Computer Networks X_400487

Lecture 7 Chapter 5: The Network Layer—Part 1

Recap Data Link Layer

Data link layer (partially) answers the following questions:

- 1. How create frames from bits/bytes?
- 2. How to detect/correct transmission errors?
- 3. How to efficiently multiplex frames from multiple
- stations over a single channel? MAC sublayer Q: What kind of efficient

Recap Data Link Layer

Data link layer (partially) answers the following questions:

- 1. How create frames from bits/bytes?
- 2. How to detect/correct transmission errors?
- 3. How to efficiently multiplex frames from multiple stations over a single channel? MAC sublayer Q: What ki

What Else Do We Need?

Data link layer not enough for a world-wide internet (=network of networks)

- Switches not built for large networks (e.g., hash table size)
 Hashmap of all addresses requires very large memory. Searching memory reduces performance.
- 2. Protocols tailored to physical medium: bad idea to use one such protocol for all types of networks

Q: How to solve this?	Add new layer of abstraction: the Network Layer
Copyright Jesse Donilervillet 2024	S

Routing

Finding a path through a network

oyright Jesse nkervliet 2024

Important Properties for Routing

- 1. Correctness
- 2. Simplicity
- 3. Robustness
- 4. Stability
- 5. Fairness
- 6. Efficiency

Copyright Jes Donkersdiet 5

How to find a route?

We will look at three key ideas:

- 1. Distance vector routing
- 2. Link state routing
- 3. Hierarchical routing

Routing tables

For each packet, we need to know on which link to forward it. For this we use a routing table

Routing tables

For each packet, we need to know on which link to forward it For this we use a routing table

Distance Vector Routing

1. Send your distance vector to your neighbors

2. Update your routing table based on incoming distance vectors

Distance from A to B is 1		Dista	Distance from C to A is 7		
Distance	То	Dista	nce Line		
vector A	A	7	A		
A 0 B, 1 C, 7 D, 152 E, 8 F, 110	в	59	A		
	C	0	-		
	D	75	0.11		
	E	1	Q: How to		
	F	103	update our		
opyright Jesse			routing table?		
onkervliet 2024					

Distance Vector Routing

- 1. Send your distance vector to your neighbors
- 2. Update your routing table based on incoming distance vectors

Count to infinity problem When machine fails

6

Today's Lecture

- 1. Routing Algorithms
- 2. Internetworking
 - 1. Real-World Routing in and between Autonomous Systems 2. Tunneling

 - 3. Packet fragmentation

Q: Difference between a single network and a collection of networks?

Internetworking

Getting packets to their destination across multiple networks

Internetworking

Challenges for sending packets end-to-end over multiple networks:

- 1. Technological
- Different protocols
- Different maximum packet sizes
- Different QoS guarantees
- 2. Political
 - Different costs
 - Privacy concerns
 - Competition/disputes

<section-header><section-header><section-header><image><page-footer>

Structure of the Internet:

Large corporation

corporatio

Backbone service provide

"Consumer" ISP

"Consumer" ISP

Peering point

A Network of Networks

Peering point

Small

"Consumer" ISP

Internetworking with Autonomous Systems

Involves two key ideas:

- 1. Routing *inside* an Autonomous System
 - Intradomain routing. Uses an Interior Gateway Protocol
 We will look at the Open Shortest Path First (OSPF) protocol
- 2. Routing between Autonomous Systems
 - Interdomain routing. Uses an Exterior Gateway Protocol
 We will look at the Border Gateway Protocol (BGP)

Copyright Jesse Donkervliet 2024

Example of an Interior Gateway Protoco

Connecting Networks with Different Protocols

If source and destination networks use different protocols, they cannot communicate.

Business as usual Packets in packets in packets in ...

Tunneling Packets in packets in packets in ...

Packet fragmentation Nontransparent fragmentation

Packet size can be limited by hardware, software, protocols, law, etc.

Avoiding packet fragmentation

MTU discovery

Packet size can be limited by hardware, software, protocols, law, etc.

Avoiding packet fragmentation MTU discovery

Used in IP!

Packet size can be limited by hardware, software, protocols, law, etc.

