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The Project Card

Research question(s):

RQ1 What are the characteristics of player-agnostic workloads?

RQ2 How to evaluate the performance of Minecraft-like games under player-agnostic
workloads?

RQ3 What is the performance of Minecraft-like games when running player-agnostic
workloads?

Research method(s):

M1 Design of a workload abstraction and of a full benchmark.

M2 Experimental research in computer systems, method synthesized by Raj Jain.

M3 Performance analysis using quantitative data from real-world experiments.

Research approach:

A1 To answer RQ1, we apply the iterative AtLarge design methodology (M1) to
create an abstraction of Player Agnostic workloads.

A2 For RQ2 we use the experimental research methodology (M2) when designing
our experiment, which guides our choice of metrics, workloads, and benchmarks
to compare against as well as our experimental configuration of repetition and
averaging.

A3 We answer RQ3 by creating and using a benchmark (M3). The benchmark fo-
cuses on MVEs in real world settings that evaluates appropriate quantitative
system and application level metrics in order to avoid relating macro-level per-
formance to a singular micro-level metric.
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Main results (main findings, MFs) and contribution:

C1 Defined a new class of MVE scalability problems, that of managing player-
agnostic workloads (RQ1), and an operational model based on these workloads.

C2 Defined a benchmark to evaluate the effect of player-agnostic workloads on MVE
performance through real-world experiments (RQ2).

C3 Conducted extensive real-world experiments on three common implementations
of Minecraft-like games, including the most popular today, and analyzed the
results.

MF1 Player-agnostic workloads can significantly affect the performance of Minecraft-
Like games.

MF2 The Minecraft-like services we studied, including the commercial (”vanilla”)
Minecraft, are poorly parallelized, which impacts negatively their ability to run
player-agnostic workloads.

MF3 Processing the state of in-game entities is computationally expensive for player-
agnostic workloads, and can cause server overloads.
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Abstract

Minecraft is one of the best selling game of all time, and has inspired the development
of a multitude of games with similar features, known as Minecraft-like games. These
games are characterized by the utilization of Modifiable Virtual Environments (MVEs).
The popularity of games using MVEs has created demand for high-performance hosted
environments running multiplayer game services. Despite the demand, prior research
has shown that current MVE server technology does not scale well to large amounts of
concurrent players. Additionally, little research has focused upon Player Agnostic Work-
loads, a unique performance pattern of MVEs that scales separately from player count
and behaviour. MVEs are both infinitely customizable and contain dynamic behavior,
and thus have the potential for high complexity. In short, parts of a modifiable world
can become complex systems in their own right. In this work, we define a model of com-
mon player-agnostic systems, and evaluate the performance of MVE services when using
game environment workloads that contain example player-agnostic workloads. Our find-
ings show that Minecraft-like service performance is highly reliant on the workloads inside
of the MVE, such that specific configurations of the game environment can cause service
quality degradation. Keywords Scalability; Minecraft; workload; online-gaming.

1 Introduction

The global gaming market generated revenue in access of $159 billion in 2020, a value
expected only to rise in the coming years [31]. Minecraft, as the second most best-selling
video game of all time [28, 40], accounts for a significant amount of the global revenue,
having sold 88 million copies since 2017 [48], and having reported more than 131 million
players per month [47]. Minecraft provides a platform not only for individual entertain-
ment, but community movements with a broad spectrum of causes, from seeking to build
the entirety of Earth [4], visualization tools for metabolic pathways [26], to creating safe
spaces for autistic players [1, 37], and facilitating an in-game haven for press freedom to
fight against real world censorship [36]. However, the potential of Minecraft-like games is
bound by the limitations of their multiplayer services, which support a maximum player
count in the low hundreds. This lack of scalability makes it difficult for large communities
or events to utilize Minecraft-like games as a medium. Prior work in measuring and increas-
ing the scalability of Minecraft-like services is limited, and has focused on computational
requirements that scale by player count [6, 50, 33]. This approach does not take into ac-
count the non-trivial computational workload of the environment in Minecraft-like games.
In this work, we define a model for these player-agnostic workloads in Minecraft-like en-
vironments, then design and perform experiments to measure the performance impact of
these workloads.

Minecraft’s most unique feature is the use of a Modifiable Virtual Environment (MVE),
a real-time, dynamic, multi-user environment which allows players to freely destroy and
create components with nearly unbounded scale. Minecraft’s aforementioned success has
popularized the use of MVEs in a variety of newer Minecraft-Like games, such as No Man’s
Sky [13], Astroneer [42], Terraria [34], and Space Engineers [18]. While MVEs provide a
high degree of player freedom, prior research has found that current MVE technology suf-
fers from poor scalability: Minecraft-like servers can only concurrently manage maximum
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player counts in the low hundreds, often experience performance degradation before that
maximum, and do not interact with other server instances [50].

Video game scalability is not a new problem, and many techniques have been devel-
oped to increase concurrent player count. A majority of these approaches were developed
for video games that do not utilize MVEs, and have only limited applicability. Approaches
that are relevant to MVEs are restricted to techniques that minimize workloads that scale
with player count, such as world partitioning [15], interest management [3, 23], and incon-
sistency management [45, 9]. However, Minecraft-like games do not only process player
operations, they also compute environment actions not directly tied to players.

In this work, we define a novel model of player-agnostic workloads to describe these
workloads that are characteristic to MVEs and occur as a result of complex environ-
ment dynamics, rather than by player count. The computational requirements of these
environment-based computations does not only affect player count scalability, but work-
load scheduling, environment complexity limits, and service guarantees for web hosting
platforms. Thus, we pose the following main research question: What is the performance
impact of player-agnostic workloads in MVEs? We then divide this question into three
research questions:

• RQ1 (Section 3): What are the characteristics of player-agnostic workloads?
A core activity for players of Minecraft-like games is the construction of structures
that function as Player-Agnostic workloads. Because MVEs are uniquely config-
urable into an infinite variety of layouts it is difficult to identify a finite set of rele-
vant Player-Agnostic workloads. Instead, identifying what kinds of features within
these configurations have a performance impact requires defining a model to sepa-
rate them into classes. This is non-trivial as different Minecraft-like games do not
have identical features, thus the model must differentiate by function, rather then
by form.

• RQ2 (Section 4): How to evaluate the performance of Minecraft-like games under
player-agnostic workloads?
Minecraft-like games, like all real-time systems, have strict performance requirements
to prevent service degradation, and evaluating this performance is a crucial part of
operating Minecraft-like games as a service. In order to measure the performance
of a Minecraft-like game when operating a player-agnostic workload, it is necessary
to design an experimental method. This also requires defining performance in the
context of a Minecraft-like service. This is difficult as the experiment must be as
close to a real world setting as possible in order to maintain validity, but still be
repeatable.

• RQ3 (Section 5): What is the performance of Minecraft-like games when running
player-agnostic workloads?
Understanding how Player-Agnostic workloads effect the performance of Minecraft-
like services is important in mitigating performance degradation and designing new
scalability techniques. The experimental measuring of Minecraft-like game perfor-
mance requires a set of player-agnostic workloads for the Minecraft-like services to
operate. Thus, it is necessary to find a set of player agnostic workloads that are both
representative of the classes established in the workload model, and can be reason-

6



Client

Client

Client

Player

Player

Player

I/O
Queues

Networking

Rendering
Key Press

Frames Player 
Actions

State 
Updates

World State Management

Environment Simulation

Terrain
Generation

Entities
Simulation

Persistent Storage Configuration

Player
Definable

Logic

Figure 1: Overview of a Minecraft-like MVE system.

ably assumed to be realistic. Additionally, the metrics measured by the experiment
must be properly analyzed to discern the proportion of performance that is due to
changes in environment workload.

Towards exploring these questions, we utilize the following research methods:

• M1: To answer RQ1 we apply the iterative AtLarge design methodology to create
an abstraction of Player Agnostic workloads [19].

• M2: For RQ2 we use the experimental research methodology when designing our
experiment, which guides our choice of metrics, workloads, and benchmarks to com-
pare against as well as our experimental configuration of repetition and averaging
[32, 17].

• M3: We answer RQ3 by creating a benchmark of MVEs in real world settings that
evaluates appropriate quantitative system and application level metrics in order to
avoid relating macro-level performance to a singular micro-level metric [17].

2 Background

In this section we define important terminology and give an overview of Minecraft-like
game functionality.

2.1 Minecraft-like Games

We consider a game Minecraft-like if, at a minimum, it operates using a Modifiable-Virtual
Environment (MVE). MVEs allow players to concurrently modify the world in creative
ways, creating player interactions not possible in other games. Figure 1 shows the design
of a Minecraft-like MVE system. Common, but not ubiquitous features of Minecraft-like
games include a server-client model for multiplayer service, non-player characters that
inhabit the environment, and some form of player definable logic.
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2.2 Player-Agnostic Workloads

A Player-Agnostic Workload is any server-side workload in a Minecraft-like game that
scales independently from the number of connected players. This is contrary to typical
video game server workloads that scale through the need to send player actions to all other
connected players. It is important to acknowledge that player agnostic workloads can result
from player modifications within the modifiable environment. Thus, more players will
generally result in an increase in the computational strain from player-agnostic workloads,
but crucially only one player1 is required to create a player-agnostic workload of any
complexity.

In Section 3 we give a model that classifies types of Player Agnostic Workloads based
upon their relation to features of the MVE.

2.3 Entities

Minecraft-like games often include entities that interact with the environment, making
the world more interesting to players. Within MVEs, a given game feature is considered
an entity if it exists within the game world but is not a player or a part of the modifiable
terrain. Within this definition, there are a few main types of entities: driven entities
exhibit some form of decision making and movement ability (often referred to as “mobs”),
and non-driven entities, which generally represent an in-game resource or provide some
functional or visual effect. Notably, many of these entities have the ability to alter the
environment of their own accord. For example, in Minecraft itself, Creeper entities can
destroy blocks, Endermen entities can move blocks to different locations, and Villagers
tend to animals and harvest crops. Aside from animal and people-like entities, there are
a wide variety of non-driven entities such as dropped items, vehicles, and weapons; some
of which can be persistent, such as chests.

2.4 Player Definable Logic

Many Minecraft-like games have a feature enabling Player Definable Logic that extends
the game environment by adding some form of custom circuitry into the game calcula-
tions. The primary example of this is Redstone [35] in Minecraft, but other examples
include Conveyor [7] systems in Satisfactory, Wire [52] in Terraria, Circuits [5] in Facto-
rio, Modules [27] in Astroneers, and Logic [25] in No Man’s Sky. Importantly, there is no
hard limit to the computation complexity that player built circuitry can achieve. Many of
these systems are even Turing complete [51], allowing, for example, functional computer
systems to be built within the game environment.

A Farm refers to a special type of Player Definable Logic, wherein a player creates a
system to automate the collection of some in-game resource. Farms are perhaps the most
common form of Player Definable Logic, and a core feature within many Minecraft-Like
games. Often, a Farm will utilize the functioning of driven and non-driven entities in order
to facilitate resource collection.

1Depending on how a Minecraft-like game is configured, it is possible for the server to continue envi-
ronment computation when no players are connected, thus technically no players are strictly required.
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Figure 2: Player Agnostic Workloads model with classes and sub-classes.

3 Workload Model

In this section we propose a model that separates types of player-agnostic workloads into
three overarching classes with shared traits. Figure 2 depicts this model. We design this
model with a focus upon Minecraft, and these workloads are supported by all Minecraft-
like games that utilize the Minecraft protocol. Anecdotally this model will generalize well
to other Minecraft-like games due to the similarity in MVE structure between games.

3.1 Terrain

By definition, all MVEs contain modifiable environments. MVEs have dynamic behaviour
that controls or changes environment modifications, such as physics calculations, fire,
water, crop growth effects, or any other world-based calculations that modifies the world
indirectly from the player. In Figure 3 we give examples inherent to MVEs. These types
are Terrain Creation, referring to adding novel structures to the environment, Terrain
Propagation, by which properties are spread between areas of the environment (in the
example, the property is “on fire”), Terrain Destruction, for any action that removes
sections from the environment, and Terrain Calculations, which uses the environment to
compute some value (in the example, light level).

While there are comparable features in games that do not use MVE systems, ter-
rain workloads in MVEs function differently due to how MVEs are structured: since the
environment is fully modifiable, and often procedurally generated, no assumptions can
be made about world state or configuration. Thus all terrain actions must be calculated
as a function of current neighboring state. In Minecraft, for instance, terrain actions re-
quire a data structure containing the state of all neighboring voxels (blocks). Thus, world
modification is computationally expensive as each modification action requires retrieving,
calculating and updating the state of neighboring blocks, and is further complicated when
concurrent world actions access the same blocks. Within the group of Terrain workloads,
notable examples that are particularly computationally complex are explosives, lighting
calculations, and physics simulations, as these tend to be spontaneous, hard to predict,
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Figure 3: Classes of terrain modification and examples from Minecraft.

and use a high volume of environment state updates.
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Figure 4: Classes of entities and examples from Minecraft.

3.2 Entities

A prominent feature of Minecraft-like game is the presence of non-player entities within
the game world. In general, such entities can either be driven, and have a form of AI that
decides its actions, or be non-driven, and still be able to interact with the world but have
no advanced decision making capabilities.

Figure 4 gives an overview of entities types, with Intelligent, Aggressive and Neutral
entities having some form of AI, and Item and Static entities having none. Intelligent
entities behavior is complex and often revolves around interacting with the environment,
with the example given being a Farmer Villager, which will plant and harvest crops of
their own accord. Aggressive Entity actions are not decided by environmental factors but
instead by the player, as their main goal is follow and harm the player. Neutral Entities
actions are not heavily influenced by either environment or player, but instead largely ran-
dom movements around the game world. However, all driven entities require environment
state in order to make decisions and for pathfinding, increasing the computational need
of the MVE.

Static entities have no AI, but can be interacted with, moved or used by the player.
Item entities are a common feature of MVEs in which amounts and types of resources are
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Figure 5: Structures utilizing player defined logic.

represented in the environment by a smaller icon of the object. While static entities have
no decision capability, they still require computation for collision and movement.

Much like Terrain workloads, there are similar features to all of these entity types
in games that aren’t Minecraft-Like, but due to the unique nature of MVEs they do not
act the same way. For instance, pathfinding is a common driven entity calculation, but
because MVE terrain is modifiable there are no “checkpoint” systems to pre-bake paths as
is done in games without MVEs. Other examples of strenuous workloads within this class
are entity collision and item entity movement, such as through water streams or other
“conveyor-belt” systems.

3.3 Player-defined logic

Minecraft-like games give players the ability to create custom circuitry by building struc-
tures that behave like in-world sensors, wires, and actuators. These components can be
chained together to make an infinite variety of devices each with unique behaviour. In-
stead of classifying all possible structure types, example structures are described that are
known to be common usages of player defined logic.

Figure 5 contains four important examples of player-defined devices that have equiv-
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alencies in other Minecraft-Like games. The Logic Clock is an example that is close to
traditional circuitry, creating a pulse with a fixed frequency. The two farm examples rep-
resent the most typical usage of player-defined logic; their purpose is to automate resource
collection for the player by modifying the terrain to generate and subsequently harvest
resources.

Player defined logic in this form is unique to MVEs as it is integrated into the world
environment, rather than being explicitly defined. This property is also why player defined
logic is central to the concept of player agnostic workloads: it is prohibitively difficult to
predict the behaviour of a given player definable logic system as its actions rely both
on measuring and modifying the state of the surrounding environment. Additionally,
player-definable logic can act randomly by reacting to random state change events in the
environment.

Reliance on and ability to change neighboring state as well as having capability to
be random means that player definable logic can exhibit high complexity. Generally this
is a positive feature of the MVE as it allows for designs with high degrees of intricacy
and expressiveness, such as the given example of a functional computer made entirely of
Redstone. However, this intricacy comes with a performance cost.

The computation complexity of player defined logic has social implications: using
player defined logic it is possible to create “lag-machines,” a form of denial of service attack,
wherein a malicious player creates structures designed to be computationally demanding
intended to overload or crash the server.

In short, this category contains any player-built logic system that utilizes per-voxel
calculations, but important examples are farm systems, as they are both computationally
expensive and extremely common in all Minecraft-like games, as well as lag machines, as
they represent the extreme case of complexity.

4 Experiment Design

In this section, we define a method to measure the performance impact of each Player-
Agnostic workload: first we create a set of prototypical Minecraft worlds that contain
experimental workloads corresponding to those listed in Table 1, then start a server with
one of these worlds using the default recommended server configurations. Finally we
connect a computer controlled player to the server, and record performance metrics for
fifty seconds. We repeat this process three times for each server/workload combination,
and average the results across iterations.

4.1 Choice of Workload

We decide upon specific types of Player Agnostic workloads based on real world applica-
bility for all Minecraft-like games and to provide archetypal examples of the classes within
the Workload Model introduced in Section 3.

Because this experiment specifically measures workload impact within a Minecraft-
protocol server, workloads are chosen that were popular and common within the Minecraft
community. However, each workload is anecdotally expected to be common within other
Minecraft-like games as they utilize the core, unique features of Modifiable-Virtual Envi-
ronments. Additionally, we use a control world to provide a baseline to compare the Player
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World Properties

Control Default generated world
TNT Large chunk of TNT
Resource Farms Many community-made resource farms
Lag Machine Complex Redstone device that stress-tests server

Table 1: List of workload worlds used in experiments.

Agnostic Workload performance against. An overview of workloads is listed in Table 1.

4.1.1 Control

A default generated Minecraft world2, with no modifications. The player spawns in a
plains biome, with sparse trees and a fair amount of passive entities spawning nearby.
This world represents a minimum baseline in workload while still being a realistic use
case. The measured results of this workload are used as a workload-level benchmark to
compare the other workloads against.

4.1.2 TNT

A default Minecraft world, this time in a forest biome with more trees, where a 16 by 16 by
14 area of TNT Blocks has been added and rigged to explode when a player joins the server.
High volume world modifications that are difficult to predict are a core problem within the
Player Agnostic Workload model (Section 3), specifically within Terrain modifications. We
chose TNT as it does exactly this, and activating large amounts of it is a popular activity,
often to test the performance limits of a server.

This phenomenon can be seen in a plethora of community-made content. For example,
a video made in 2018 by Minecraft YouTube creator DudeItsRocky with 21 Million views
shows only an in-game explosion of thousands of TNT blocks [10]. In Minecraft, TNT that
has been activated is a form of non-driven entity that can collided with and moved by other
entities. Thus a TNT chain reaction requires spawning and calculating the movement of
many entities, adding additional computational strain.

4.1.3 Resource Farms

This world spawns the player on a coastal forest, that contains a variety of popular
Minecraft community designed Resource Farms. In particular, it contains twelve Aggres-
sive Mob Farms, that automatically spawn and harvest enemy entities, four Cobblestone
Farms, that utilize interactions between lava and water liquid blocks to create Cobblestone
and harvests it, and four Kelp Farms, that detect crop growth and harvest only when it is
ready. Alongside the Farms is a system of item entity ”pipes” that use water movement
to bring the harvested resources to a central sorting and storage system.

We chose these farms based upon the popularity of their creators and the video show-
cases of the farm designs: Youtube users gnembon (1.7 Million views) [16], Shulkercraft

2random seed: -3699908958998125117
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(1.3 Million views) [39], Mumbo Jumbo (2.5 Million views) [21], and Mysticat (800 Thou-
sand views) [30] respectively, as this is assumed to be correlated with the amount these
farms are used through the community.

Notably, the Mob and Cobblestone farm utilize a in-environment clock, similar to
the one shown in Section 3.3, the pulses of which control their operation. Additionally,
these farms rely on the actions of entity in their functioning. The Mob farm relies on
spawning as many mobs as possible and using collisions and pathfinding to push them
over a cliff. The Cobblestone farm continuously activates TNT, which while activated is
an entity. Similarly, when mobs are killed or blocks destroyed, they drop item resources
which are represented as passive entities. These item drops are then transported through
terrain physics, using water streams.

4.1.4 Lag Machine

The lag machine world spawns the player on a small island, surrounded by water with
few entities, where a large lag machine structure has been built. Whereas the previous
workloads are typical examples of workloads than can be expected to happen during the
normal operation of a Server, this workload is an extreme, and likely rare, case. Lag
Machines are examples of Player Definable Logic wherein a malicious player, seeking to
crash or reduce the performance of a server, creates a structure in game designed to require
high computational power. This form of Denial of Service attack relies on the existence
and impact of Player Agnostic Workloads.

We chose the specific design of the Lag Machine used in this workload from Youtube
user Timeam (52 thousand subscribers) [46], as it a purely Redstone design, rather than
relying on implementation-specific entity calculation exploits that may not have equiva-
lencies in other Minecraft-like games.

Importantly, Redstone calculations such as the ones that this lag machine is based
on are generally non-malicious, being both common and useful in normal operation of a
Minecraft server, for instance forming the basis for impressive examples of Player Defined
Logic such as the operational Redstone Computer [22].

4.2 Systems Under Test

To show that the performance impact of a given player-agnostic workload is not due only
to the implementation details of a given server, we performed each experiment using three
different Minecraft server applications. We select three Minecraft-like games: Minecraft,
Forge, and PaperMC. The first is the official, “Vanilla,” Minecraft server [29], chosen as
it represents the default experience that most users and hosts utilizing Minecraft servers
employ.

The second is the Forge server, which is an extended version of the Vanilla server
that adds support for community made modifications (“mods”), and is the most popular
choice for operating such modified servers [24]. Of the top 50 most downloaded Minecraft
mods, only 5 are not Forge-exclusive, and of those 5, only 1 is not available on Forge [12].

The third is the PaperMC server, which we chose as it is marketed as an open
source, high-performance alternative to the Vanilla server [44]. While the PaperMC project
provides no quantitative figures on what performance gain can be expected compared to
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the Vanilla server, it does provide a list of optimizations, including extensive changes to
threading models and environment processing.

We expect that the performance of each server will be negatively impacted by the
workloads tested, albeit not to the same degree or in equivalent ways. Since each server
alternative is configured for different purposes, their performance should differ when op-
erating different workloads.

4.3 Experiment Tool

To facilitate performance analysis, we use and extend Yardstick [50], a benchmark for
Minecraft-like games, to connect a bot that moves around the game world based on a
player-behaviour model trained in Second-Life. This ensures that the server being analysed
receives realistic player input over the course of the experiment.

4.4 Metrics Collected

We adapt and run the experiment design on the DAS-5, a distributed super-computer for
academic and educational use [2]. In each experiment, a DAS-5 node runs the Minecraft
server while another node connects to it using the Yardstick tool.

On the node that runs the server a Python script using a system performance mon-
itoring library Psutil [38] as well as a plugin for Java JMX connections [14] logs CPU
utilization percent, system packet I/O counts, and server tick times.

Tick time is an internal Minecraft measurement of the duration of one iteration of a
game loop, with 50ms being the accepted maximum before noticeable performance issues
(server overload). The total CPU utilization is measured as a sum of percentages for each
CPU the server process is running on. To provide insight into network usage, the node
running Yardstick logs each message it receives from the server.

Additionally, the Minecraft internal debugging logger was used to gain insight into
what sections of the MVE took the most fraction of tick time, and the CPU analysis tool
perf-map-agent [20] is used to log the thread and stack activity of the CPU over the course
of the experiment.

5 Experiment Results

In this section we discuss the main findings based upon server performance data collected
from the Vanilla, PaperMC and Forge servers when running the workloads listed in Table
1. Our main findings are:

• MF1: Player-Agnostic Workloads can significantly affect the performance of Minecraft-
Like games (Section 5.1). Complex sections of MVEs are capable of overloading
modern MVE server technology by up to 20 times the overloaded threshold, and
there are large performance differences between Minecraft-like services. Of those
tested, PaperMC performed the best while Forge performed worst.

• MF2: The Minecraft-like services we studied, including the commercial (”vanilla”)
Minecraft, are poorly parallelized (Section 5.2). This is evidenced by the trend of
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low CPU utilization during periods with high tick times. Even during high work-
load periods, none of the tested services utilized more than 20% of available CPU
resources.

• MF3: Processing the state of entities is computationally expensive and can cause
server overloads (Section 5.3). We find that 95% of all server messages are Entity
related, and that 70% of non-idle tick time is Entity calculations.

5.1 MF1: Player Agnostic Workloads can significantly affect the per-
formance of Minecraft-like games.
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Figure 6: Tick time averages over time during experiment workloads.

Figure 6 depicts the average tick time for the Minecraft-like services Vanilla, Forge
and PaperMC when running the experimental workloads. It shows that complex workloads
are capable of overloading MVE services, and that of services tested PaperMC was most
performant.

Using the Control workload (Figure 6, top left), none of the services become over-
loaded. This was expected as the Control workload contains no significant environment
complexity. PaperMC stays consistently 5ms faster than the other services.

With the TNT workload (bottom left), both the Vanilla and Forge service are drasti-
cally impacted, with the Forge server reaching 1000 ms tick time, 20 times the overloaded
point, and taking 24 seconds to return to a non-overloaded state. The Vanilla service peaks
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Exp. Service Q0 Q1 Q2 Q3 Q4 Mean Dev.

Control
Vanilla 17.22 19.72 20.44 21.11 23.68 20.42 1.18
Forge 17.44 19.02 19.86 20.62 45.27 20.48 4.05
PaperMC 10.87 12.33 13.06 14.15 18.67 13.42 1.63

TNT
Vanilla 19.23 26.29 30.21 579.45 874.59 288.15 327.07
Forge 13.17 26.00 42.81 639.14 959.64 319.41 357.00
PaperMC 14.12 19.61 35.71 40.87 106.54 34.78 17.07

Farm
Vanilla 45.84 49.34 50.73 53.04 59.36 51.42 3.55
Forge 47.48 51.40 52.91 55.27 65.94 53.83 3.81
PaperMC 31.23 36.61 38.54 40.44 43.67 38.58 2.93

Lag
Vanilla 1032.94 1053.64 1066.03 1082.27 1127.49 1069.98 23.79
Forge 971.58 1072.49 1086.84 1110.11 1213.31 1094.02 42.12
PaperMC 758.85 776.09 818.71 845.05 927.64 822.71 49.95

Table 2: Statistical summary of tick time averages over experiment workloads.
Q0 - Q4 are quartiles, exp. is the experiment, dev. is standard deviation, all
values are in milliseconds.

at 900 ms, and returns to nominal in 20 seconds. Despite the impact upon the Vanilla and
Forge service, PaperMC becomes overloaded by only a few milliseconds, peaking at 100
ms and decreasing to normal in around a second. This is of particular interest, as Forge’s
custom modding API makes it the most popular and often only choice for operating mod-
ded services. An extremely popular category of mods exclusively exist to increase the scale
of explosions: see for instance the ICBM mod, which has over 3 Million downloads and
exclusively runs on Forge servers [8]. However, these results show that Forge performs the
worst of tested services when simulating large TNT chain reactions.

The Farm workload (top right) shows a periodic fluctuation in tick time for all three
services corresponding to the pulses of an in-environment player defined logic clock that
controls the operation of the resource farms. This shows how directly environment and
performance are correlated. Additionally, though the Farm workload contains no sponta-
neous chain reaction like the TNT workload, the Vanilla and Forge service are overloaded
a majority of the experimental duration. PaperMC, though with a higher tick time than
in the control experiment, does not become overloaded.

The Lag workload (bottom right) causes all three services to become and remain
overloaded for the full duration of the experiment. Following the trend established by the
other workloads, Forge is most impacted with a peak tick time of 1200 ms, Vanilla peaks
at 1100 ms and PaperMC is least effected, with a peak tick time of 900 ms. With these tick
times, the quality of all tested systems is degraded to the point of unresponsiveness. Unlike
the TNT workload, where the PaperMC service avoided becoming extremely overloaded,
the Lag workload overloaded PaperMC, though PaperMC remained a fixed percent faster
than Vanilla and Forge. This is important, as it shows that the differences between
PaperMC and the other services that allow it to remain largely unaffected by the TNT
workload do not similarly apply to a Lag workload. This suggests that the TNT and Lag
workload are inherently different and not caused by the same types of complexity.
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Figure 7: CPU utilization over time during experiment workloads.

Despite reacting differently, each service’s performance was negatively impacted by
at least one of the TNT, Farm or Lag workload. Of particular importance are the TNT
and Farm experiment results, as we consider these workloads common scenarios in real
world settings (Section 4), and both overloaded the Vanilla and Forge services.

5.2 MF2: Minecraft-like services are poorly parallelized.

In Figure 7 we compare CPU utilization to the tick times depicted in Figure 6. This shows
that Minecraft-like services are poorly parallelized. Even during high workload periods,
none of the tested services utilized more than 20% of available CPU resources.

In some workloads there is a initial spike of CPU utilization caused by the Yardstick
player joining the server at the start. Aside from this, each service utilizes only a small
percent of CPU resources (out of the 1600% maximum), even during periods of high tick
time shown in Figure 6. We conclude that the overloaded tick time is not caused by
a shortage of system resources but instead poor parallelism and contention over shared
resources.

In each workload PaperMC performs better than Vanilla and Forge. This merits
an explanation of the differences between PaperMC and the other services, such to drive
future research into how to minimize the impact of player agnostic workloads.

The PaperMC project [44] is an open source set of community ’patches’ applied
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Exp. Service Q0 Q1 Q2 Q3 Q4 Mean Dev.

Control
Vanilla 48.00 58.93 66.20 83.20 900.43 109.30 144.48
Forge 54.16 65.10 79.73 96.40 828.90 120.38 134.64
PaperMC 49.20 63.03 82.53 125.53 444.90 114.41 94.70

TNT
Vanilla 74.63 129.17 214.80 274.53 403.77 213.22 91.12
Forge 84.80 151.48 216.18 269.84 438.57 218.30 86.94
PaperMC 59.97 122.37 177.77 282.27 507.13 216.11 131.29

Farm
Vanilla 135.50 146.30 151.80 170.27 640.73 176.07 81.92
Forge 147.10 155.00 164.03 189.43 674.73 192.29 86.15
PaperMC 110.97 129.97 146.13 164.43 911.27 184.59 139.66

Lag
Vanilla 100.77 107.03 116.77 123.40 439.30 125.25 50.58
Forge 109.83 121.90 128.10 141.03 406.07 139.38 46.39
PaperMC 109.07 137.23 166.90 205.33 387.67 178.73 54.74

Table 3: Statistical summary of CPU utilization over all experiment work-
loads. Q0 - Q4 are quartiles, exp. is the experiment, dev. is standard devia-
tion, all values are in percent out of 1600.

on top of another server type (Spigot [41]) which in turn were modifications made to
the Mojang-provided Vanilla server. Unlike Forge, PaperMC is not made in order to
facilitate mods but instead to deal with a plethora of community grievances about server
experience. As such, all PaperMC does is apply a set of source code patches and then
repackage the server. The set of changes is outlined in their Github page [43], with the
most important being reworking thread priorities, limited per-thread cache duplication, a
custom timing scheduler, adding asynchronous loading and modification, and optimized
Redstone algorithms. To show how these changes improve performance when handling
world events, we compare the Flamegraph of the Vanilla and PaperMC services during
the TNT workload. The Flamegraph of Forge is omitted as it is functionally identical to
Vanilla’s. Flamegraphs are read as follows: the y-axis shows stack depth, the width of
each box shows the total (not necessarily consecutive) time a given thread was on CPU.
The ordering of boxes on the x-axis is arbitrary, in this case they are in alphabetical order.
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Figure 8: Vanilla flamegraph during TNT workload.

Figure 9: PaperMC flamegraph during TNT workload.
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Figures 8 and 9 show that PaperMC hoists a number of environment operations out
of the main thread into dedicated threads handled by a separate asynchronous scheduler
thread. Thus the amount of time spent on worker locks is decreased, minimizing total
resource contention. It can be extrapolated that these changes are why PaperMC handles
the TNT workload better than Vanilla and Forge.

5.3 MF3: Processing the state of entities is computationally expensive.
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Figure 10: Tick time distribution during experiment workloads.

Figure 10 depicts the tick time distribution for the experiment split by percentage of
tick time attributed to a given feature. This shows that entities account for a majority of
non-waiting tick time across all workloads and services.

The values in Figure 10 are collected using the Minecraft internal server logging tool.
There are two special values: “nextTickWait :” the percent of tick time spent idling, and
“tickPending :” the percent of tick time spent waiting for access to shared resources. In
general, a decrease in nextTickWait and an increase of tickPending means that the server
is overloaded and service quality has been degraded. The other values are “entities,”
“chunkSource,” and “blockEvents,” referring to entity calculations, terrain modifications,
and terrain calculations respectively. An “Other” category is included for the unspeci-
fied class and classes with values less than one percent. From these, we corroborate the
statement from Section 5.1 that there is a fundamental difference between the Lag and
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Figure 11: Messages sent over time during experiment workloads.

TNT workload, despite their similarity in overloading magnitude seen in Figure 6. The
Lag workload’s computational requirement comes from a large volume of shared resource
accesses, whereas for TNT it is due to a high amount of entity calculations.

Figure 11 shows the messages sent by the server over the duration of the experiment,
separated by whether the message relates to an entity update. For all workloads except
Lag, entity related updates form more than 95% of messages sent. Figure 10 shows that
the Lag workload resulted in so few messages because over 97% of the tick duration is taken
up waiting on shared resources, thus the servers did not have enough time to compute and
send entity updates.

Throughout all workloads and services entities account for a majority of both non-
waiting tick time and server messages. When in overloaded states, MVE services send
far fewer messages. This is why during the TNT workload PaperMC sent more messages
than the other services despite sending less during all other workloads. PaperMC did
not become highly overloaded during the TNT workload, and thus was was capable of
generating and sending messages, whereas Vanilla and Forge could not.

6 Related Work

Prior research on game environment benchmarking and scalability is limited, as a ma-
jority of the work done on video game scalability is done within the field of networking

23



optimizations to maximize concurrent player count, such as through Peer to Peer or net-
work partitioning. Additionally, the research that does focus upon the game environment
itself does not consider the unique case of Modifiable Virtual Environments. For instance,
Farooq and Glauert [11] suggest partitioning world environments by load dynamically, an
approach with limited applicability to MVEs, as small, largely indivisible regions of the
MVE can be computationally intensive (as was the case for all experiments in section 5).

Similarly Valadares, Lopes, and Liu [49] propose further adapting partitioning by
creating Microcells, arbitrary size partitions with read only borders that can be traded
between instances as load requires. Such an approach does improve upon previous partition
schemes but again has only limited applicability to MVEs, as a read only borders and
state propagation schemes between Microcells would only increase overhead for all of the
environment actions listed in section 3.

Another approach to environment scaling include interest management, as proposed
by Boulanger, Kienzle, and Verbrugge [3] as well as Liu and Theodoropoulos [23]. Interest
management too has flaws when applied to MVEs, as it is difficult to judge player interest
in sections of the world based upon spacial or interaction features. For instance, a player
can be expected to be interested in the functioning an automated farm, even when the
player is not nearby.

Research that has specifically focused upon scalability in Minecraft-like games in-
cludes Van Der Sar, Donkervliet, and Iosup [50] who implement the Yardstick tool used in
this work and analyse the scalability profile of common Minecraft services. However, their
research does not measure the effect that Player Agnostic systems have upon scalability.
Additionally, Donkervliet, Trivedi, and Iosup [9] outline a variety of methods to enhance
MVE scalability, including serverless and inconsistency management, though no research
has yet been done on the impacts of these techniques when used with Player Agnostic
systems.

7 Discussion

In this work we first defined a classification model for Player Agnostic workloads and then
analyzed their performance profile in Minecraft services. We have shown the applicability
of this model to three highly popular Minecraft servers, but have not conclusively done
so for other Minecraft-Like games. Additionally, we did not quantify the effect upon
the experiment results from performance monitoring tool overhead or from the atypical
setup of having the clients to the Minecraft service be within the same distributed cluster
network.

Similarly, we have not examined the effect of player-agnostic workloads upon subjec-
tive metrics such as player experience. This is especially important in the case of PaperMC,
as we have shown that it performs measurable better than the other tested services, but
we have not shown that this results in better player experience. PaperMC’s performance
gain could come at a cost of world expressiveness, such as through limiting entity actions
or world updates.

Despite these drawbacks, we have established a clear correlation between environment
workload and service performance, such that the game environment alone can overload
modern MVE technology.
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Anecdotally, we have shown that the situation wherein the server is overloaded due to
environmental calculations is common in real world systems, as we tested only workloads
that are established behaviour within the Minecraft community.

8 Conclusion

Minecraft-Like services which utilize Modifiable Virtual Environments have significant so-
cietal importance for social, educational and activist efforts, and are increasingly common
to operate in high performance data-centers. Prior research has shown need for better
scalability in MVE technology. Towards this cause, we have defined a new class of MVE
scalability problem: Player Agnostic workloads (RQ1). We then defined a model to rep-
resent these workloads and designed experiments (RQ2) to evaluate their effect on MVE
performance. Thus, in answering RQ3, we have found that:

• MF1: Player-Agnostic Workloads can significantly affect the performance of Minecraft-
Like games (Section 5.1). Complex sections of MVEs are capable of overloading
modern MVE server technology by up to 20 times the overloaded threshold, and
there are large performance differences between Minecraft-like services. Of those
tested, PaperMC performed the best while Forge performed worst.

• MF2: The Minecraft-like services we studied, including the commercial (”vanilla”)
Minecraft, are poorly parallelized (Section 5.2). This is evidenced by the trend of
low CPU utilization during periods with high tick times. Even during high work-
load periods, none of the tested services utilized more than 20% of available CPU
resources.

• MF3: Processing the state of entities is computationally expensive and can cause
server overloads (Section 5.3). We find that 95% of all server messages are Entity
related, and that 70% of non-idle tick time is Entity calculations.

We are now exploring the applicability of current and novel scalability techniques
in minimizing the impact of Player Agnostic systems. Additionally, we want to evaluate
more Minecraft-like games, specifically those not utilizing the Minecraft protocol.
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