Computer Networks X_400487

Lecture 5 Chapter 4: Medium Access Control

Lecturer: Jesse Donkervliet Includes slides from Vlad Cursaru

MAC Sublayer Outline

ALOHA & Slotted ALOHA
CSMA
1-persistent
nonpersistent
p-persistent
CSMA/CD
802.3 Ethernet
Ethernet Switching

MAC for Wireless Hidden Terminal Exposed Terminal CSMA/CA 802.11 WiFi Collision-Free Protocols Basic Bit-Map Token Ring Binary Countdown

1

Two Approaches: Contend or Coordinate

ALOHA

Q: When does ALOHA perform well/badly?

In pure ALOHA, users transmit frames whenever they have data; if a collision occurs, users retry after a random delay.

Collisions in ALOHA

Collisions in ALOHA

Collisions in ALOHA

Frame collisions can occur anywhere within 2 times duration of transmission.

Carrier-Sense Multiple Access

Senders detect ("sense") if the channel is in use

Protocols that apply CSMA:

- 1. 1-persistent: wait for idle, then send. If collision, random back-off.
- 2. Nonpersistent: if busy, random back-off. Try again
- 3. *p*-persistent: if busy, wait for next slot if idle, send with probability *p*

ALOHA & SIOTTED ALOHA
CSMA
1-persistent
nonpersistent
p-persistent
CSMA/CD
802.3 Ethernet
Ethernet Switching

MAC for Wireless Hidden Terminal Exposed Terminal CSMA/CA **802.11 WiFi** Collision-Free Protocols Basic Bit-Map Token Ring Binary Countdown

Carrier Sense Multiple Access with Collision Detection

CSMA/CD: CSMA with *Collision Detection* Idea: when collision is detected, do not finish sending. Stop transmission instead. Separates **contention periods** from **transmission periods**.

Separates contention periods from transmission periods Saves time and bandwidth

Contention period: check if it is safe to send data. Transmission period: send data.

Collision detection

Abort transmission when collision is detected.

Medium Access Control in ... Classic Ethernet

Multiple machines sharing a single Ethernet connection.

Medium Access Control Classic Ethernet

K

thernet

Medium Access Control in ... Classic Ethernet

Multiple machines sharing a single Ethernet connection.

Medium Access Control in ...

Class	ic Ethernet	Failed Attempts	Maximum Delay	Random Delay Range
Uses 1-persistent CSMA/CD.		0	$2^0 - 1 = 0$	$w \in [0,0]$
		1	$2^1 - 1 = 1$	$w \in [0,1]$
		2	$2^2 - 1 = 3$	$w \in [0,3]$
Random delay (back-off) after		3	$2^3 - 1 = 7$	$w \in [0,7]$
Binary Exponential Back-off	4	$2^4 - 1 = 15$	$w \in [0, 15]$	
Station wa between (<i>i</i> is the nu	its w slots, where w) and $2^i - 1$. mber of failed	haxw = 0 bilision = True thile collision: w = random.randint(0, i collision = delayed_seni	maxw) J(frame, w)	
attempts.	Q: What happens if more trying to send	e than 2 stations are a frame?	if collision: maxw = maxw << maxw = maxw 1	1
right Jesse				

Classic Ethernet Collision detection	Q: Does the detection latency cause a problem?				
Collisions can occur and take as long as 2τ to detect. τ is the time it takes to propagate over the Ethernet. Leads to minimum packet size for reliable detection: $s_f = 2\tau \times R \ (R = \text{data rate})$					
м					
Transmission takes τ seconds.	Ethernet				
$\tau = 5\mu s, R = 500 Mbps, S_f = 2 \times 5\mu s \times 500 Mbps$	bps = 5000 bits				
Copyright Jasse Doniervier 2024	33				

Ethernet frames

Frame format still used in modern versions of Ethernet.*

Prea		Destination address		T/L			
Bytes:	8	6	6	2	0-1500	0-46	4

*VLAN-aware packets from 802.1Q use a slightly modified header.

Copyright Jesse Donkervliet 2024

Ethernet frames

Frame format still used in modern versions of Ethernet.*

Bit-sequence used to indicate start of frame.

*VLAN-aware packets from 802.1Q use a slightly modified header.	

35

Ethernet frames Frame format still used in modern versions of Ethernet.* Preamble Destination Source T/L Data P CRC

			address						
	Byte	: 8	6	6	2	0-1500	0-46	4	
	5	ource a	nd destinati	on addre	sses.				
	Q: Why needed over a single link?								
	O. What is the name of this address? What is it assigned to?								
	Q. 1		ie name or	cinio araan			55.6.		
*// AN-awara packets from 907 10 use a slightly modified boader									
10.00	undre puerces ne		ic a singitary mount	icu neuden.					
Copyright Jesse									

Ethernet frames Ethernet frames Frame format still used in modern versions of Ethernet.* Frame format still used in modern versions of Ethernet.* Bytes: 8 2 0-1500 0-46 Bytes: 8 2 0-1500 6 4 6 0-46 4 Type/length field: Pad field: Used if data causes frame to be less than the minimum Indicates to which network layer protocol the data should be sent. frame length. Values less than 0x600 (1536) can be interpreted as length. (IEEE 802.3 only) *VLAN-aware packets from 802.1Q use a slightly modified header *VLAN-aware packets from 802.1Q use a slightly modified header Ethernet frames Q: Reliable delivery? Frame format still used in modern versions of Ethernet.*

Data Link Layer Switching

Classic Ethernet with Hubs

Switching Classic Ethernet with *#Switches #*

Ethernet evolution From hubs to switches

	All ports/ wires are always connected Hub	Switch
Copyright Jesse Donkervliet 2024		44

Learning bridges

ALOHA & Slotted ALOHA
CSMA
1-persistent
nonpersistent
p-persistent
CSMA/CD
802.3 Ethernet
Ethernet Switching

MAC for Wireless Hidden Terminal Exposed Terminal CSMA/CA 802.11 WiFi Collision-Free Protocols Basic Bit-Map Token Ring Binary Countdown

Medium Access Control for Wireless Channels

Properties of Wireless Channels Affect MAC Protocol Design

The good news: no more wires. The bad news:

- 1. Nodes cannot detect collisions while sending. (you cannot talk and listen at the same time!)
- 2. Hidden and exposed terminals.

MAC for Wireless Channels: No Collision Detection

ALOHA & Slotted ALOHA
CSMA
1-persistent
nonpersistent
p-persistent
CSMA/CD
802.3 Ethernet
Ethernet Switching

MAC for Wireless Hidden Terminal Exposed Terminal CSMA/CA 802.11 WiFi

Collision-Free Protocols Basic Bit-Map Token Ring Binary Countdown

54

Medium Access Control in ... 802.11

Stations cannot detect collisions while they occur. Relies on ACKs to determine if collision occurred. If ACK is lost, sender assumes frame was lost; retransmits frame

Can use RTS/CTS, but usually does not. Instead uses a protocol called **CSMA/CA**. CA: Collision Avoidance. Core elements of CSMA/CA

Physical channel sensing.

Sense if the channel. Wait for channel to become idle. *Virtual channel sensing.*

Frames carry a Network Allocation Vector (NAV) that indicates the length of the exchange.

Wait for end of exchange.

802.11 frames

802.11 frames

802.11 frames

Indicates a control, management, or data frame.

802.11 frames

802.11 frames

Indicates that the sender will enter power save mode.

802.11 frames

Copyright Issue 78

802.11 frames	802.11 frames	802.11 frames				
Bytes: 2 6 6 6 2 0-2312 4 Frame control Duration Address 1 Address 2 Address 3 Seq Data CRC	Bytes: 2 6 6 6 2 0-2312 4 Frame control Duration Address 1 Address 2 Address 3 Seq Data CRC					
Stations use the duration to update their Network Allocation Vector (NAV).	Q: Why a third address?					
Copyright asse 71 Donierwier 2024	19 Copyright Josse 80					

Access point forwards frame to recipient

Access point forwards frame to recipient

ALOHA & Slotted ALOHA CSMA 1-persistent p-persistent CSMA/CD 802.3 Ethernet Ethernet Switching MAC for Wireless Hidden Terminal Exposed Terminal CSMA/CA 802.11 WiFi Collision-Free Protocols Basic Bit-Map Token Ring Binary Countdown

Collision-Free Protocols

Instead of detecting collisions, why not prevent collisions

Protocol examples:

1. Basic Bit-Map Protocol

2. Token Ring

3. Binary Countdown

G: What is the efficiency
of this protocolO: What is the efficiency
of this protocol?With n stations,
 $e_{H} = \frac{nd}{n+nd} = \frac{d}{1+d}$ Efficiency increases if frame size increases/contention stat
ize decreases (d increases)O: Increase from 1Frame from 1</

Image: Description of the processing of the proces

Computer Networks X 400487

Lecture 5 Chapter 4: Medium Access Control

Lecturer: Jesse Donkervliet Includes slides from Vlad Cursaru

X

Extra Slides 🕀

Medium Access Control Bluetooth

Bluetooth Protocol Stack

No fixed set of protocols. Instead, **profiles** define the set of protocols for a given application.

25 profiles, including headset, intercom, streaming audio, remote control, personal area network, and others.

Bluetooth Protocol Stack

Bluetooth Protocol Stack

Medium Access Control in ... Bluetooth

Medium Access Control in ... Bluetooth

A Bluetooth network is called a *piconet*. Secondaries may be asleep (parked) to save power.

Bluetooth piconet

Two piconets can be bridged into a scatternet.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Uses multiple types of frames, similar to 802.16.

Uses multiple types of frames, similar to 802.16.

Bluetooth frames

Enhanced data rates send faster but for the same time.

Medium Access Control RFID

RFID Readers

Medium Access Control in ... RFID

RFID uses **readers** and **tags**. Reader in charge of medium access control. Tags reply to requests.

RFID request frame

RFID uses multiple types of frames. Example of a request-frame:

RFID request frame

RFID uses multiple types of frames. Example of a request-frame:

Used to configure physical layer properties (e.g., data rate).

Copyright Donksofe

13

RFID request frame

Copyright Jesse Donkervliet 2024 115

RFID request frame

Limits random backoff values available to the tags. Tag responds in a slot between 0 and $2^Q - 1$

Copyright Jesse Donkervliet 2024