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Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control
1. Reliable delivery

2. Flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP
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The End-To-End Argument 

If the network is unable to provide a feature by 
itself, it should be removed from the network 
and provided by the hosts.

3

The lower layers

Transport layer or higher

Q: Can you think of an example of a feature provided by the hosts? 

Q: Can you think of a feature provided by the network? 
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Error control in
the transport layer
The transport layer is responsible for providing a reliable data stream over 
an unreliable network.

4

Q: Did we not take care of this in the data link layer?

Transport layer 
checks the
end-to-end 

correctness of 
data.

Q: Why not do error control only at the transport layer?
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Reliable Delivery through
Retransmissions

5

M0

time

M0

A1

M0

A1
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Improving Performance by using 
Error control on lower layers

6
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Error control and
crash recovery
Protocol under normal circumstances.

7

time
Segment 𝑖

Segment 𝑖 + 1

ACK

Pass on to 

layer 𝑘 + 1.1

2

3

4
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Error control and crash recovery

Protocol when machines fail.

8

time
Segment 𝑖

Segment 𝑖

Pass on to 

layer 𝑘 + 1.1

2

3

ACK not transmitted!

Q: How to solve this?
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Crash recovery

Protocol under normal circumstances.

9

time
Segment 𝑖

Segment 𝑖 + 1

ACK

Pass on to 

layer 𝑘 + 1.

1 3

2

4
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Error control and crash recovery

Protocol when machines fail.

10

time
Segment 𝑖

Segment 𝑖 + 1

ACK

1

2

3

Data not passed to next layer!
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Crash recovery on layer 𝑘

We cannot create fool-proof crash recovery in layer 𝑘.

11

Recovery from a layer 𝑘 crash can only be done by layer 
𝑘 + 1.

Q: What does this mean in practice?

When a crash occurs, the transport layer leaves it to the 

application layer to fix it!
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Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control
1. Reliable delivery

2. Flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

12
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Regulating sending rate
Flow control

Flow control is needed to 
slow down the sender if the 
receiver cannot handle the 
data rate

13

A

B

MMMM
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M
M
M
M
M

M
M
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M
M

M
M
M
M

M
M
M
M

Phone cannot handle 
high data rate

M
MM

Small 
capacity 
receiver!
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Regulating sending rate
Congestion control

Congestion control is 
needed to slow down the 
sender if the network cannot 
handle the data rate

14

A

B

MMMM
M M M M

M M M M M M M M M M

M M

M
M

M

M

M

M

M
M

M
M

Network cannot 
handle high data rate

This can also happen when many users share the same links

Small capacity 
network!

M
MM

M
MM
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Stop-and-Wait:
A 1-Bit Sliding Window Protocol

15

M

M

M

M

time

A

A

A

A

1-bit sliding
window protocol
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Stop-and-Wait:
A 1-Bit Sliding Window Protocol

16

M

M

A

A

M

M

time

A

A

1-bit sliding
window protocol

Bandwidth inefficient for high-latency channels
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Sliding window protocols

Send multiple frames at the same time before 
waiting for an acknowledgement. (i.e., filling the 
pipe)

17

A

A

Go-Back-N

49

M
M

time

M
M

M

M

M

Q: Do you 
recognize this type 

of optimization?

Q: What is the size of the receiver window?

Frame 3

Selective repeat

51

Sender Receiver

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Ack 1

Ack 2

Unexpected 
frame.

Local buffer 
stores packets.

NAK 3

Ack 5

Selective repeat can 
use timers, negative 
acknowledgements, 

or both.

Delivering frames in the 
order in which they were 
sent is easy after
adding sequence 
numbers.
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Recap: Link Utilization

It takes 
𝑓

𝐵𝑝
 seconds to send frame, 

𝐵𝑝

𝑓
= 𝐵𝑓

It takes D s for the frame to arrive at the receiver, takes D s for 
the (0-bit) acknowledgment to come back at the sender

1 frame per 
𝑓

𝐵𝑝
+ 2 × 𝐷 seconds

18

𝐷

𝑤 = 1 𝐵

• Frame size (in bits/bytes): 𝑓
• Window size (in frames): 𝑤
• Bandwidth (max. data rate of 

physical channel): 𝐵𝑝

• Bandwidth (frames per second): 

𝐵𝑓

• Propagation delay (in seconds): 𝐷

B Mbps network

Link utilization= 
𝑤

1+2𝐵𝑓𝐷

M

A

M
time

A

M
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Flow control and
buffer management
Received packets have to be buffered at the receiver.

Perform buffer management separately.
Use available buffer space as the receiver window size.

19

Q: Why do we need this?

Used by TCP!

buffer

M

𝑋 buffers 

available
M

𝑋 − 𝑙𝑒𝑛(𝑀) buffers 

available

Piggybacked!

We have to wait for the application to read the data

Limit window size to 𝑋
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Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

20
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Today

1. Congestion Control in TCP/IP

2. DNS

3. Email

4. Quiz?!

21
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Congestion control

Both the network layer and the transport layer are responsible for 
congestion control.

The transport layer controls the workload; implements congestion control 
and flow control by reducing sending rate.

22

Goodput

Network load

Network 

capacity

Ideal response

Desired response

Congestion collapse

Delay

Network load

Congestion collapse

Both packet loss and 
end-to-end delay can be 

used to signal 
congestion!
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Congestion control requires
resource management
Congestion occurs if the workload is too large for the available network 
resources.

The workload of all users combined should not be too large for the 
available network resources.

23

Coordinate to divide network resources



Copyright Jesse 

Donkervliet 2024

Fair bandwidth allocation

How to divide the available bandwidth over multiple senders?

Assume that we wave a total bandwidth 𝐵 and 𝑁 machines.

24

Q: How much bandwidth does each machine get?

May be impossible to implement with overlapping paths!

N = 3

2

3

2

3

2

3

Does not fit on link!

Bandwidth = 1

Bandwidth = 1

B = 2
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Fair bandwidth allocation
Max-min fairness
Maximizes minimum bandwidth, then uses excess bandwidth where 
possible.

25

B = 2N = 3

2

3

2

3

1

3

Q: Is this bandwidth allocation max-min fair?

No, because we can increase the minimum bandwidth.

1

2

1

2

1

2

Q: What is the downside of this method?
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Fair bandwidth allocation
Convergence
When new connections enter the network, the bandwidth needs to be 
reallocated.

26

Bandwidth

time

Max 

bandwidth

Gray starts 

transmitting

Orange starts 
transmitting

Ideal scenario. In practice, convergence 

takes more time.

Q: Why is 
that?
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Available bandwidth is unknown

The transport layer is not aware of the 
network topology, or who else is using the 
network.

Because there is no centralized control, we 
need to dynamically adjust bandwidth usage 
using trial and error. 

27

Q: Why is this the case?

Q: How to solve this problem?

Network
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Dynamically adjust bandwidth
using trial and error

28

Max 

bandwidth

time

Yes!No!

Keep trying to increase 
bandwidth usage.

Slow down when you 
receive congestion signal.

Alice’s 
bandwidth

Can we send use 
this much 

bandwidth?
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Sharing bandwidth example

29

Bob

Alice
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Sharing bandwidth example

30

Alice’s 
bandwidth

Bob’s 
bandwidth

Alice has 100% bandwidth 
Bob has 0% bandwidth

Alice has 0% bandwidth
Bob has 100% bandwidth

Both use 0% bandwidth
Network not used

Both use 100% bandwidth
Network congestion (total 200%)
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Sharing bandwidth
Efficiency and fairness

31

0% 100%

100%

Efficiency line
(sum is 100%)

Fairness line
(Alice and Bob 

have equal 
bandwidth)

Optimum

Bob’s 
bandwidth

Alice’s 
bandwidth
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Regulating sending rate
Approaches
Multiple approaches to increase/decrease
sending rate:

1. Additive (rate +𝑥, rate −𝑥).

2. Multiplicative (rate × 𝑥, rate ×
1

𝑥
).

3. Combination of both:
1. Additive increase, additive decrease.

2. Additive increase, multiplicative decrease.

3. Multiplicative increase, additive decrease.

4. Multiplicative increase, multiplicative decrease.

32

Q: Which one should we 
use?
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Additive increase
Additive decrease

33

0% 100%

100%

Efficiency line
(sum is 100%)

𝑎

𝑎

angle 45° 

Q: What 
happens if 
we use this 
approach?

A: 80, B: 10 sum: 90

A: 90, B: 20 sum: 110

A: 80, B: 10 sum: 90

A: 90, B: 20 sum: 110

…

Below 100% 
bandwidth utilization 

No congestion
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Multiplicative increase
Multiplicative decrease

34

0% 100%

100%

Efficiency line
(sum is 100%)

Below 100% bandwidth 
utilization No congestion

𝑟𝑟

Vector 
from origin

𝑟 × 𝑚

𝑟 × 𝑚

Q: What happens 
if we use this 
approach?

A: 80, B: 10 sum: 90

A: 120, B: 15 sum: 135

A: 80, B: 10 sum: 90

A: 120, B: 15 sum: 135

…
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Regulating sending rate
Efficiency and fairness

35

0% 100%

100%

Efficiency line.
(sum is 100%)

Additive 
increase/decrease

Multiplicative 
increase/decrease

Additive Increase Multiplicative Decrease (AIMD)
converges to optimum

Decrease: 𝑟𝑛+1 =
𝑟𝑛

𝑚

Increase: 𝑟𝑛+1 = 𝑟𝑛 + 𝑎

Bob’s 
bandwidth

Alice’s 
bandwidth

A: 80, B: 10 sum: 90

A: 90, B: 20 sum: 110

A: 45, B: 10 sum: 55

A: 55, B: 20 sum: 75

A: 65, B: 30 sum: 95

A: 75, B: 40 sum: 115

A: 37, B: 20 sum: 57

Converges
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Additive increase
Multiplicative decrease

36

Additive increase

Multiplicative decrease

0% 100%

100%

AIMD converges to / oscillates around optimum
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Regulating sending rate
Efficiency and fairness

37

0% 100%

100%

Decrease: 𝑟𝑛+1 =
𝑟𝑛

𝑚

Increase: 𝑟𝑛+1 = 𝑟𝑛 + 𝑎

Bob’s 
bandwidth

Alice’s 
bandwidth

Q: What happens if bob uses another protocol such as UDP?

Use TCP-friendly protocols to 
prevent unfair competition
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Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

38
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Internet protocols

The protocols that make the internet work.

Most popular on the transport layer:

1. UDP

2. TCP

But others exist!

39

You can create your own!

May not meet your 
application’s requirements!

All
or

Nothing
Insufficient separation between 

mechanism and policy
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Comparing complexity by
number of RFCs
UDP:

TCP:

40

RFC 1122RFC 793

RFC 768

RFC 1323 RFC 2018

RFC 2581 RFC 2873 RFC 2988 RFC 3168

RFC … RFC …

Overview of RFCs in RFC 4614.

…

Request For Comment (RFC) are 
published by the Internet 

Engineering Task Force (IETF).
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User Datagram Protocol (UDP)

Very thin layer on top of IP. Header provides 
ports needed to connect to remote applications.

u

41

Source port Destination port

UDP length UDP checksum

The UDP 

header

32 bits

RFC 768
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User Datagram Protocol (UDP)

Very thin layer on top of IP. Header provides 
ports needed to connect to remote applications.

UDP does not do:

1. Flow control

2. Congestion control

3. Retransmissions

42

Source port Destination port

UDP length UDP checksum

The UDP 

header

32 bits

Includes fields 
from the IP header!

Q: Can you name a service 
that works well with UDP?

RFC 768
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Transmission Control Protocol (TCP)

One of the most important protocols on the internet.

Provides a reliable end-to-end byte stream over an unreliable network.

43

Source port Destination port

header 

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)
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Transmission Control Protocol (TCP)

44

Source port Destination port

header 

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Sequence numbers and acknowledgements allow
reliable, in-order delivery and enable sliding window protocols
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Transmission Control Protocol (TCP)

45

Source port Destination port

header 

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

TCP checksum uses same IP-header fields
as  the UDP checksum
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Transmission Control Protocol (TCP)

46

Source port Destination port

header 

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Q: How do we know how long the TCP segment is?
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Transmission Control Protocol (TCP)

47

Source port Destination port

header 

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Q: Used for flow control or congestion control?
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Connections in TCP

48
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Transmission Control Protocol (TCP)

49

Source port Destination port

heade

r 

length
TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Used to establish/release connections
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TCP connection establishment
Three-way handshake
Every data byte has its own sequence number.*

*SYN and FIN also have their own sequence numbers.

50

time

Connection request 

SYN (seq=x)

SYN, ACK (seq=y, ack=x+1)

ACK (seq=x+1, ack=y+1)

Sequence number x+1:
bytes 0 to x have been received. 

Expecting byte x+1 next

Uses timestamp option to 
improve performance on 
high-bandwidth networks

Initial sequence numbers 
are randomly generated
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TCP Timestamp Option

51

Source port Destination port

header 

length

TCP checksum

The TCP header

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Data (optional)

32 bits

Options (0 or more 32-bit words)
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TCP Timestamp Option

Use seq. number + timestamp to detect duplicates

52

Source port Destination port

header 

length

TCP checksum

The TCP header

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

kind=8

Data (optional)

32 bits

length=10 timestamp value …

… timestamp value timestamp echo reply …

… timestamp echo reply

Q: How does this improve performance?
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TCP PAWS

https://www.ietf.org/rfc/rfc1323.txt 53

https://www.ietf.org/rfc/rfc1323.txt
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TCP sequence numbers
Every data byte has its own sequence number

54

time

ACK (seq=x, ack=y)

ACK (seq=y, ack=x+len(a1))

ACK (seq=x+len(a1), ack=y+len(b1))

Initial sequence numbers 
are randomly generated

A1

B1

A2
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TCP connection release
Two simplex channels

Every data byte has its own sequence number.*

*SYN and FIN also have their own sequence numbers.

55

time

Connection release:

FIN, ACK (seq=x, ack=y)

ACK (seq=y, ack=x+1)

ACK (seq=x+1, ack=y+2)

FIN, ACK (seq=y+1, ack=x+1)
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TCP connection release
Two simplex channels

Every data byte has its own sequence number.*

*SYN and FIN also have their own sequence numbers.

56

time

Connection release:

FIN, ACK (seq=x, ack=y)

FIN, ACK (seq=y, ack=x+1)

Q: How to solve the 

two army problem?

ACK (seq=x+1, ack=y+1)
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Error Control in TCP

57



Copyright Jesse 

Donkervliet 2024

Reliable Delivery through
Retransmissions

58

M0

time

M0

A1

M0

A1



Copyright Jesse 

Donkervliet 2024

Setting Retransmission Timers

How long should we wait before retransmitting a frame?

• Timer must be longer than round-trip time.

• If we set timer too high, bandwidth efficiency goes down

59

Q: What are the bounds?

Congestion makes round-trip time variable!
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Dynamic Timeouts in TCP

Use a weighted moving average to smooth round trip time (R):
SRTT = 𝛼 × SRTT + (1 − α) × R

Do the same for the round trip time variance (RTTVAR):
RTTVAR = 𝛽 × RTTVAR + 1 − 𝛽 × |SRTT − R|

Calculate new retransmission timeout (RTO) based on these 
values:

RTO = SRTT + 4 × RTTVAR

60
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Performance improvement
Fast retransmission
Packet loss detected when timers expire.

61

Takes time

(by design)!

time

Segment 𝑖

Segment 𝑖 + 1

ACK 𝑖

Segment 𝑖 + 2

ACK 𝑖

Q: Can we know about packet 
loss before the timer runs out?

Duplicate acknowledgments can indicate packet loss

Q: Assumption?
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Flow Control in TCP

62
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Flow control and
buffer management
Received packets have to be buffered at the receiver.

Perform buffer management separately.
Use available buffer space as the receiver window size.

63

Q: Why do we need this?

Used by TCP!

buffer

M

𝑋 buffers 

available
M

𝑋 − 𝑙𝑒𝑛(𝑀) buffers 

available

Piggybacked!

We have to wait for the application to read the data
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TCP window size
Flow control

64

time

2K data, seq 1

Ack 2K+1, win 2K

2K data, seq 2K+1

The window size tells sender how 
much data the receiver can handle.

Ack 4K+1, win 0

Ack 4K+1, win 2K

Q: Can you think of a potential problem?



Copyright Jesse 

Donkervliet 2024

TCP window size
Nagle’s algorithm
A sender that produces data in small amounts.

65

time

1 byte data, seq 1

Ack 2, win 2047

Small segments cause large overhead

1 byte data, seq 2

Ack 3, win 2046

Do not send more than one small 
packet at a time: wait for ack

Q: Can you think of an application 
that does this?

Q: For which applications 
may this not work well?
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TCP window size
Silly-window syndrome
A receiver that consumes data in small amounts.

66

time

Ack 1, win 1

1 byte data, seq 1

Ack 2, win 0

Tiny window sizes cause large overhead

Ack 2, win 1

1 byte data, seq 2

Do not send window updates if 
available space is too small
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TCP Delayed Acknowledgements

• Wait up to 500 ms to send acknowledgement

• Send acknowledgement for every second full-size segment

67

time

100 bytes data, seq 1

ack 101

Try to improve bandwidth efficiency (e.g., through piggy-backing)

500 ms timer500 bytes data, seq 1,
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TCP Delayed Acknowledgements

• Wait up to 500 ms to send acknowledgement

• Send acknowledgement for every second full-size segment

68

time

536 bytes data, seq 1

ack 1073

Try to improve bandwidth efficiency (e.g., through piggy-backing)

500 ms timer

536 bytes data, seq 537
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Congestion Control
in TCP

69
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Transmission Control Protocol (TCP)

70

Source port Destination port

header 

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Used for Explicit Congestion Notification
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Additive increase
multiplicative decrease in TCP
AIMD used to prevent network congestion. Converges to fair and 
efficient bandwidth allocation.

TCP implements this using its congestion window.

Not the same as the ‘window size’ field in the TCP segment 
header!

71

Q: How does TCP combine the two windows?

Congestion window is tracked on the sender.
Specifies how many segments can be transmitted.
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AIMD in TCP
What value to start with?
We want fast convergence, but sending a large burst can occupy low-
bandwidth links for a long time.

72

Increase congestion window whenever 
acknowledgements arrive.

Alice Low 
bandwidth

M M M M M M

AA
AAAA

Acknowledgement rate tells 
us data rate of slowest link.
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AIMD in TCP
‘slow’ start

73

time

data

ack

Previous algorithm used congestion 
window = flow control window.

Slow start is slower in comparison

Q: What kind of growth 
does this cause?

Congestion window size grows 
based on acknowledgment rate
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TCP ‘slow’ start

Arbitrary threshold switches from ‘slow’ start to additive increase.

74

Congestion window

(KB or packets)

Transmission round (RTTs)

Congestion window growing over time

Slow start

Threshold

Current 

window
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TCP Tahoe

Arbitrary threshold switches from ‘slow’ start to additive increase.

75

Congestion window

(KB or packets)

Transmission round (RTTs)

Threshold

Threshold

multiplicative decrease
(threshold=

1

2
×window)

Additive increase

Current 

window

Packet loss detected
Reset congestion window

Wait 1 RTT for segments to 
leave the network

Q: Can you think of another 
way to detect packet loss?
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Performance improvement
Fast retransmission
Packet loss detected when timers expire.

76

Takes time

(by design)!

time

Segment 𝑖

Segment 𝑖 + 1

ACK 𝑖

Segment 𝑖 + 2

ACK 𝑖

Q: Can we know about packet 
loss before the timer runs out?

#packets 

in transit
1

0

1

2

1

We can count the number of packets in the network!
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Current 

window

TCP Reno
(= TCP Tahoe + fast recovery)

77

Congestion window

(KB or packets)

Transmission round (RTTs)

multiplicative decrease
(threshold=

1

2
×window)

Packet loss detected

Calculates the number of segments in the network by
counting the number of duplicate acknowledgements

Threshold

Threshold

Fast recovery

Threshold reduced using multiplicative decrease.

Congestion window set to new threshold value.
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What about
Explicit Congestion Notification?

78

M

M

M
M

M

M

= regular IP packet with TCP segment

= Explicit Congestion Notification (ECN) set in IP header

Congested Router
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What about
Explicit Congestion Notification?

79

M

M

M
M

M

M

M

= regular IP packet with TCP segment

= Explicit Congestion Notification (ECN) set in IP header

= ECN-Echo (ECE) set in TCP header
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What about
Explicit Congestion Notification?

80

M

M

M
M

M

M

M

= regular IP packet with TCP segment

= Explicit Congestion Notification (ECN) set in IP header

= ECN-Echo (ECE) set in TCP header

M = Congestion Window Reduced (CWR) set in TCP header



Copyright Jesse 

Donkervliet 2024

Different Flavors of TCP

81
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TCP versions and
congestion signals
1. TCP determines rate based on

packet loss.

2. CUBIC TCP determines rate based on
packet loss.

3. FAST TCP determines rate based
on end-to-end delay.

4. Compound TCP determines rate based
on end-to-end delay and packet loss.

5. TCP with Explicit Congestion Notification.

6. XCP explicitly tells sender what rate to use.

82

Used by default in Linux, Windows, MacOS
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TCP versions and
congestion signals
1. TCP determines rate based on

packet loss.

2. CUBIC TCP determines rate based on
packet loss.

3. FAST TCP determines rate based
on end-to-end delay.

4. Compound TCP determines rate based
on end-to-end delay and packet loss.

5. TCP with Explicit Congestion Notification.

6. XCP explicitly tells sender what rate to use.

83

Implicit congestion signals

Used by default in Linux, Windows, MacOS
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Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

84
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Transport Layer Summary
• Sockets interface

• Connection establishment and release
• Duplicate detection

• Two army problem

• Seq. num wrap around + duplicate 
detection → performance limit

• End-to-end argument

• Error control
• Timer management

• Detection using time-outs or duplicate 
acknowledgements

• Flow control
• Sending rate limited to smallest

window size

• Nagle’s algorithm

• Silly window syndrome

• Congestion control
• Sharing available resources

• AIMD

• Multiple signals: packet loss, latency, etc.

85
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