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Abstract

The video game industry is large, grossing over $150 billion dollars in revenue in
2019. Minecraft is one of the most popular games of all time with over a 176 million
copies sold. Minecraft is a voxel-based game allowing players to modify an Modifi-
able Virtual Environment(MVE) by mining and placing blocks to build structures.
MVEs, offers players an endless virtual world to explore and modify. This, combined
with the large number of players, provides motivation for scaling the games storage.
Despite their large audience, MVEs and Minecraft-like games do nut scale well. In
addition, large-scale online games is prohibitively expensive for small companies. To
address these issues, this thesis presents the design and experimental evaluation of a
cloud-operated storage service for Minecraft-like games. Our results show that using
cloud operated storage reduces local storage usage, and can read and write game data
from cloud operated storage while meeting the QoS required by MVEs. This system
provides a first step towards serverless Minecraft-like games.
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1 Introduction

Online computer games are a billion dollar per year industry [9], with millions of players
enjoying video games across the globe. The sizable community, consuming video games
regularly, has brought with it a large and thriving market for video games.

With over a 176 millions copies sold, Minecraft is one of the most popular games of all
time [12]. It offers players an effectively infinite and modifiable virtual world and defines
no specific objectives, allowing players a large amount of freedom when choosing how to
play the game. Minecraft is a voxel-based game, consisting of 3D blocks which represent
different elements such as dirt, stone, ores, tree trunks, water, and lava. Players play the
game by mining and placing blocks to build structures.

Minecraft offers online multiplayer sessions through LAN, local split-screen, Game as
a service, and self-hosted servers by private owners and businesses. These Existing de-
ployments of Minecraft servers do not scale well, the game does not support more than
200-300 players on state-of-the-art hardware [14]. That number should be much higher.

Running and operating a large-scale online game on privately owned hardware is expen-
sive. For Minecraft, that’s not even an option, because the game does not scale to many
players.

Towards large-scale MVEs, Donkervliet et al. [13], present a vision of scaling Modifiable
Virtual Environments (MVEs) using serverless and cloud computing. Serverless computing
is a type of cloud computing service which allows users to run event-driven applications
where users pay for the resources utilized, and the operational logic is hidden from the
user [6]. Furthermore, resource capacity is potentially much larger than privately owned
hardware. Therefore, we conjecture that it can provide a solution to the scalability of
data storage issues of MVEs and Minecraft-like games. Using serverless computing offers
several advantages. Firstly, the resources are managed by the cloud provider. Secondly,
the clients pay for the resources they use. Lastly, when the server is split into services, it
becomes more modular and therefore easier to add and maintain features.

Despite growing usage of serverless computing, the latency and performance of these
services remains poorly documented. Low latency is a key requirement for playing online
games. While real-time games are latency sensitive, first-person games like Minecraft
requiring high precision are especially sensitive to latency, with a latency threshold of
100ms [2]. This shows that game-play experience degrades most noticeably in games with
avatar game-model especially in the first-person perspective. Therefore, the possibility of
running real-time systems using serverless technology remains unknown.

1.1 Problem statement

MVEs offer players an endless virtual world to explore and modify. Using procedural
generation, the game creates world data as players explore the world [4]. In addition,
Minecraft maintains data such as location, items, experience level, and appearance of every
player that has joined the server. Minecraft’s monolithic architecture poses scalability
challenges for data storage, due to the game data being stored locally, building up as more
content is created.

In this thesis, we propose a new system that uses cloud operated storage instead of
traditional local storage for Minecraft-like games. We believe that using cloud operated

4



storage will reduce the upfront storage required by self-hosted server owners, and will
therefore make it more affordable to maintain a privately owned server.

The challenge of using cloud operated storage is to meet the QoS required for MVEs.
MVEs require data availability and consistency. Data stored in local storage, is quickly
available to the game server. On the other hand, cloud operated storage latency remains
poorly documented. However, because it relies on network connection, it is safe to assume
that accessing files on cloud operated storage is slower than locally stored files. In addi-
tion, cloud operated storage systems often exhibit eventual consistency [1]. This means
the server may read stale data from the cloud, and data consistency is only eventually
guaranteed. There is no research on how this can affect QoS of MVEs. Therefore, the
effects remain unknown.

This thesis, aims to examine the performance of using the cloud operated storage to
store the world data of a Minecraft server, while meeting the QoS requirements. This
thesis gives insight on the possibility of running Minecraft as serverless systems. To this
end, this thesis designs and evaluates a cloud-based storage system for Minecraft. The
main research questions of this project are:

1. How to design a cloud-operated storage service for serverless Minecraft-like games
or MVEs, and how to meet the Quality of Service requirements for such games?

2. How to allow the user (game developer) to fine-tune the systems behavior, to trade-
off local storage and network usage to meet their specific requirements?

3. How to evaluate the performance of such a system?

By addressing these points, we give insight on the possibility of running Minecraft and
Minecraft-like games on serverless platforms, moving towards the vision of affordable,
serverless, large-scale Minecraft-like games..

1.2 Main contributions

The main contributions of this paper are:

MC1 The design and implementation of a cloud-operated storage subsystem for Minecraft-
like games that allows developers to trade-off local storage and cloud storage.

MC2 The evaluation of this system, by conducting real-world experiments.

1.3 Thesis structure

The remainder of the thesis is structured as follows. Section 2 gives background informa-
tion about Minecraft-like games and MVEs, and serverless computing. Section 3 presents
a design of a cloud operated persistent storage system for Minecraft-like games, and de-
scribes its requirements. Sections 4 and 5 describe the setup of the experiments, the tools
and environment that were used, and the analysis of the results.
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2 Background

This section elaborates on the architecture of Modifiable Virtual Environments (MVEs),
on the persistent storage model of Minecraft, and the scalability issues that exist in the
current model. Section 2.1 explains what a Modifiable Virtual Environment is, the different
elements that comprise the Minecraft universe, and the entities that exist in the game.
Section 2.2 discusses the background about serverless computing.

2.1 Modifiable virtual environments

Modifiable Virtual Environments (MVEs) are real-time, online, multiplayer environments
which allow users to modify the world’s parts, create new content by combining different
components, and interact with the world through programs [4]. MVEs typically use a
client-server architecture, where the user runs a client which continuously send and receive
updates between the user and the server. The server simulates the changes to the world
and sends the new state to all clients. The client has a partial view (referred to as ”cache”
throughout this thesis) of the game state. This cache typically contains only part of
the world state, typically the area around the player’s avatar. An avatar is the player’s
representation in the virtual world. The avatar can interact with the world by performing
various different MVE actions (e.g., mining blocks, crafting items). Changes to the world
are simulated locally while also sent to the server, this is done to hide latency from the
user. The server is typically a multi-threaded monolithic application that has several
important roles. Firstly, to keep a persistent copy of the global game states, this includes
world, player locations, inventories, and the world metadata (weather, time of day, etc.).
Secondly, it simulates changes in the world such as Non Playable Characters(NPCs), and
world events (weather, time). Lastly, as players explore the world, the server dynamically
generates newly explored areas of the world.

2.1.1 Minecraft worlds

Minecraft comprises three different worlds: the overworld, the nether, and the end. The
overworld is the dimension where all players begin their journey. It is divided in biomes
which determine the characteristics of the terrain inside it. The biome’s type also deter-
mines its weather, mobs, and size. The nether is a dangerous hell-like, cave-like dimension,
filled with lava, fire, and dangerous monsters. To access this dimension players must con-
struct a portal that will allow them to travel between the dimensions. The reason players
would typically want to access this dimension is to gather resources, which do not exist
elsewhere. The end is a dark space-like dimension consisting of separate islands. To access
this dimension players must find a special location in the world where they can construct a
portal. The end consists of one large island surrounded by several smaller islands. In order
for the player to travel back to the over-world the player must die or defeat a monster
called the end dragon.

The worlds are divided into smaller pieces. A world is comprised of innumerous amount
of regions, regions are comprised of 32x32 chunks, a chunk is comprised of 512x512 blocks.
Figure 1 depicts the structure of a region.
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Figure 1: Representation of the Minecrafts world mapping.

2.1.2 Players

Avatars are controlled by players. They can modify the world by “mining” blocks and
placing them elsewhere to build things, players can also craft items by combining different
blocks together.

In order to store blocks and other items, each player has an inventory consisting of 27
storage slots. In addition, the player has access to a quick-bar, which contains 8 additional
storage slots. The server keeps information on players such as their location, inventory,
avatar, and equipped items. When a players logs out, the data is stored in persistent
storage in a unique player data file.

2.1.3 Non-Playable characters

Non-Playable characters (NPCs), are “living” entities which are affected by the world in a
similar way that a player is. Mobs can be divided into three different categories: passive,
neutral, and hostile. Passive NPCs are harmless to players and will not attack back if
provoked. This type consists of livestock, villagers, and fish. Neutral NPCs will only
attack when they are provoked. Hostile NPCs will attack players when he is in a certain
range.

2.2 Serverless computing

Serverless computing is a form of cloud computing which allows users to run event driven
operations and pay only for the execution time and resources used [7]. This allows develop-
ers to focus on high level abstractions, leaving the lower end such as resource management
and scheduling to be performed by the cloud operators. Serverless computing adheres to
three principles:

1. Operational logic is hidden from the user.
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2. Users only pay for the resources they use.

3. The computational model is event driven [6].

Developers now had the possibility to build applications as a service where each service
is made into Functions-as-a-Service (FaaS) [5]. A function is an executable code that runs
on demand with the arrival of an event [10]

2.2.1 Cloud operated persistent storage

Cloud-operated persistent storage is a type of serverless computing which has three impor-
tant properties. It should not provision storage space, storage should scale to fit without
user intervention, and the user should pay for the amount of data stored and amount
of requests made. When using traditional storage, over-provisioning is the only method
available to prepare for traffic spikes. The elasticity of cloud-operated storage provides a
solution for over-provisioning. In addition, by paying only for the resources used, the cost
scales with storage used, preventing the users paying for unused storage, unlike traditional
storage.

Amazon S3, is a cloud-based persistent storage. S3 promises to offer low data-access la-
tency, 99.999999999% durability per object, 99.99% availability, and eventual consistency.
Since its launch, S3 has acquired a large range of customers for private users to small
and large businesses. Charging for S3 is based on storage volume, the number of requests
made, and the amount of data retrieved.

S3 organizes user data in buckets. Each bucket can store an unlimited amount of objects.
Each object consists of a name, binary blob, and metadata.

Evaluation of Amazon S3 by Palankar et al. [11], show that S3 has data durability and
high availability. However, Bermach et al. [1] show that S3 eventual consistency can lead
to inconsistencies in data. To the best of our knowledge, limited research has been done
on incorporating cloud-operated storage in Minecraft-like games.
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Figure 2: Cloud-operated storage model

3 System design

This section presents a design of a serverless/cloud-based persistent storage system for
Minecraft-like games. Section 3.1 describes the requirements of the system, and of the
cloud-operated storage. Section 3.2 describes the design of the Minecraft server with
Cloud-operated storage, and presents the layered storage design of the system. Section 3.3
describes the layered storage design used in the system. Section 3.4 describes the system
parameters adjustable by the user, how they affect storage and network use, and how they
can be used by developers. Section 3.5 describes the external tools used in the system.

3.1 System requirements

This section, gives the requirements that need to be met for this system to be a viable
solution to the scalabily issues of Minecraft-like games. The functional requirements of
the system are:

R1 Enable running MVEs on devices with limited storage.

R2 Hide read/write latency from the user.

R3 Must read chunks from cloud-operated storage before they are in a players view port.

For cloud-operated storage to provide a viable solution for Minecraft-like game storage
it must provide the following non-functional requirements:

• Durability: Loss of data is costly or even unacceptable as players might lose progress
they have made.
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• Availability: Player must have access to all the world and their individual player
data. Therefore, world data and player data must be available at any given time.

• Performance: If data retrieval is too slow, players might experience missing chunks in
the world, leading to lose of immersion. Therefore, fast data access is an important
feature.

• Consistency: Players sharing the same world must see the same world and experience
the same events. Therefore, consistency in data between players is important.

3.2 Design overview

This subsection describes the changes made to the server to support storage on cloud-
operated storage. One of the biggest changes to the server is turning the storage system
into a layered design. Figure 2 illustrates the different layers. The existing components
are shown in blue, the modified components are shown in yellow, and the new components
are shown in green.

Layer ”1” is the cloud-operated storage, this layer holds data that is currently unused
by the server. The serverless interface is the gate to request files. The interface determines
if the file exists locally or on the cloud and retrieves the file to the server if it exists.

Layer ”2” is the local cache. This layer holds data for a specified time after it has been
closed by the server. When the time has elapsed, the file is written to the online storage.

Layer ”3” consists of the player and world cache, this layer hold files currently read or
written to by the server. The server cache uses a timer to hold the files for a specified
amount of time. When the timer has expired, the file is closed and kept in the local storage
cache.

3.2.1 World data storage

Splitting up region files to their individual chunk will decrease the amount of local storage
required. Figure 2 shows the local storage cache between the cloud-operated storage and
the world cache is in place in order to reduce loading time for areas that are currently
or have been recently explored by players. When a player reaches a chunk that is not
currently loaded, the world cache is searched for the chunk followed by the local storage
cache. When a cache miss occurs the cloud storage is searched for the existence of the file.
If the file exists, its data is downloaded to the cache and loaded into the game

3.2.2 Player data storage

Player data consist of the current location of the player, the contents of his inventory, and
the players current experience points. The files are separated into two components. The
first component is the data always required by the players such as the player’s location,
experience level, etc. This data will always stay on the server cache. The second compo-
nent is data not always needed by the user such as his inventory. This data is stored on
the cloud-operated storage and retrieved when a player access it.
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3.3 Layered storage design

The system is designed to have a layered storage shown in Figure 3. Level 0 is the server
cache, it exists in the servers memory and therefore the fastest to access, this level of
storage contains files currently being observed and modified by users. It is the most costly
level as it requires memory. Level 1 is local storage, files in this level have a caching time
after being offloaded from the server cache. This level offers quick access to files, however
high caching times will increase reliance on local storage. Level 3 is the Cloud-operated
storage. This level is the slowest to access but has a large cheap storage space. Files on
Cloud-operated storage await unmodified until required by the server. Level 0 and level
1 have cache and therefore have adjustable caching time. The trade-off of adjusting the
caching time is between reliance on local storage and latency.

3.4 System parameters

There are three parameters modifiable by the host. They are adjustable to set the trade-
off between local storage reliance and the cloud storage latency, to compensate for high
latency or small storage space.

The first parameter, is the time of the world cache. This parameter lets the developer
adjust the amount of time region files exist in the server cache. When a region file is
loaded to the server, the cache timer starts. When it expires, the file is closed from the
game and moved to local storage. Changing this parameter, allows the host to adapt the
behavior for the amount of memory and local storage available. This corresponds to R1.
Longer cache time require more memory and storage but might be preferable when the
network has high latency.

The second parameter, is the time of the local storage cache. This parameter lets the
developer adjust the time a file exists on the servers local storage. When the timer expires,
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the file is written to cloud storage and removed from local storage. Longer cache time
increases local storage use, but this might be preferable when using networks with high
latency. This corresponds to R1.

The third parameter is the distance from the player the world files are read from cloud-
operated storage. Figure 4 depicts the distance port, and the different stages of the
regions before being displayed to the user. This parameter lets the developer decide
on a reasonable distance from a player for a chunk to be read from cloud storage to
local storage. Based on the reading speed from cloud storage, this parameter should be
modified in order for the players not to experience missing chunks or corrupt data. These
parameters address the requirements by giving flexibility to the game developer to allowing
the trade-off between local storage or network reliance, this corresponds to R2, and R3.

3.5 Prototype realization

This subsection describes how we realize a prototype based on the design presented in
Section 3. Section 3.5.1 gives information about the Glowstone server and the modification
required for it to work with cloud-operated storage. Section 3.5.2 gives information on
Amazon S3 cloud-operated storage, and gives some example code used in the system.

3.5.1 Glowstone adaptation

Glowstone is an open-source lightweight Minecraft server written from scratch. Its main
goal is to provide a lightweight implementation of the bukkit API1. Glowstone creates the
first four regions of each world when the server is first started. The different worlds are
generated with the use of a seed. A seed is an integer which represents a starting point
for the world generation formula. It provides a thread-per-world model and provides
synchronization only when required by the bukkit API.

To support cloud-operated storage, we adapt the server region file class. There are two
main changes to enable the use of cloud-operated storage while still maintaining QoS. The
Glowstone server is modified to work with cloud-operated storage. One of the changes is
to add the ability to load and unload region files from local storage to the cloud. This
is done in the serverless interface. To determine whether a file can be safely uploaded
to cloud storage, the server determines the distance of the players from the region and
whether further changes should be made to the file. To determine if a file should be read
from the cloud, every pulse the players position is evaluated. When sufficiently close, the
file is retrieved to local cache where it could be used by the server.

Another change is the addition of a player chunk distance measurement (Loading-port)
shown in Figure 4. This was necessary to be able to hide the reading time from the cloud.
This measurement was used to load a chunk at distance greater than the players field of
view to avoid reading missing chunks or corrupt data.

3.5.2 Amazon S3

Amazon S3 uses the AWS-SDK for program integration. The SDK uses a simple key-value
store designed to store objects, These object are stored in one or more buckets. An object

1https://bukkit.gamepedia.com/Main_Page
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1 for (int x = centralX - radius * distance; x <= centralX + radius *

distance; x++) {↪→

2 for (int z = centralZ - radius * distance; z <= centralZ + radius *

distance; z++) {↪→

3 File f = new File(filename + (x >> 5) + "." + (z >> 5) + ".mca");

4 if ((!f.exists()) && (s3.doesObjectExist(bucketName, filename))) {

5 try {

6 f.createNewFile();

7 final int x1 = x;

8 final int z1 = z;

9 new Thread(() -> {

10 try {

11 S3Object object = s3.getObject(new

GetObjectRequest(bucketName, filename));↪→

12 FileUtils.copyInputStreamToFile(object.getObjectContent(),

f);↪→

13 } catch (IOException e) {

14 e.printStackTrace();

15 }

16 }).start();

17 } catch (IOException e) {

18 e.printStackTrace();

19 }

20

21 }

22 }

23 }

Listing 1: Distance-port, and reading from S3

consists of a key, value, and metadata. S3 has worldwide servers. Therefore the region
wished to be used needs to be set on the s3 client. For this project the region chosen
is EU-central. A bucket is created for the server to hold the world data, and a folder
is created for each of the three worlds. Once the setup is complete, the region files can
be written to S3. Listing 1 shows how the distance-port cycles through the chunks near
the player and determines if a region file needs to be requested from S3, and starts a
downloading thread if needed.
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Property Value

OS Windows 10 Home
CPU Intel core i7-4510U 2.0GHz
Disk Toshiba mq01abd100
Network 40Mb/s
RAM 16GB DDR3
Glowstone 1.12
aws-java-sdk 1.11.465

Table 1: Specification of the machine

4 Experimental setup

We run the experiments on an affordable machines. Section 4.1 describes the specification
of the machine used for the experiment, and the tools and their versions. Section 4.3
describes the workload used in the experiments in order to evaluate the performance of
the system. Section 4.4 describes how data was collected from the experiments to visualize
and analyse the results.

4.1 Environment

Table 1 shows the specification of the machine used to run the experiments. In addition
the table shows the Glowstone and Amazon AWS software development kit version that
were used in the experiments. Modified versions of Glowstone and Yardstick were run on
the same machine.

4.2 Yardstick

Yardstick is a benchmarking tool for Minecraft-like games [14]. It provides a framework
that subjects a Minecraft server to workloads determined by the virtual world, and a set
of bots that simulate real player behavior. Yardstick monitors both the machine and the
application running the emulated players. It is comprised of three main components, the
server and APIs, the player emulation, and the monitoring and logging tool. For this
project, a customized player behavior was written for Yardstick to add the ability for
players to fly in a straight line in the map.

4.3 Workload

The experiments used two different workloads.
The first workload used a newly initialized server with no generated region files. Yard-

stick was used to simulate two players joining the server and flying straight in two opposite
directions to generate as much terrain as possible. This experiment was repeated thirty
times, in thirty minutes intervals to see the variance and consistency of the storage usage.
The player’s view port was set to 8 chunks away. The loading-port was unused in this
workload. The world cache was set to one minute to minimize the amount of unused files
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stored, the local storage cache was set to thirty seconds before writing to cloud storage
and removing the local copy.

The second workload tested three different loading-port distances from the players, the
values tested were 24, 32, and 40 chunks on the x and z axis in a square area. When a
chunk was in this range from a player it was read from cloud storage. For this workload,
the game server was initialized with region files already generated and stored on the cloud,
Yardstick was used to create one bot to fly in the area of already generated regions. A
world cache time of one minute was used, and a local storage cache of thirty seconds.

4.4 Data collection

The data from the experiments was collected by adding a logger to the source code, and
by periodically logging the size of the world data folder. The logger logged events such
request made to the cloud, reading and writing time to the cloud, and distance between a
chunk and player when the chunk was fully read from the cloud-operated storage. The size
of the world data folder was measured in two different ways. Firstly, the total size data
generated by sever was logged every minute. This shows how much local storage is required
without cloud-operated storage. Secondly, the current size of the world data folder was
logged every minute. This showed how much data was used when using cloud-operated
storage.
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Figure 5: The amount of data in megabytes in local storage when using only local storage
and when using cloud storage. The faded curves indicate runs of the experiment, and the
solid curve indicates the mean result.

5 Experimental results

The section discusses the experiment results obtained from both experiments. Our main
findings are:

MF1 Using latency hiding policies it is possible to hide the reading time from cloud storage
from the users.

MF2 Adjusting the parameters allows to make a trade-off between local storage and net-
work reliance.

MF3 Local storage usage is reduced when using cloud operated storage to store currently
unused files.

Figure 5 shows the result of the first experiment. Because of variance in results, the
experiment was conducted with thirty iterations of thirty minutes and shows the difference
in local storage usage with and without cloud storage. The faded curves show the results of
the iterations, and the thicker curves show the mean of the results. The vertical axis shows
the amount of world data stored in local storage in megabytes. The horizontal axis shows
the progression over time. The results show that while there is a similar increase within
the first twelve minutes of the experiment, the graph shows significantly less local storage
is required experiment progresses. This also introduces more variability. The graph shows
local storage use grows linearly when more parts of the world are generated. When using
cloud storage, the figure shows a wave pattern where local data usage increases when
new content is generated before offloading unused regions to the cloud, which creates the
pattern seen.
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tance of 32 chunks. The green color repre-
sents a loading distance of 40 chunks.
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Figure 7: Shows the amount of local stor-
age used in experiment two. The blue color
represents a loading distance of 24 chunks.
The orange color represents a loading dis-
tance of 32 chunks. The green color repre-
sents a loading distance of 40 chunks.

The results of the second experiment are shown in Figure 6 and Figure 7. Figure 7 shows
the distance in chunks between a player and a chunk when its corresponding region file
has been fully read from cloud storage. The horizontal axis, shows the distance in chunks
between the player and the chunk, when the region file containing the requested chunk
was fully read from S3. The vertical axis shows the fraction of data. The figure shows that
while there are a few exceptions, especially very close to the player, the larger the loading
distance from the player, the further away the chunks are fully read. The minimal loading
distance was 13, 14, and 15, respectively, and the maximal 41, 49, and 60, respectively.
This is important because the view-port has a radius of eight chunks from the player which
makes it a critical distance: If a chunk is fully read less then eight chunks away from a
player, the player will experience missing chunks. Since all the parameters tested managed
to load the chunks before they were 8 chunks away from the player, the results show that
all distances were successful in hiding the reading time from cloud storage.

Figure 6 is linked to Figure 7. It shows the amount of local storage that was required
for the different values of the distance-port. The vertical axis shows the amount of data
stored in local storage in megabytes. The horizontal axis shows the progression in time.
The results show that the larger the loading distance from the player. The larger the
amount of data required in local storage. However, this also gives more time for chunks
to be fully read from cloud storage. This is favorable when network latency is high, but
will require more available storage.

5.1 World storage parameters results

The results of the second experiment shown in Figure 6 and Figure 7, show that all the
policies have successfully managed to fully read the regions required by players before they
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are within viewing distance. This is a good results. The implication of this, is players
do not experience missing chunks caused by the cloud operated storage latency. Figure 7
shows, that changing the loading port range changes the distance files are fully read from
cloud operated storage. Figure 6 shows the change in local storage reliance by using
different loading port distance. The amount of reads from cloud storage has increased
with the loading distance, for a distance of 24 an average of 63 reads were made, for a
distance 32 an average of 109 reads were made and for a distance of 40 an average of
130 requests were made. The increase is due to more region files required for the same
duration as more distant chunks are required. However, the fact that more files are loaded
further away allows more time for these files to be fully read, this is useful when having
high network latency. These results show that changing the loading port distance grant
developers the choice between local storage and cloud operated storage reliance. This is
useful when developers are working with limited storage space, or high latency networks.

5.2 Latency hiding policies

The results in Figure 6 and Figure 7, show that all the policies used in the experiment
were successful at hiding the reading time from cloud storage. The players view port was
set to eight chunks away, while the closest chunk was loaded at a distance of 13 chunks
away. However, network latency can change with factors such as distance from the cloud
storage servers and network activity. Therefore, this numbers might not always be true for
the same workload. It is therefore important to measure the network speed and latency
based on the server location and the cloud operated storage being used and adjust the
parameters accordingly.

5.3 Related work

This thesis proposes one way of scaling Minecraft-like games using serverless computing.
Other methods to increase scalability are being researched. Peer-to-peer or hybrid archi-
tectures offer to support a large amount of players. However, they suffer draw backs of
cheating and limited bandwidth [15]. P. Kabus et al [8] suggest in their paper a spectrum
of options that might solve the cheating issues that arise in peer-to-peer systems. Many-
craft [3] increases the scalability of a single Minecraft instance to 1,000 players in a static
world.

6 Conclusion

he video game industry is large, grossing over $150 billion dollars in revenue in 2019.
Minecraft is one of the most popular games of all time with over a 176 million copies sold.

Minecraft-like games do not scale well and require large high-performance machines
to maintain operations. This poses a challenge for small game studios or private server
owners as the upfront and operational cost is high.

Serverless computing, offers a solutions for the high cost required. This is due to users
only paying for the resources utilized. In addition, serverless computing resource capacity
is larger then privately owned hardware, therefore it can provide a solution to Minecraft-
like games scalability issues.
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In this thesis we presented a design of a serverless/cloud-based persistent storage system
for Minecraft-like games. Glowstone was adapted to use S3 cloud-operated storage for the
persistent storage. The system includes three adjustable parameters that allows developers
to find an acceptable trade-off between local storage, and network use.

The system was evaluated with two experiments. The results of the experiments show,
that when using cloud operated storage the amount of local storage required stays stable
while the amount of data without cloud-operated storage grows linearly. The results
also show that by employing policies that read chunks further than the view port of the
player, it is possible to hide the latency of the cloud operated storage reading time from
the user. However, the latency of the cloud operated storage depends on several factors
such as distance from the server, and network speed. To meet QoS of the cloud operated
storage with Minecraft-like games it is necessary to adjust the parameters to fit the host’s
situation.

7 Future work

The work in this thesis can be expanded by testing different latency hiding policies. Some
policies that can be tested are: Recognizing player hot-spots, by identifying these location
they can be cached for a longer period of time an reduce network workload. Recognizing
portal location, these locations can also be cached for longer and reduce loading time when
players teleport to these locations. Recognizing locations hidden from the players view
(e.g., by mountains), by identifying these locations the system can wait longer before the
are read from the cloud-operated storage, reducing local storage use.

In addition, this paper only reviewed and evaluated the Amazon S3 cloud operated stor-
age. Many different cloud operated storage solutions are available and evaluating them
might yield better results, and will give more flexibility to developers. Other important
work is performing experiments and gathering feedback from real players to measure how
real players experience the game when using the system.This system is just the first step-
ping stone to what will hopefully become a fully serverless system.
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