Computer Networks X 400487

Lecture 11

Chapter 7: The Application Layer—Part 2

Application Layer Topics

- 1. Domain Name System (DNS)
- 2. Email
- 3. Web (HTTP, QUIC, WebSocket)
- 4. Multimedia applications

HTTP in The World Wide Web

Hypertext

Vannevar Bush described the Memex, a device for storing data associatively. The idea existed before digital computers and digital media (e.g., libraries).

Hypertext invented by Ted Nelson and Douglas Engelbart

Douglas Engelbart

The Web TCP+DNS+Hypertext

Tim Berners-Lee, a computer engineer at CERN, started the modern Web by combining TCP, DNS, and hypertext in 1989.

He now directs the World Wide Web Consortium (W3C).

1

Optimizations are gradually incorporated to improve performance/security HTTP/3 (QUIC) HTTP 2.0 (SPDY) 1.1 developed (persistent connections) 1.0 developed (persistent connections) SRC 2066, 2109 Cookies SSL 2.0 SC 1945 1990 1995 2000 2005 2010

Web and HTTP Performance

The Web and HTTP continues to evolve, with servers sending \emph{more} and \emph{larger} responses

Single document

Single document Example

External resources

Server-side programs

Client-side programs

Modern webpages Many requests

Recap TCP Connection setup

Recap TCP Connection setup

HTTP Sequential requests

HTTP

HTTP 1.0

HTTP Performance Problem Head of Line Blocking (HOL) Each request needs to wait for the previous one to complete! Connection setup HTTP request HTTP response HTTP response

Despite pipelining (HTTP1.1) and out-of-order responses (HTTP/2), HTTP/2 performance still suffers from a type of Head of Line blocking Application Transport Network Data Link B02.11 Physical B02.11 Linternet Channel

RFC 6455

WebSockets

Application layer protocol

A socket-like interface on the application layer.
Full-duplex connection between server and client.

Q: Can you think of a use-case?
Increasingly complex 'apps' on the Web that need to send data continuously.

Examples:

1. inc-ws.chat.twitch.tv

iirc-ws.chat.twitch.tv

other 1.10 MB

2. ws.todoist.com 'ws' stands for WebSocket

Stacking
Application layer protocols

Stacking
Application layer protocols

Stacking
Application layer protocols

Starting a WebSocket over HTTP

GET /chat HTTP/1.1
Host: example.com:80
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Recept: 33PLMBiTxaQ9kYGzzhZnBk+x0o=
Reply from server if it accepts

WebSocket frame format

opyright Jasse https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers onkervier 2024

HTTP is the new "narrow waist"

Application Layer Topics

- 1. Domain Name System (DNS)
- 2. Email
- 3. Web (HTTP, QUIC, WebSocket)
- 4. Multimedia applications

Copyright Jesse Dankervliet 202

Video dominates

2021 This Is What Happens In An Internet Minute

Video constitutes around 70 percent of all global mobile network traffic in 2022

- 28,000 people watching Netflix
- Netflix
 500 hours of content
- uploaded to YouTube
 2 million Twitch views
- 3.4 million Snaps created

E.g., REST APIS

opyright lesse
Source: https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/traffic-by-application
onlerviset 2024

Streaming Video Requires Compression

1024 height x 2048 width = 2M pixels

1 pixel = 1 byte

30 frames per second \rightarrow 60 MB/s = 480 Mbps

Without compression, only possible over wired fibre-optic channels

Copyright Jesse Donkervliet 2024

Large compression rates $> \times 10$.

Digital audio compression

Audio typically compressed before sending.

Lossy compression achieves higher compression rates than lossless compression, but loses data.

O: Why is lossy compression acceptable?

Lossy encoders based on how humans perceive sound.

Copyright Jesse

Human hearing frequency range

Human hearing masked signals

Copyright Jesse Donkervliet 202

Digital video
JPEG compression

Changes RGB to YC_bC_r .

Y is luminance.

 C_bC_r are chrominances.

Q: Why change to this format

Eyes are *less* sensitive to chrominance than to

JPEG reduces size of ${\it Cb}$ and ${\it Cr}$. Total compression rate \times 2.

opyright Jesse Ionkervliet 2024

Large compression rates $> \times 50$.

Digital video

Q: What is the use of bidirectional frames?

MPEG compresses over a sequence of frames, further using motion tracking to remove temporal redundancy $\,$

- 1. I (Intra-coded) frames are self-contained
- P (Predictive) Looks for comparable *macro blocks* in previous frames.

 How long to search is up to the implementation.
- 3. B (Bidirectional) frames may base prediction on previous frames and *future* frames.

Networking Challenges for Multimedia Applications

Challenge 1 **► YouTube NETFLIX** Streaming stored media

Low-water mark prevents stalls in playback.

High-water mark gives client time to prevent running out of buffer space.

Challenge 2 Streaming live media

Streaming live media is similar to the stored case plus:

- 1. Can't stream faster than live rate to get ahead
 - · Usually need larger buffer to absorb jitter
- 2. Often have many users viewing at the same time
 - UDP with multicast greatly improves efficiency. It is rarely available, so many TCP connections are used.

Challenge 3 Streaming interactive media

Real-time conferencing has two or more connected live media streams, e.g., voice over IP, Skype video call Requires low jitter and low latency.

- 1. Benefits from network support (Quality of Service).
- 2. Large bandwidth (no congestion).

Difficult to provide across long distances/multiple networks

- Many responsibilies and pseudo layers hidden in Application Layer
 From OSI: Presentation, Session. Others: WebSocket, RTP, etc.
- Important behind-the-Scenes applications exist (e.g., DNS)
- Traditional "killer apps" for the Internet:

Take-Home Message

- Email
 The Web
- HTTP is the new "narrow waist"
 - Improved over time (HTTP/2 [SPDY], HTTP/3 [QUIC])
- Today's Internet is increasingly used for multimedia applications
- Provide new challenges (high bandwidth, low latency, low jitter)

10