
Copyright Jesse

Donkervliet 2024

Computer Networks
X_400487
Lecture 10

Chapter 6: The Transport Layer—Part 2

Vrije Universiteit Amsterdam

Lecturer: Jesse Donkervliet

Copyright Jesse

Donkervliet 2024

Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control
1. Reliable delivery

2. Flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

2

Copyright Jesse

Donkervliet 2024

The End-To-End Argument

If the network is unable to provide a feature by
itself, it should be removed from the network
and provided by the hosts.

3

The lower layers

Transport layer or higher

Q: Can you think of an example of a feature provided by the hosts?

Q: Can you think of a feature provided by the network?

Copyright Jesse

Donkervliet 2024

Error control in
the transport layer
The transport layer is responsible for providing a reliable data stream over
an unreliable network.

4

Q: Did we not take care of this in the data link layer?

Transport layer
checks the
end-to-end

correctness of
data.

Q: Why not do error control only at the transport layer?

Copyright Jesse

Donkervliet 2024

Reliable Delivery through
Retransmissions

5

M0

time

M0

A1

M0

A1

Copyright Jesse

Donkervliet 2024

Improving Performance by using
Error control on lower layers

6

Copyright Jesse

Donkervliet 2024

Error control and
crash recovery
Protocol under normal circumstances.

7

time
Segment 𝑖

Segment 𝑖 + 1

ACK

Pass on to

layer 𝑘 + 1.1

2

3

4

Copyright Jesse

Donkervliet 2024

Error control and crash recovery

Protocol when machines fail.

8

time
Segment 𝑖

Segment 𝑖

Pass on to

layer 𝑘 + 1.1

2

3

ACK not transmitted!

Q: How to solve this?

Copyright Jesse

Donkervliet 2024

Crash recovery

Protocol under normal circumstances.

9

time
Segment 𝑖

Segment 𝑖 + 1

ACK

Pass on to

layer 𝑘 + 1.

1 3

2

4

Copyright Jesse

Donkervliet 2024

Error control and crash recovery

Protocol when machines fail.

10

time
Segment 𝑖

Segment 𝑖 + 1

ACK

1

2

3

Data not passed to next layer!

Copyright Jesse

Donkervliet 2024

Crash recovery on layer 𝑘

We cannot create fool-proof crash recovery in layer 𝑘.

11

Recovery from a layer 𝑘 crash can only be done by layer
𝑘 + 1.

Q: What does this mean in practice?

When a crash occurs, the transport layer leaves it to the

application layer to fix it!

Copyright Jesse

Donkervliet 2024

Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control
1. Reliable delivery

2. Flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

12

Copyright Jesse

Donkervliet 2024

Regulating sending rate
Flow control

Flow control is needed to
slow down the sender if the
receiver cannot handle the
data rate

13

A

B

MMMM
MMMMMMM

M M M M M M M M M M

MMM

M
M
M
M
M

M
M
M
M
M

M
M
M
M

M
M
M
M

Phone cannot handle
high data rate

M
MM

Small
capacity
receiver!

Copyright Jesse

Donkervliet 2024

Regulating sending rate
Congestion control

Congestion control is
needed to slow down the
sender if the network cannot
handle the data rate

14

A

B

MMMM
M M M M

M M M M M M M M M M

M M

M
M

M

M

M

M

M
M

M
M

Network cannot
handle high data rate

This can also happen when many users share the same links

Small capacity
network!

M
MM

M
MM

Copyright Jesse

Donkervliet 2024

Stop-and-Wait:
A 1-Bit Sliding Window Protocol

15

M

M

M

M

time

A

A

A

A

1-bit sliding
window protocol

Copyright Jesse

Donkervliet 2024

Stop-and-Wait:
A 1-Bit Sliding Window Protocol

16

M

M

A

A

M

M

time

A

A

1-bit sliding
window protocol

Bandwidth inefficient for high-latency channels

Copyright Jesse

Donkervliet 2024

Sliding window protocols

Send multiple frames at the same time before
waiting for an acknowledgement. (i.e., filling the
pipe)

17

A

A

Go-Back-N

49

M
M

time

M
M

M

M

M

Q: Do you
recognize this type

of optimization?

Q: What is the size of the receiver window?

Frame 3

Selective repeat

51

Sender Receiver

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Ack 1

Ack 2

Unexpected
frame.

Local buffer
stores packets.

NAK 3

Ack 5

Selective repeat can
use timers, negative
acknowledgements,

or both.

Delivering frames in the
order in which they were
sent is easy after
adding sequence
numbers.

Copyright Jesse

Donkervliet 2024

Recap: Link Utilization

It takes
𝑓

𝐵𝑝
 seconds to send frame,

𝐵𝑝

𝑓
= 𝐵𝑓

It takes D s for the frame to arrive at the receiver, takes D s for
the (0-bit) acknowledgment to come back at the sender

1 frame per
𝑓

𝐵𝑝
+ 2 × 𝐷 seconds

18

𝐷

𝑤 = 1 𝐵

• Frame size (in bits/bytes): 𝑓
• Window size (in frames): 𝑤
• Bandwidth (max. data rate of

physical channel): 𝐵𝑝

• Bandwidth (frames per second):

𝐵𝑓

• Propagation delay (in seconds): 𝐷

B Mbps network

Link utilization=
𝑤

1+2𝐵𝑓𝐷

M

A

M
time

A

M

Copyright Jesse

Donkervliet 2024

Flow control and
buffer management
Received packets have to be buffered at the receiver.

Perform buffer management separately.
Use available buffer space as the receiver window size.

19

Q: Why do we need this?

Used by TCP!

buffer

M

𝑋 buffers

available
M

𝑋 − 𝑙𝑒𝑛(𝑀) buffers

available

Piggybacked!

We have to wait for the application to read the data

Limit window size to 𝑋

Copyright Jesse

Donkervliet 2024

Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

20

Copyright Jesse

Donkervliet 2024

Today

1. Congestion Control in TCP/IP

2. DNS

3. Email

4. Quiz?!

21

Copyright Jesse

Donkervliet 2024

Congestion control

Both the network layer and the transport layer are responsible for
congestion control.

The transport layer controls the workload; implements congestion control
and flow control by reducing sending rate.

22

Goodput

Network load

Network

capacity

Ideal response

Desired response

Congestion collapse

Delay

Network load

Congestion collapse

Both packet loss and
end-to-end delay can be

used to signal
congestion!

Copyright Jesse

Donkervliet 2024

Congestion control requires
resource management
Congestion occurs if the workload is too large for the available network
resources.

The workload of all users combined should not be too large for the
available network resources.

23

Coordinate to divide network resources

Copyright Jesse

Donkervliet 2024

Fair bandwidth allocation

How to divide the available bandwidth over multiple senders?

Assume that we wave a total bandwidth 𝐵 and 𝑁 machines.

24

Q: How much bandwidth does each machine get?

May be impossible to implement with overlapping paths!

N = 3

2

3

2

3

2

3

Does not fit on link!

Bandwidth = 1

Bandwidth = 1

B = 2

Copyright Jesse

Donkervliet 2024

Fair bandwidth allocation
Max-min fairness
Maximizes minimum bandwidth, then uses excess bandwidth where
possible.

25

B = 2N = 3

2

3

2

3

1

3

Q: Is this bandwidth allocation max-min fair?

No, because we can increase the minimum bandwidth.

1

2

1

2

1

2

Q: What is the downside of this method?

Copyright Jesse

Donkervliet 2024

Fair bandwidth allocation
Convergence
When new connections enter the network, the bandwidth needs to be
reallocated.

26

Bandwidth

time

Max

bandwidth

Gray starts

transmitting

Orange starts
transmitting

Ideal scenario. In practice, convergence

takes more time.

Q: Why is
that?

Copyright Jesse

Donkervliet 2024

Available bandwidth is unknown

The transport layer is not aware of the
network topology, or who else is using the
network.

Because there is no centralized control, we
need to dynamically adjust bandwidth usage
using trial and error.

27

Q: Why is this the case?

Q: How to solve this problem?

Network

Copyright Jesse

Donkervliet 2024

Dynamically adjust bandwidth
using trial and error

28

Max

bandwidth

time

Yes!No!

Keep trying to increase
bandwidth usage.

Slow down when you
receive congestion signal.

Alice’s
bandwidth

Can we send use
this much

bandwidth?

Copyright Jesse

Donkervliet 2024

Sharing bandwidth example

29

Bob

Alice

Copyright Jesse

Donkervliet 2024

Sharing bandwidth example

30

Alice’s
bandwidth

Bob’s
bandwidth

Alice has 100% bandwidth
Bob has 0% bandwidth

Alice has 0% bandwidth
Bob has 100% bandwidth

Both use 0% bandwidth
Network not used

Both use 100% bandwidth
Network congestion (total 200%)

Copyright Jesse

Donkervliet 2024

Sharing bandwidth
Efficiency and fairness

31

0% 100%

100%

Efficiency line
(sum is 100%)

Fairness line
(Alice and Bob

have equal
bandwidth)

Optimum

Bob’s
bandwidth

Alice’s
bandwidth

Copyright Jesse

Donkervliet 2024

Regulating sending rate
Approaches
Multiple approaches to increase/decrease
sending rate:

1. Additive (rate +𝑥, rate −𝑥).

2. Multiplicative (rate × 𝑥, rate ×
1

𝑥
).

3. Combination of both:
1. Additive increase, additive decrease.

2. Additive increase, multiplicative decrease.

3. Multiplicative increase, additive decrease.

4. Multiplicative increase, multiplicative decrease.

32

Q: Which one should we
use?

Copyright Jesse

Donkervliet 2024

Additive increase
Additive decrease

33

0% 100%

100%

Efficiency line
(sum is 100%)

𝑎

𝑎

angle 45°

Q: What
happens if
we use this
approach?

A: 80, B: 10 sum: 90

A: 90, B: 20 sum: 110

A: 80, B: 10 sum: 90

A: 90, B: 20 sum: 110

…

Below 100%
bandwidth utilization

No congestion

Copyright Jesse

Donkervliet 2024

Multiplicative increase
Multiplicative decrease

34

0% 100%

100%

Efficiency line
(sum is 100%)

Below 100% bandwidth
utilization No congestion

𝑟𝑟

Vector
from origin

𝑟 × 𝑚

𝑟 × 𝑚

Q: What happens
if we use this
approach?

A: 80, B: 10 sum: 90

A: 120, B: 15 sum: 135

A: 80, B: 10 sum: 90

A: 120, B: 15 sum: 135

…

Copyright Jesse

Donkervliet 2024

Regulating sending rate
Efficiency and fairness

35

0% 100%

100%

Efficiency line.
(sum is 100%)

Additive
increase/decrease

Multiplicative
increase/decrease

Additive Increase Multiplicative Decrease (AIMD)
converges to optimum

Decrease: 𝑟𝑛+1 =
𝑟𝑛

𝑚

Increase: 𝑟𝑛+1 = 𝑟𝑛 + 𝑎

Bob’s
bandwidth

Alice’s
bandwidth

A: 80, B: 10 sum: 90

A: 90, B: 20 sum: 110

A: 45, B: 10 sum: 55

A: 55, B: 20 sum: 75

A: 65, B: 30 sum: 95

A: 75, B: 40 sum: 115

A: 37, B: 20 sum: 57

Converges

Copyright Jesse

Donkervliet 2024

Additive increase
Multiplicative decrease

36

Additive increase

Multiplicative decrease

0% 100%

100%

AIMD converges to / oscillates around optimum

Copyright Jesse

Donkervliet 2024

Regulating sending rate
Efficiency and fairness

37

0% 100%

100%

Decrease: 𝑟𝑛+1 =
𝑟𝑛

𝑚

Increase: 𝑟𝑛+1 = 𝑟𝑛 + 𝑎

Bob’s
bandwidth

Alice’s
bandwidth

Q: What happens if bob uses another protocol such as UDP?

Use TCP-friendly protocols to
prevent unfair competition

Copyright Jesse

Donkervliet 2024

Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

38

Copyright Jesse

Donkervliet 2024

Internet protocols

The protocols that make the internet work.

Most popular on the transport layer:

1. UDP

2. TCP

But others exist!

39

You can create your own!

May not meet your
application’s requirements!

All
or

Nothing
Insufficient separation between

mechanism and policy

Copyright Jesse

Donkervliet 2024

Comparing complexity by
number of RFCs
UDP:

TCP:

40

RFC 1122RFC 793

RFC 768

RFC 1323 RFC 2018

RFC 2581 RFC 2873 RFC 2988 RFC 3168

RFC … RFC …

Overview of RFCs in RFC 4614.

…

Request For Comment (RFC) are
published by the Internet

Engineering Task Force (IETF).

Copyright Jesse

Donkervliet 2024

User Datagram Protocol (UDP)

Very thin layer on top of IP. Header provides
ports needed to connect to remote applications.

u

41

Source port Destination port

UDP length UDP checksum

The UDP

header

32 bits

RFC 768

Copyright Jesse

Donkervliet 2024

User Datagram Protocol (UDP)

Very thin layer on top of IP. Header provides
ports needed to connect to remote applications.

UDP does not do:

1. Flow control

2. Congestion control

3. Retransmissions

42

Source port Destination port

UDP length UDP checksum

The UDP

header

32 bits

Includes fields
from the IP header!

Q: Can you name a service
that works well with UDP?

RFC 768

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

One of the most important protocols on the internet.

Provides a reliable end-to-end byte stream over an unreliable network.

43

Source port Destination port

header

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

44

Source port Destination port

header

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Sequence numbers and acknowledgements allow
reliable, in-order delivery and enable sliding window protocols

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

45

Source port Destination port

header

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

TCP checksum uses same IP-header fields
as the UDP checksum

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

46

Source port Destination port

header

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Q: How do we know how long the TCP segment is?

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

47

Source port Destination port

header

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Q: Used for flow control or congestion control?

Copyright Jesse

Donkervliet 2024

Connections in TCP

48

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

49

Source port Destination port

heade

r

length
TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Used to establish/release connections

Copyright Jesse

Donkervliet 2024

TCP connection establishment
Three-way handshake
Every data byte has its own sequence number.*

*SYN and FIN also have their own sequence numbers.

50

time

Connection request

SYN (seq=x)

SYN, ACK (seq=y, ack=x+1)

ACK (seq=x+1, ack=y+1)

Sequence number x+1:
bytes 0 to x have been received.

Expecting byte x+1 next

Uses timestamp option to
improve performance on
high-bandwidth networks

Initial sequence numbers
are randomly generated

Copyright Jesse

Donkervliet 2024

TCP Timestamp Option

51

Source port Destination port

header

length

TCP checksum

The TCP header

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Data (optional)

32 bits

Options (0 or more 32-bit words)

Copyright Jesse

Donkervliet 2024

TCP Timestamp Option

Use seq. number + timestamp to detect duplicates

52

Source port Destination port

header

length

TCP checksum

The TCP header

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

kind=8

Data (optional)

32 bits

length=10 timestamp value …

… timestamp value timestamp echo reply …

… timestamp echo reply

Q: How does this improve performance?

Copyright Jesse

Donkervliet 2024

TCP PAWS

https://www.ietf.org/rfc/rfc1323.txt 53

https://www.ietf.org/rfc/rfc1323.txt

Copyright Jesse

Donkervliet 2024

TCP sequence numbers
Every data byte has its own sequence number

54

time

ACK (seq=x, ack=y)

ACK (seq=y, ack=x+len(a1))

ACK (seq=x+len(a1), ack=y+len(b1))

Initial sequence numbers
are randomly generated

A1

B1

A2

Copyright Jesse

Donkervliet 2024

TCP connection release
Two simplex channels

Every data byte has its own sequence number.*

*SYN and FIN also have their own sequence numbers.

55

time

Connection release:

FIN, ACK (seq=x, ack=y)

ACK (seq=y, ack=x+1)

ACK (seq=x+1, ack=y+2)

FIN, ACK (seq=y+1, ack=x+1)

Copyright Jesse

Donkervliet 2024

TCP connection release
Two simplex channels

Every data byte has its own sequence number.*

*SYN and FIN also have their own sequence numbers.

56

time

Connection release:

FIN, ACK (seq=x, ack=y)

FIN, ACK (seq=y, ack=x+1)

Q: How to solve the

two army problem?

ACK (seq=x+1, ack=y+1)

Copyright Jesse

Donkervliet 2024

Error Control in TCP

57

Copyright Jesse

Donkervliet 2024

Reliable Delivery through
Retransmissions

58

M0

time

M0

A1

M0

A1

Copyright Jesse

Donkervliet 2024

Setting Retransmission Timers

How long should we wait before retransmitting a frame?

• Timer must be longer than round-trip time.

• If we set timer too high, bandwidth efficiency goes down

59

Q: What are the bounds?

Congestion makes round-trip time variable!

Copyright Jesse

Donkervliet 2024

Dynamic Timeouts in TCP

Use a weighted moving average to smooth round trip time (R):
SRTT = 𝛼 × SRTT + (1 − α) × R

Do the same for the round trip time variance (RTTVAR):
RTTVAR = 𝛽 × RTTVAR + 1 − 𝛽 × |SRTT − R|

Calculate new retransmission timeout (RTO) based on these
values:

RTO = SRTT + 4 × RTTVAR

60

Copyright Jesse

Donkervliet 2024

Performance improvement
Fast retransmission
Packet loss detected when timers expire.

61

Takes time

(by design)!

time

Segment 𝑖

Segment 𝑖 + 1

ACK 𝑖

Segment 𝑖 + 2

ACK 𝑖

Q: Can we know about packet
loss before the timer runs out?

Duplicate acknowledgments can indicate packet loss

Q: Assumption?

Copyright Jesse

Donkervliet 2024

Flow Control in TCP

62

Copyright Jesse

Donkervliet 2024

Flow control and
buffer management
Received packets have to be buffered at the receiver.

Perform buffer management separately.
Use available buffer space as the receiver window size.

63

Q: Why do we need this?

Used by TCP!

buffer

M

𝑋 buffers

available
M

𝑋 − 𝑙𝑒𝑛(𝑀) buffers

available

Piggybacked!

We have to wait for the application to read the data

Copyright Jesse

Donkervliet 2024

TCP window size
Flow control

64

time

2K data, seq 1

Ack 2K+1, win 2K

2K data, seq 2K+1

The window size tells sender how
much data the receiver can handle.

Ack 4K+1, win 0

Ack 4K+1, win 2K

Q: Can you think of a potential problem?

Copyright Jesse

Donkervliet 2024

TCP window size
Nagle’s algorithm
A sender that produces data in small amounts.

65

time

1 byte data, seq 1

Ack 2, win 2047

Small segments cause large overhead

1 byte data, seq 2

Ack 3, win 2046

Do not send more than one small
packet at a time: wait for ack

Q: Can you think of an application
that does this?

Q: For which applications
may this not work well?

Copyright Jesse

Donkervliet 2024

TCP window size
Silly-window syndrome
A receiver that consumes data in small amounts.

66

time

Ack 1, win 1

1 byte data, seq 1

Ack 2, win 0

Tiny window sizes cause large overhead

Ack 2, win 1

1 byte data, seq 2

Do not send window updates if
available space is too small

Copyright Jesse

Donkervliet 2024

TCP Delayed Acknowledgements

• Wait up to 500 ms to send acknowledgement

• Send acknowledgement for every second full-size segment

67

time

100 bytes data, seq 1

ack 101

Try to improve bandwidth efficiency (e.g., through piggy-backing)

500 ms timer500 bytes data, seq 1,

Copyright Jesse

Donkervliet 2024

TCP Delayed Acknowledgements

• Wait up to 500 ms to send acknowledgement

• Send acknowledgement for every second full-size segment

68

time

536 bytes data, seq 1

ack 1073

Try to improve bandwidth efficiency (e.g., through piggy-backing)

500 ms timer

536 bytes data, seq 537

Copyright Jesse

Donkervliet 2024

Congestion Control
in TCP

69

Copyright Jesse

Donkervliet 2024

Transmission Control Protocol (TCP)

70

Source port Destination port

header

length

TCP checksum

The TCP header

32 bits

C

W

R

E

C

E

A

C

K

S

Y

N

F

I

N

Sequence number

Acknowledgement number

Window size

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Used for Explicit Congestion Notification

Copyright Jesse

Donkervliet 2024

Additive increase
multiplicative decrease in TCP
AIMD used to prevent network congestion. Converges to fair and
efficient bandwidth allocation.

TCP implements this using its congestion window.

Not the same as the ‘window size’ field in the TCP segment
header!

71

Q: How does TCP combine the two windows?

Congestion window is tracked on the sender.
Specifies how many segments can be transmitted.

Copyright Jesse

Donkervliet 2024

AIMD in TCP
What value to start with?
We want fast convergence, but sending a large burst can occupy low-
bandwidth links for a long time.

72

Increase congestion window whenever
acknowledgements arrive.

Alice Low
bandwidth

M M M M M M

AA
AAAA

Acknowledgement rate tells
us data rate of slowest link.

Copyright Jesse

Donkervliet 2024

AIMD in TCP
‘slow’ start

73

time

data

ack

Previous algorithm used congestion
window = flow control window.

Slow start is slower in comparison

Q: What kind of growth
does this cause?

Congestion window size grows
based on acknowledgment rate

Copyright Jesse

Donkervliet 2024

TCP ‘slow’ start

Arbitrary threshold switches from ‘slow’ start to additive increase.

74

Congestion window

(KB or packets)

Transmission round (RTTs)

Congestion window growing over time

Slow start

Threshold

Current

window

Copyright Jesse

Donkervliet 2024

TCP Tahoe

Arbitrary threshold switches from ‘slow’ start to additive increase.

75

Congestion window

(KB or packets)

Transmission round (RTTs)

Threshold

Threshold

multiplicative decrease
(threshold=

1

2
×window)

Additive increase

Current

window

Packet loss detected
Reset congestion window

Wait 1 RTT for segments to
leave the network

Q: Can you think of another
way to detect packet loss?

Copyright Jesse

Donkervliet 2024

Performance improvement
Fast retransmission
Packet loss detected when timers expire.

76

Takes time

(by design)!

time

Segment 𝑖

Segment 𝑖 + 1

ACK 𝑖

Segment 𝑖 + 2

ACK 𝑖

Q: Can we know about packet
loss before the timer runs out?

#packets

in transit
1

0

1

2

1

We can count the number of packets in the network!

Copyright Jesse

Donkervliet 2024

Current

window

TCP Reno
(= TCP Tahoe + fast recovery)

77

Congestion window

(KB or packets)

Transmission round (RTTs)

multiplicative decrease
(threshold=

1

2
×window)

Packet loss detected

Calculates the number of segments in the network by
counting the number of duplicate acknowledgements

Threshold

Threshold

Fast recovery

Threshold reduced using multiplicative decrease.

Congestion window set to new threshold value.

Copyright Jesse

Donkervliet 2024

What about
Explicit Congestion Notification?

78

M

M

M
M

M

M

= regular IP packet with TCP segment

= Explicit Congestion Notification (ECN) set in IP header

Congested Router

Copyright Jesse

Donkervliet 2024

What about
Explicit Congestion Notification?

79

M

M

M
M

M

M

M

= regular IP packet with TCP segment

= Explicit Congestion Notification (ECN) set in IP header

= ECN-Echo (ECE) set in TCP header

Copyright Jesse

Donkervliet 2024

What about
Explicit Congestion Notification?

80

M

M

M
M

M

M

M

= regular IP packet with TCP segment

= Explicit Congestion Notification (ECN) set in IP header

= ECN-Echo (ECE) set in TCP header

M = Congestion Window Reduced (CWR) set in TCP header

Copyright Jesse

Donkervliet 2024

Different Flavors of TCP

81

Copyright Jesse

Donkervliet 2024

TCP versions and
congestion signals
1. TCP determines rate based on

packet loss.

2. CUBIC TCP determines rate based on
packet loss.

3. FAST TCP determines rate based
on end-to-end delay.

4. Compound TCP determines rate based
on end-to-end delay and packet loss.

5. TCP with Explicit Congestion Notification.

6. XCP explicitly tells sender what rate to use.

82

Used by default in Linux, Windows, MacOS

Copyright Jesse

Donkervliet 2024

TCP versions and
congestion signals
1. TCP determines rate based on

packet loss.

2. CUBIC TCP determines rate based on
packet loss.

3. FAST TCP determines rate based
on end-to-end delay.

4. Compound TCP determines rate based
on end-to-end delay and packet loss.

5. TCP with Explicit Congestion Notification.

6. XCP explicitly tells sender what rate to use.

83

Implicit congestion signals

Used by default in Linux, Windows, MacOS

Copyright Jesse

Donkervliet 2024

Roadmap: Transport Layer

1. Transport layer responsibilities and challenges

2. Connection establishment and release

3. Revisiting reliable delivery and flow control

4. Congestion control and bandwidth allocation

5. TCP and UDP

84

Copyright Jesse

Donkervliet 2024

Transport Layer Summary
• Sockets interface

• Connection establishment and release
• Duplicate detection

• Two army problem

• Seq. num wrap around + duplicate
detection → performance limit

• End-to-end argument

• Error control
• Timer management

• Detection using time-outs or duplicate
acknowledgements

• Flow control
• Sending rate limited to smallest

window size

• Nagle’s algorithm

• Silly window syndrome

• Congestion control
• Sharing available resources

• AIMD

• Multiple signals: packet loss, latency, etc.

85

	Reliable Delivery / Error Control
	Slide 1: Computer Networks X_400487
	Slide 2: Roadmap: Transport Layer
	Slide 3: The End-To-End Argument
	Slide 4: Error control in the transport layer
	Slide 5: Reliable Delivery through Retransmissions
	Slide 6: Improving Performance by using Error control on lower layers
	Slide 7: Error control and crash recovery
	Slide 8: Error control and crash recovery
	Slide 9: Crash recovery
	Slide 10: Error control and crash recovery
	Slide 11: Crash recovery on layer k

	Flow Control
	Slide 12: Roadmap: Transport Layer
	Slide 13: Regulating sending rate Flow control
	Slide 14: Regulating sending rate Congestion control
	Slide 15: Stop-and-Wait: A 1-Bit Sliding Window Protocol
	Slide 16: Stop-and-Wait: A 1-Bit Sliding Window Protocol
	Slide 17: Sliding window protocols
	Slide 18: Recap: Link Utilization
	Slide 19: Flow control and buffer management

	congestion control
	Slide 20: Roadmap: Transport Layer
	Slide 21: Today
	Slide 22: Congestion control
	Slide 23: Congestion control requires resource management
	Slide 24: Fair bandwidth allocation
	Slide 25: Fair bandwidth allocation Max-min fairness
	Slide 26: Fair bandwidth allocation Convergence
	Slide 27: Available bandwidth is unknown
	Slide 28: Dynamically adjust bandwidth using trial and error
	Slide 29: Sharing bandwidth example
	Slide 30: Sharing bandwidth example
	Slide 31: Sharing bandwidth Efficiency and fairness
	Slide 32: Regulating sending rate Approaches
	Slide 33: Additive increase Additive decrease
	Slide 34: Multiplicative increase Multiplicative decrease
	Slide 35: Regulating sending rate Efficiency and fairness
	Slide 36: Additive increase Multiplicative decrease
	Slide 37: Regulating sending rate Efficiency and fairness

	internet protocols
	Slide 38: Roadmap: Transport Layer
	Slide 39: Internet protocols
	Slide 40: Comparing complexity by number of RFCs

	UDP
	Slide 41: User Datagram Protocol (UDP)
	Slide 42: User Datagram Protocol (UDP)

	TCP
	Slide 43: Transmission Control Protocol (TCP)
	Slide 44: Transmission Control Protocol (TCP)
	Slide 45: Transmission Control Protocol (TCP)
	Slide 46: Transmission Control Protocol (TCP)
	Slide 47: Transmission Control Protocol (TCP)

	TCP connection establishment/release
	Slide 48: Connections in TCP
	Slide 49: Transmission Control Protocol (TCP)
	Slide 50: TCP connection establishment Three-way handshake
	Slide 51: TCP Timestamp Option
	Slide 52: TCP Timestamp Option
	Slide 53: TCP PAWS
	Slide 54: TCP sequence numbers
	Slide 55: TCP connection release Two simplex channels
	Slide 56: TCP connection release Two simplex channels

	TCP error control
	Slide 57: Error Control in TCP
	Slide 58: Reliable Delivery through Retransmissions
	Slide 59: Setting Retransmission Timers
	Slide 60: Dynamic Timeouts in TCP
	Slide 61: Performance improvement Fast retransmission

	TCP flow control
	Slide 62: Flow Control in TCP
	Slide 63: Flow control and buffer management
	Slide 64: TCP window size Flow control
	Slide 65: TCP window size Nagle’s algorithm
	Slide 66: TCP window size Silly-window syndrome
	Slide 67: TCP Delayed Acknowledgements
	Slide 68: TCP Delayed Acknowledgements

	TCP congestion control
	Slide 69: Congestion Control in TCP
	Slide 70: Transmission Control Protocol (TCP)
	Slide 71: Additive increase multiplicative decrease in TCP
	Slide 72: AIMD in TCP What value to start with?
	Slide 73: AIMD in TCP ‘slow’ start
	Slide 74: TCP ‘slow’ start
	Slide 75: TCP Tahoe
	Slide 76: Performance improvement Fast retransmission
	Slide 77: TCP Reno (= TCP Tahoe + fast recovery)
	Slide 78: What about Explicit Congestion Notification?
	Slide 79: What about Explicit Congestion Notification?
	Slide 80: What about Explicit Congestion Notification?

	tcp versions
	Slide 81: Different Flavors of TCP
	Slide 82: TCP versions and congestion signals
	Slide 83: TCP versions and congestion signals

	end
	Slide 84: Roadmap: Transport Layer
	Slide 85: Transport Layer Summary

