that both AWS and Azure introduce performance variability over time to the
operation of each Minecraft-like game, characterized by an initial period of instability.
For each Minecraft-like game, a 2.5 second sliding window average of tick time is shown,
as well as markers for peaks of tick time more than 50 ms above that sliding average.
Also shown is the overloaded point at 50ms. When game tick durations are longer than
this point the game service is said to be overloaded, and experiencing reduced quality of
service.

We observe that on the DAS5 hardware, which offers dedicated compute nodes, the
Minecraft-like games are largely stable throughout the experimental duration. The sliding
average for each server stays less than 25ms, only infrequently peaking to higher than the
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Figure 10: 2.5 second sliding window average of tick time for each Minecraft-
like game and cloud provider combination from 50 iterations of 50 seconds.

overloaded point. We conjecture that this relative stability is due to the greater amount
of non-shared CPU resources available on the DAS-5 nodes.

On the AWS and Azure services, all the Minecraft-like games tested had increased
performance variability. In general there are two performance profiles: that of PaperMC
which has an extremely unstable period of high tick times but stabilizes to sub-overloaded
levels after around 50 to 55 seconds, and that of Forge and Vanilla3, which do not have
as high of an initial spike but tend not to stabilize for an extended period of time (190
seconds on Azure and 115 seconds on AWS).

Even after stabilizing to a sub-overloaded state, on both AWS and Azure there are
spikes to an overloaded level at a much higher rate compared to the DAS5 control. In
Figure 9 we show violin plot of the Internal Variation tick data, which depicts the extent
to which AWS and Azure introduce performance variability. Where the DAS-5 only has a
few points that are slightly above the overloaded point, both AWS and Azure have a high
frequency of overloaded ticks at a greater magnitude.

Figure 10 shows the data from the External Variation experiment. It depicts a 2.5
second sliding window average of tick time from 50 iterations of each Minecraft-like game
service and cloud provider combination. In Figure 11 we depict the violin plots of the same
data. These show that both AWS and Azure introduce variability between iterations, to
a different degree for each Minecraft-like game.

The DAS5 environment again shows little performance variability, each iteration
stays consistently at the 20ms point, with only around 2ms of variation between iteration
sliding averages. The DAS5 iterations do not show the period of instability followed by a
stabilization as the iterations on cloud environments do, which we propose to be an effect

3Since Forge is a modified version of Vanilla whereas PaperMC is based off of a completely separate
Minecraft-like game server, it was expected that Forge and Vanilla show similar behaviour, especially in
the Baseline case which does not make use of features that Forge has modified in comparison to Vanilla.
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Figure 12: Effect of player behaviour on tick time over time.

of increased CPU resource available (we elaborate further in Section 6.4).
On AWS and Azure, Forge and Vanilla show an increase in variation compared to

DAS5, in general the sliding averages vary by 25ms up to 50ms on outlier iterations.
PaperMC shows far more variation, with up to 100ms difference between iterations on
Azure and around 60ms on AWS, thus performance variation is dependent not only on
cloud environment but also upon the choice of Minecraft-like game.

From both the Internal and External Variation experiments, we find that on repre-
sentative real-world cloud computing environments Minecraft-like games running realistic
workloads exhibit increased performance variability, and that such variability is severe
enough to impact the quality of service of the Minecraft-like game.

6.3 MF2: Player behaviour significantly increases performance varia-
tion of Minecraft like games.

In Figure 12 we see the result on performance from having the emulated players using
the “run away” player behaviour explained in Section 5.2. In all environments, including
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the dedicated compute nodes on the DAS5, and for all Minecraft-like games, tick time
increases to above the overloaded threshold and shows increased variability. After around
150 seconds, all servers in each environment are in an overloaded state.

The run away player behaviour is in some ways the worst-case scenario during the
operation of a MVE server. The server must generate chunks of new terrain, serialize
them, and send to each of the connected players, and since players are running in different
directions the chunks they cause to be generated do not overlap. Moreover, this scenario
can be reasonably expected to be common in real-world operation of Minecraft-like games,
as travelling and exploration throughout the procedurally generated world is a central
feature of MVEs.

In the case of PaperMC, tick time continued to increase for the entire experimental
duration, whereas Forge and Vanilla had sudden drops in tick time after a few minutes.
We conjecture this is due to the differences in how each Minecraft-like game creates and
stores terrain, including their approach to writing new chunks to file and performing
garbage collection.

The run away player behaviour caused significant increase to both the sliding window
average and the variance of tick time, such that it causes overloading of each server in
each cloud environment. Thus, we find that player behaviour significantly impacts the
performance of Minecraft-like games.

Additionally, the fact that player behaviours such as long distance movement have
non-trivial performance requirements results in a corollary finding: cloud computing en-
vironments limit possible player behaviour by causing increased performance variability.
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Figure 13: Comparison of tick time and CPU utilization during Internal Vari-
ation experiment.

Environment Minecraft-like Game Threads

DAS-5 All 105 - 115
AWS, Azure PaperMC 59
AWS, Azure Forge, Vanilla 40

Table 5: Number of threads used by each Minecraft-like game in the Internal
Variation experiment.

6.4 MF3: Limited CPU resources effect each Minecraft-like game dif-
ferently.

In Figure 13 we compare the CPU utilization and tick time for each Minecraft-like game
on different cloud providers during the Internal Variation experiment. This shows that a
lack of sufficient CPU resources causes different effects for PaperMC compared to Forge
and Vanilla. Tick time and CPU utilization are strongly correlated on both AWS and
Azure, where there is near-total utilization of the CPU resources from each server until
the point at which they stabilize to a sub-overloaded tick time.

From this, we propose that periods of high tick time in this experiment may be caused
by a lack of available CPU resources. This is backed by the availability of CPU resources
throughout the experiment on the DAS5 environment and the correspondingly low tick
times.

Table 5 gives the number of threads each Minecraft-like game uses in each environ-
ment, showing that on the DAS5 all servers utilize similar numbers of threads, but on the
Azure and AWS environments Forge and Vanilla utilize 75% fewer threads compared to
the DAS5, whereas PaperMC uses about 50% fewer.

For PaperMC, which uses more threads in the commercial cloud environments, we
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Figure 14: Round trip time violin plot for each server on DAS5 and AWS
during the Internal Variation and Behaviour experiments. Black line depicts
arithmetic mean.

see higher tick times for a duration of 50 seconds and then a decrease to around 25ms tick
time, which corresponds to when CPU usage declines, also around 50 seconds. Vanilla and
Forge, with fewer threads by comparison, have spikes in tick time before the stabilization
point with less magnitude, but take more than twice as long to stabilize.

From these findings, we conjecture that due to difference between the threading
schemes of Minecraft-like games 4 as well as the performance characteristics between cloud
environments, the limitations to CPU resources in representative cloud environments cause
different forms of variation between Minecraft-like games.

6.5 MF4: Cloud environments significantly increases variation in round
trip time, especially when the Minecraft-like game is overloaded

In Figure 14 we show the statistical range of round trip time from each server on the
DAS-5 and AWS environments during the Internal Variation and Behaviour experiments.
Compared to the DAS-5, each experiment on AWS shows increased variation of RTT.
Additionally, during the Behaviour experiment where each server was overloaded for a
majority of the experimental duration, we observe an increase in the variation of RTT.

As a comparison, we show the Network experiment in Figure 15, where the players
connected from an AWS node in California to another node in Paris. In this configuration,
there was an increase of minimum to .14 seconds but not a significant amount of additional
variation compared to the experiments on the AWS environment with no geographical
distance.

4The PaperMC project seeks to improve over the performance of the Vanilla server via asynchronous
multi-threading, and thus may suffer in environments with low vCPU count.
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Figure 15: Round trip time violin plot for each server on AWS during the
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Experiment Minecraft-like Game MB sent

Internal Forge, Vanilla 602
Internal PaperMC 426
Behaviour Forge, Vanilla 319
Behaviour PaperMC 275

Table 6: MB sent by each Minecraft-like game in the DAS-5 and AWS envi-
ronments during the Internal Variation, Network and Behaviour experiments.

Table 6 shows the number of bytes by each Minecraft-like game in the AWS environ-
ment, showing that compared to the Internal variation experiment, during the Behaviour
experiment in the AWS environment about 50% less bytes were sent by Forge and Vanilla,
and around 40% less by PaperMC.

As during the Behaviour workload on AWS each server was overloaded and close to
full utilization of the CPU, we propose that network bandwidth and RTT of Minecraft-like
servers is dependant on CPU availability, rather than network latency. This observation
is in line with prior findings, namely the 2019 Yardstick report which found that network
traffic of Minecraft-like games is limited by CPU utilization [35].

6.6 MF5: Complex game worlds increase the performance requirement
of MVEs.

In Figure 16 we compare the tick times of each server on AWS during the Internal Variation
and World experiments, showing that the FutureCity world caused marginally more per-
formance variation (around an 15ms increase to interquartile range) and a slight increase
in median tick time (5ms on PaperMC and 10ms on Forge and Vanilla).

In the Internal Variation experiment the servers use the Baseline world and in the
World experiment they use the community made “FutureCity” map (see Figure 7). The
FutureCity map is significantly more complex than the Baseline world, being around
113MB [40] in size compared to the Baseline world of 5.4 MB.

Thus, as each server shows more performance variation in the same environment
when using the FutureCity world, we conclude that complex environments increase the
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Figure 16: Tick time violin plot for each server on AWS when using the
Baseline and FutureCity Worlds. Black line shows arithmetic mean.

performance requirements of the Minecraft-like games. This effect can be reasonably
assumed to be caused by both the additional chunk data that must be serialized compared
to the baseline world, as well as the presence of dynamic systems in the game world that
require ongoing computation.

7 Discussion

In this section we outline the relevant prior research and how this thesis fits into that body
of work, as well as the threats to validity.

7.1 Related Work

Research specific to benchmarking Minecraft-like games is limited. The main work within
this niche being Van Der Sar, Donkervliet, and Iosup (ICPE, 2019) [35] wherein the
Yardstick tool (extended in this thesis) was designed and used to benchmark the scalability
of Minecraft-like games. While the Yardstick benchmark acknowledges the practice of
using of cloud environments for the purposes of hosting Minecraft-like games, it does not
incorporate into the design of the Yardstick tool or the benchmarking technique methods
of measuring the impact of cloud environments. Accordingly, in our adaptation of the
Yardstick benchmark design we add a deployment system suitable for cloud environments,
as well as a control server and client system to facilitate distributed experiments and metric
collection tools that are portable to many cloud environments and Minecraft-like games.

Work focusing on the use of serverless techniques as applied to Minecraft-like games
is similarly limited, with a main work being Donkervliet, Trivedi, and Iosup (HotCloud-
Perf, 2020) [7] which proposes a redesign of MVE technology to move certain sections of
the MVE server to cloud environments. This work does not implement such a system
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and thus also does not analyze the performance variability introduced from these cloud
environments.

Performance variation in cloud environments is a well-studied topic, with the main
research referenced in this work being Uta et al (USENIX, 2020) [34] which performed a
wide-scale study of variability in cloud environments, with a focus on the network compo-
nent. Additional work on variability in cloud environments includes Maricq et al (USENIX,
2018) [16], Taheri, Zomaya, and Kassler (Computing, 2017) [30], and Cao et al (USENIX,
2017) [5].

7.2 Limitations

In this work, we designed and implemented Meterstick, a benchmarking tool for Minecraft-
like games operating in cloud environments. We then used Meterstick to measure the
performance variability of popular Minecraft-like games in commercially available cloud
computing services. We have ensured that the choice of Minecraft-like game and cloud
environment are representative of real-world operation.

However, there is currently no publicly available real-world workloads of Minecraft-
like games, such as average player count, typical player behaviours, or specific worlds used.
For such decisions, we have assigned a best-guess value. In the case of player behaviour
and game world, we used a domain coverage approach wherein we have one instance
at a minimum realistic value (the bounded random player behavior and Baseline world)
and another at a maximum (run away player behaviour and FutureCity world). Thus,
we expect that in real-world operation most workloads should fall in the range between
this minimum and maximum. For number of players, we chose 25 players informed by
recommended values taken from community and official sources.

Additionally, though we have measured multiple quantitative metrics at both an
application and systems levels as well as a quantitative approximation of subjective ex-
perience through round-trip time, we have no measurements of subjective values such as
player experience. Thus, though we do observe values of server performance going above
an overloaded point, we cannot conclude to what degree being in an overloaded state
would effect player experience.

Finally, much as is the case for those operating real-world Minecraft-like games in a
cloud environment, we do not have access to the internal allocation and scheduling data
of the commercial cloud providers.

8 Conclusion

Minecraft-like games have societal importance stemming from general popularity as well
as their value as tools for entertainment, education, and social causes. Minecraft-like
games are increasingly being run in cloud environments in order to gain access to more
computational power or network stability, but the performance effects of doing so is not
well understood. Thus, this paper sought to answer three research questions: RQ1, on
the design of a benchmarking tool for cloud-deployed Minecraft-like games, is addressed in
Section 3 where we create a generalized design of Meterstick that satisfies our requirements
for a fair and reproducible benchmark. RQ2, on the implementation of the design, is
reported in Section 4 where we outline implementation details, challenges, and processes.
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Finally, we answer RQ3 on the performance variation of Minecraft-like games operated
in real-world cloud environments with our main findings:

MF1 Minecraft-like games exhibit high amounts of performance variability in real-world
cloud environments (Section 6.2).

MF2 Player behaviour significantly increases performance variation of Minecraft like games
(Section 6.3).

MF3 Limited CPU resources effect each Minecraft-like game differently (Section 6.4).

MF4 Cloud environments increase variation in round trip time (RTT), especially when
the Minecraft-like game is in an overloaded state (Section 6.5).

MF5 Complex game worlds marginally increase the performance requirement of MVEs
(Section 6.6).

In future work, further experiments with more Minecraft-like games and commercial
cloud providers would increase confidence in the overall trend of increase performance vari-
ation in cloud environments. Additionally, if the workload data from real-world Minecraft-
like game servers can be obtained, then experiments could be made more representative
through more advanced player behaviour models and accurate worlds.

9 Artifacts for Reproduction

We make all artifacts available as free open-access data, documentation, and open-source
software.

Data: Available on Zenodo [9]
Software/Documentation: Available on GitHub [8]
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A Hardware Used in Cloud Deployed Minecraft-like Games

Service RAM CPU Notes

Hostinger 3GB 3vCPU CPU GHz not listed
Nodecraft 4GB 3.8GHz Number of vCPU not listed
Apex Hosting 4GB 3.9GHz Number of vCPU not listed
ScalaCube 3GB 2x3.4GHz
GGServers 4GB 3.2GHz Number of vCPU not listed
Server.pro 4GB 2x2.4GHz
BisectHosting 4GB 3.4Ghz Number of vCPU not listed
Shockbyte 4GB 4.0Ghz Number of vCPU not listed
CubedHost 2.5GB 4.5Ghz Number of vCPU not listed
ServerMiner 3GB 4GHz Number of vCPU not listed
Akliz 4GB 3.4GHz Number of vCPU not listed
RamShard 2GB 4GHz Number of vCPU not listed
MCProHosting 2GB NA CPU info not available
GTXGaming 3GB 1x3.8GHz
StickyPiston 2.5GB NA CPU info not available
HostHavoc 4GB 4GHz Number of vCPU not listed
Skynode 4GB 2x3.6GHz
Ferox Hosting 4GB NA CPU info not available
Aquatis 4GB 4.2Ghz Number of vCPU not listed
PebbleHost 3GB 3.7Ghz Number of vCPU not listed
MelonCube 4GB 3.4Ghz Number of vCPU not listed

Table 7: Recommended plans from services that offer Minecraft hosting.

Cloud hosting specifically tailored for Minecraft servers is a common service, in Ta-
ble 7 we list a sampling of popular Minecraft hosting services and the hardware specifi-
cations that they report. The data shown is taken from hosting plans that are marked
as “recommended” or comparable to this recommended plan on other services, if none
were marked as such. We see a lack of transparency in hosting configuration, where many
services list the hardware used in their data centers but do not report the use of virtual
machines partitioning, hypervisors or other allocation system details.

The hardware requirements of Minecraft that each service reports vary greatly, with
some saying that 4GB of RAM is suitable for many players and mods, and others reporting
that it is enough for only 20 players.

Aside from these services that are tailored to Minecraft-like games, there is also the
option to use general purpose cloud computing such as offered by Amazon Web Services,
Microsoft Azure and Google Cloud. For each of these services, there are either official
guidelines for operating Minecraft-like games or there are unofficial recommendations,
listed in Table 8. These recommendations are not uniform, suggesting there is a lack of
consensus on the hardware requirements of Minecraft-like games.

Notably, very few of the services or recommendations listed meet hardware recom-
mendations for dedicated servers with more than 20 players as published by the Minecraft
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Service Source RAM CPU

AWS Official 1GB 1vCPU
AWS Unofficial 7.5GB 2vCPU
Azure Official 4GB 2vCPU
Azure Unofficial 3.5GB 1vCPU
Azure Unofficial 2GB 1vCPU
Google Cloud Unofficial 1.7GB 1vCPU

Table 8: Recommended plans for general purpose cloud computing providers.

Wiki: 6GB RAM and an modern Intel or Ryzen CPU (8 to 12vCPU). However, this
wiki also states that single-core performance is more important to Minecraft than many
threads [19].

From these sources we find that 4GB RAM and 2vCPU is most often recommended.
Thus, in our experiments we utilize nodes with 8GB RAM and 2vCPU, with the Minecraft-
like games limited to 4GB of RAM through the JVM “-Xmx” argument. This configuration
is chosen both to ensure our metric sampling tools have sufficient memory and because
none of the services listed specify if the RAM requirement for the Minecraft server is
a hardware maximum (that would include the needs of the OS, JVM, and networking
programs) or a software limit (such as specified by the JVM).
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