








Quick Links for Today

- 1. <u>IPv4</u>
- 2. <u>NAT</u>
- 3. Subnets
- 4. Token Bucket

Copyright Jesse Donkervliet 202-



### Challenges Addressed by IPv4 Protocol Design

1. Error detection/correction

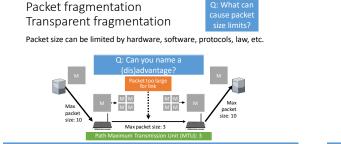
IP version 4

- 2. Preventing permanently looping packets
- 3. Globally identifying computers
- 4. Carrying packets over links with different size requirements

### IP version 4

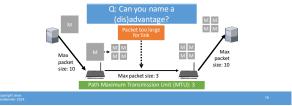
| ÷                   | 32 bit     | s wide 🔶           |  |         |         | 32 bits                 | wide —     |                 |
|---------------------|------------|--------------------|--|---------|---------|-------------------------|------------|-----------------|
|                     |            | Total length       |  | Version |         | Differentiated services |            | Total length    |
| Ident               | ification  | Fragment offset    |  |         | Identif | cation                  | D M<br>F F | Fragment offset |
| Time to live        | Protocol   | Header checksum    |  | Time to | live    | Protocol                |            | Header checksum |
| Source address      |            |                    |  |         |         | Source a                | address    |                 |
| Destination address |            |                    |  |         |         | Destinatio              | n address  |                 |
|                     | Opt        | ions               |  |         |         | Opti                    | ons        |                 |
| Check th            | e book for | the detailed view! |  |         | Q:      | What is the va          | lue of t   | his field?      |


### IP version 4




Challenges Addressed by IPv4 Protocol Design

- 1. Error detection/correction
- 2. Preventing permanently looping packets
- 3. Globally identifying computers
- 4. Carrying packets over links with different size requirements


Donkervliet 202





### Packet fragmentation Nontransparent fragmentation

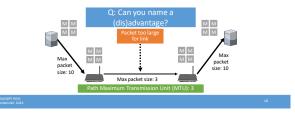
Packet size can be limited by hardware, software, protocols, law, etc.



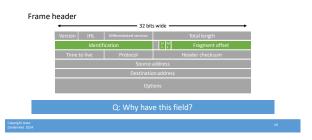
### Avoiding packet fragmentation

MTU discovery

Packet size can be limited by hardware, software, protocols, law, etc.



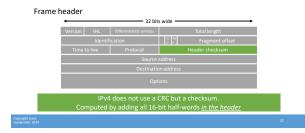

# *Avoiding* packet fragmentation MTU discovery




Used in IP!

Packet size can be limited by hardware, software, protocols, law, etc.




### IP version 4



### Challenges Addressed by IPv4 Protocol Design

- 1. Error detection/correction
- 2. Preventing permanently looping packets
- 3. Globally identifying computers
- 4. Carrying packets over links with different size requirements

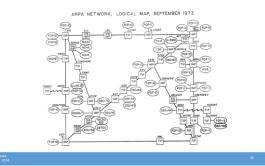
### IP version 4



### Challenges Addressed by IPv4 Protocol Design

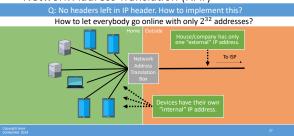
- 1. Error detection/correction
- 2. Preventing permanently looping packets
- 3. Globally identifying computers
- 4. Carrying packets over links with different size requirements

C: What service does P <u>net</u> provide? **Frame header Subs wide S** 

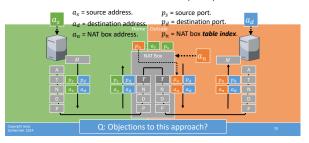

### IPv4 addresses

IPv4 uses 32-bit addresses. Written in *dotted decimal notation*. Address 0x80D00297 is written as 128.208.2.151.

32-bit address gives  $2^{32} > 4$  billion addresses.


| Q: How to route packets to these addresses with                |
|----------------------------------------------------------------|
| latencies in the order of milliseconds?                        |
| Reduce routing table sizes using <i>hierarchical routing</i> ! |

### Copyright Jesse Donkervliet 2024






### Network Address Translation (NAT)



Q: How to send something back to  $a_s$ ? Network Address Translation (NAT)



Challenges Addressed by IPv4 Protocol Design

- 1. Error detection/correction
- 2. Preventing permanently looping packets
- 3. Globally identifying computers
- 4. Carrying packets over links with different size requirements

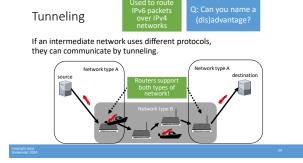
### IP version 6

Multiple improvements over IPv4.

- 1. Many more addresses!
- 2. Simplified header improves bandwidth/latency.
- 3. Easier to add *options* in the header.
- 4. Improved security support. ◄···· Backported to IPv4

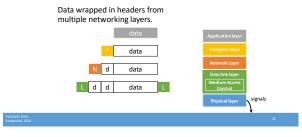
### opyright lesse Donkervliet 2024

### IP version 6

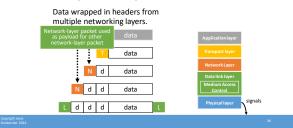

| IP version 4                                     | IP version 6                                      | Brid Adaption<br>This are individually researing the availability of TPM corrected or annual Couple same The grady brane the preventage of same takes that a sum millestone in 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address size:<br>32 bits.                        | Address size:<br>128 bits.                        | 50.0% Reset (3% holfwels (3% ho |
| Dotted decimal notation: 192.31.20.46            | Hexadecimal notation:<br>8000::123:4567:89AB:CDEF | 3.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of addresses:<br>$2^{32} = 4,294,967,296$ | Number of addresses: $2^{128} =$                  | Q: Why is it taking so long?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 340,282,366,920,938,463,                         | 163,374,607,431,768,211,456<br>•••• That's a lot! | 6.07.<br>2.07.<br>2.07. 270 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jesse<br>t 2024                                  | 31                                                | Copyright Asse<br>Donlarvlist 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### Connecting Networks with Different Protocols

Network B: Uses 'boats' protocol. Network C: Uses 'planes' protoco


If source and destination networks use different protocols, they cannot communicate.

Network A: Uses 'cars' protocol.

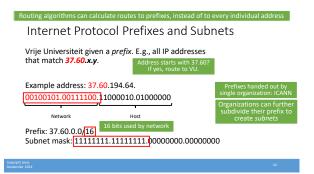



Hit the 40% milestone in 2022

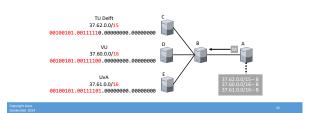
### Business as usual Packets in packets in mackets in ...



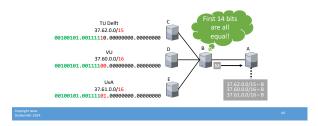
Tunneling Packets in packets in mackets in ...



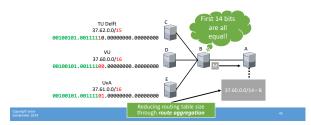

| IP version 6                    |                       | IP ve | rsion 6                             | Value 0x06 to indicate IP version 6 |                     |           |
|---------------------------------|-----------------------|-------|-------------------------------------|-------------------------------------|---------------------|-----------|
| Frame header                    |                       |       | Frame                               | header                              |                     |           |
| •                               |                       |       | ·                                   |                                     |                     |           |
| Version Differentiated services | Flow label            |       |                                     | Version Differentiated services     | Flow label          |           |
| Payload length                  | Next header Hop limit |       |                                     | Payload length                      | Next header         | Hop limit |
|                                 | Source address        |       |                                     |                                     |                     |           |
|                                 | Destination address   |       |                                     | C                                   | Destination address |           |
| orse<br>2024                    |                       | 37    | Copyright Jesse<br>Donkervliet 2024 |                                     |                     |           |


| IP version 6                    | "Time to live"<br>renamed to<br>"Hop limit" |    | IP ve                               | rsion 6                         | Specifies transp<br>protocol or extens |           |
|---------------------------------|---------------------------------------------|----|-------------------------------------|---------------------------------|----------------------------------------|-----------|
| Frame header                    |                                             |    | Frame h                             | leader                          |                                        |           |
| 4 32 bits w                     |                                             |    |                                     | ·                               | - 32 bits wide                         |           |
| Version Differentiated services | Flow label                                  |    |                                     | Version Differentiated services | Flow label                             |           |
| Payload length                  | Next header Hop limit                       |    |                                     | Payload length                  | Next header                            | Hop limit |
| Source add                      | iress                                       |    |                                     |                                 |                                        |           |
| Destination a                   | ıddress                                     |    |                                     |                                 | Destination address                    |           |
|                                 |                                             | 39 | Copyright Jesse<br>Donkervliet 2024 |                                 |                                        |           |

### Addressing the Problem of Too Many Addresses to Route


Managing the size of routing tables




### Internet Protocol - CIDR Classless InterDomain Routing



### Internet Protocol - CIDR Classless InterDomain Routing



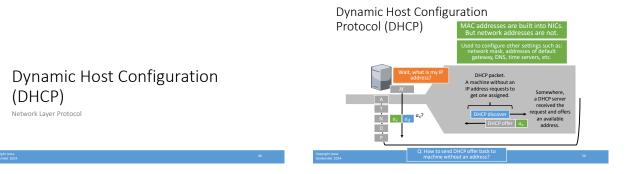
### Internet Protocol - CIDR Classless InterDomain Routing

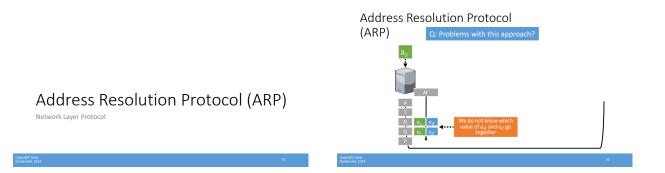


### Longest Matching Prefix

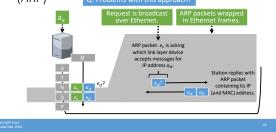
| Prefix           | Port    | Binary                                                                               |
|------------------|---------|--------------------------------------------------------------------------------------|
| 137.70.32.192/26 | Α       | <u>10001001.01000110.00100000.1</u> 1000000                                          |
| 137.70.32.0/20   | В       | <u>10001001.01000110.0010</u> 000.0000000                                            |
| 137.64.0.0/10    | C       | <u>10001001.01</u> 000000.00000000.00000000                                          |
| 0.0.0.0/0        | D       | 0000000.0000000.00000000.0000000                                                     |
| 137.70.32.128    |         | 10001001.01000110.00100000.1000000                                                   |
|                  | ket for | es the destination address 137.70.32.128. On warded? Assume that the router uses the |

## Internet Control Message Protocol (ICMP)


If something goes wrong, *routers* send these messages to *senders*.

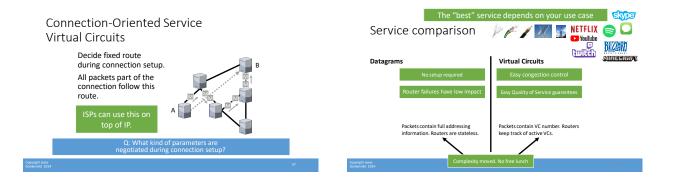

# Internet Control Message Protocol (ICMP)

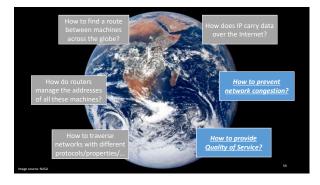
Network Layer Protocol


### Some examples:

- 1. Destination unreachable
- 2. Time exceeded
- 3. "Echo" and "echo reply" ←… Used by the program ping
- 4. Router advertisement/solicitation
- 5. Packet needs fragmentation / packet too big

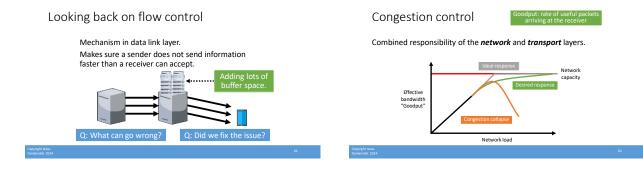






### Address Resolution Protocol (ARP) Q: Problems with this approach?



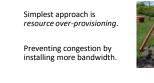
Network-Layer Resource Allocation


# <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><image><image><image><image><image><image><image><image><image><text>





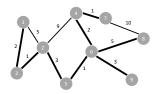
### Congestion control


Preventing traffic jams

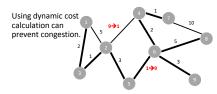




### Approaches to congestion control


### Can we do something smarter?

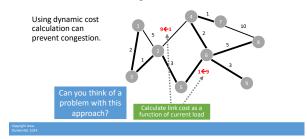


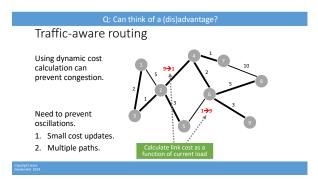



### Traffic-aware routing

If link costs are static, all traffic is routed over lowest-cost links.




### Traffic-aware routing




pyright Jesse Inkervliet 2024

### Traffic-aware routing Using dynamic cost calculation can prevent congestion. Can you think of a problem with this approach?

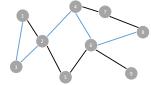
### Traffic-aware routing







### Admission control


Admission control allows a new traffic load only if the network has sufficient capacity.



### Admission control

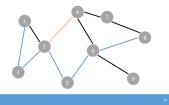
Admission control allows a new traffic load only if the network has sufficient capacity.

Can you find a path that does not result in congestion?



Copyright Jesse Donkervliet 2024

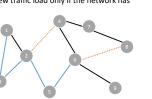
### Admission control


Admission control allows a new traffic load only if the network has sufficient capacity.



### Admission control

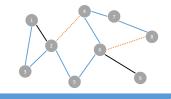
Admission control allows a new traffic load only if the network has sufficient capacity.


Can you find a path that does not result in congestion?



### Admission control

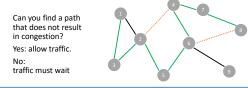
Admission control allows a new traffic load only if the network has sufficient capacity.


Can you find a path that does not result in congestion?



### Admission control

Admission control allows a new traffic load only if the network has sufficient capacity.


Can you find a path that does not result in congestion?



### Q: Can think of a (dis)advantage?

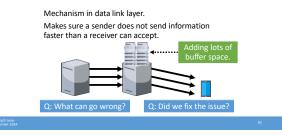
### Admission control

Admission control allows a new traffic load only if the network has sufficient capacity.



### Traffic throttling

Send messages in the opposite direction to explicitly indicate network congestion.  $% \label{eq:constraint}$ 

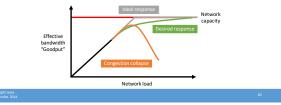

Most common implementation:

- 1. Set special bits in IP packet.
- 2. Inform sender of congestion through TCP.

opyright Jesse onkervliet 2024

# <text><text><text><text><text><text><text><text>

Looking back on flow control

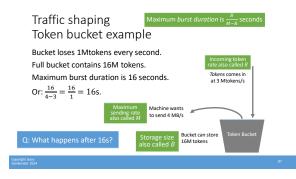




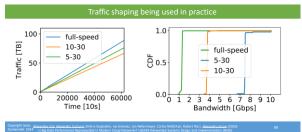
Traffic Shaping Regulating Network Resource Usage

### Congestion control



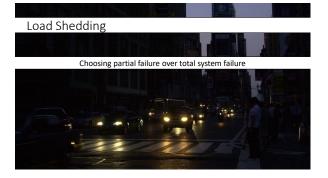

Combined responsibility of the *network* and *transport* layers.

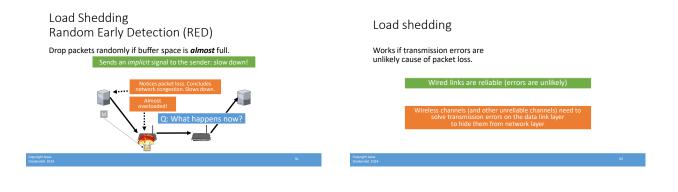





### 

| Traffic shaping<br>Token bucket                     | Maximum <i>burst duration</i> is $\frac{B}{M-R}$ seconds                                   |    |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------|----|
| Outgoing rate between 0<br>Average outgoing rate eq | Incoming token                                                                             |    |
| Max<br>sendi<br>also ca                             | Sending <i>n</i> bytes<br>requires <i>n</i> tokens<br>Storage Size<br>also called <i>B</i> |    |
| pyright Jesse<br>nkervliet 2024                     |                                                                                            | 86 |
|                                                     |                                                                                            |    |

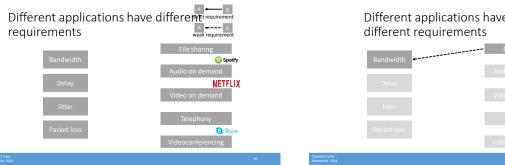


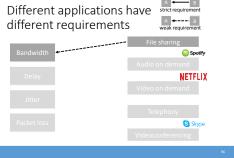


### Traffic Shaping in Cloud Networks

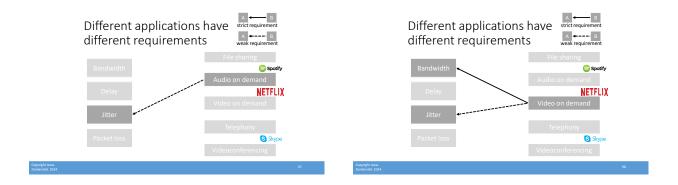


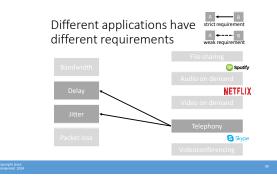
### Traffic Shaping in Cloud Networks

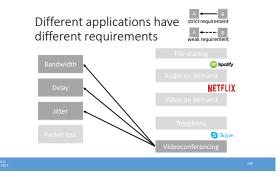






### Quality of Service and its parameters














### Quiz Time!

### 10-15(?) minutes

### Correct answers without explanation do not get points!

Please do not use external resources, including:

- ChatGPT (forget AI, use and train your RI [Real Intelligence!])
- Anything on or via the Internet (the Web, chat apps, etc)
- Answers from your neighbors
- The book / slides

Network Layer Summary

### Networking

- Routing Algorithms:
   Distance Vector
   Link State
   Hierarchical
- Problem of scale: too many addresses
- Not enough address space (solved by IPv6)
   Routing tables too large
   (problem reduced by aggregation)
- (problem reduced by aggregation)
   Network configuration
   Ottaining an address (DHCP)
   Looking up corresponding MAC address (ARP)

### Internetworking

- Different networks have different properties Using a common protocol (IP).
- Tunneling through networks with other protocols.
- MLPS supports multiple protocols, for faster switching
   Within Autonomous Systems (e.g., OSPF)

- Between Autonomous Systems (e.g., BGP)
  Resource Management
- Connectionless and Connection-oriented approaches
- Congestion Control (RED, ECN, etc.) Traffic Shaping (Token Bucket, Leaky Bucket)

17