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Layered architecture

A (layered) architecture makes 
the system easier to understand

2

Physical layer

Data link layer

Medium Access 

Control

Network Layer

Transport layer

Application layer

signals

Real-world networks do not 

exactly match this architecture

Q: Why do we use it?
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Layered architecture

A (layered) architecture makes 
the system easier to understand.

3

Physical layer

Data link layer

Medium Access 

Control

Network Layer

Transport layer

Application layer

You are 

here signals

Real-world networks do not 

exactly match this architecture

Q: Why do we use it?
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From a service to a signal,
and back again

4

Physical layer

Data link layer

Medium Access 
Control

Network Layer

Transport layer

Application layer

signals
Physical layer

Data link layer

Medium Access 
Control

Network Layer

Transport layer

Application layer

signals
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How can we transport data?

Well-known mediums:

1. Copper cables

2. Optical fibers

3. Radio waves

Other possible of mediums:

1. Postal service
(“snail mail”)

2. A truck full of SSD drives

3. Trained pigeons with 
USB drives attached to 
their feet

4. …

5

Q: Can you think of mediums used for computer networks?

A medium allows you 

to transport data from 

one place to another
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Digital Modulation

6

Q: How to communicate bit strings 

(e.g., 101011101) between computer 

systems?

Bits and Bytes

11010101

Waves and Signals Bits and Bytes

11010101

Modulation Demodulation

Put information onto a carrier signal Extract information from a carrier signal
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Different channel,
different properties
Bit rate
Number of bits per second. Depends on protocol, channel 
bandwidth, and other factors.

Delay
How long does it take a bit to get to the end?

Storage Capacity
How many bits can the channel hold at once?
Capacity = Bit rate × Delay

Error Rate (Noise, Attenuation)
What is the probability of a bit flipping?

7

Q: Which properties are important 

for video on-demand?

Non-functional properties 
can enable new 

technologies!
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Physical Layer Lecture

1. Physical Properties of Different Mediums

2. Communication Speed Limits

3. Digital Modulation

4. Multiplexing

8
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Twisted pair

Commonly used for:

1. Telephone networks.

2. Wired LANs.

Example: Category 6 (“CAT 6”) cables.
Some support 500 MHz bandwidth.

9

Q: Why are the wires twisted?

High bandwidth allows higher data rates

Q: What about the latency and error rate?
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Coaxial (“coax”) cable

10

Commonly used for:

1. Telephone networks

2. Cable television

3. Wired Metropolitan Area Networks 
(MANs).

Bandwidth in the order of GHz.
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Optical fiber

Commonly used for:

1. Long-distance network backbones.

2. Wired Metropolitan Area Networks (MANs).

3. High-performance LANs.

Bandwidth in the order of 100 GHz.

11

Fiber is becoming increasingly popular 

in multiple application domains
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Wireless transmission

Different frequencies means different properties.

1. Radiowave
AM radio
FM radio

2. Microwave
Satellite dishes

3. Infrared
Remote controls

4. Visible light

5. …

12

Example?

Q: Can you think of a 

(dis)advantage compared 

to wired transmission?
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Wireless transmission

Different frequencies means different properties.

1. Radiowave
AM radio
FM radio

2. Microwave
Satellite dishes

3. Infrared
Remote controls

4. Visible light

5. …

13
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Radio

AM radio 𝑓 ≈ 1 𝑀𝐻𝑧

FM radio 𝑓 ≈ 100 𝑀𝐻𝑧

14

Q: Can you think of 

(dis)advantages?

Both can travel 
reasonably

long distances
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Microwave 𝑓 ≈ 10 𝐺𝐻𝑧

15

Q: Can you think of 

(dis)advantages?

Needs line of sight
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Satellite Networks
Radio waves allow for high bit rates and have (relatively) low 
attenuation.

But sending signals to artificial satellites and back has significant 
latency!

16

Q: What are its properties?

Lower latency requires lower orbits requires

more satellites
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Physical Layer Lecture

1. Physical Properties of Different Mediums

2. Communication Speed Limits

3. Digital Modulation

4. Multiplexing

17
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Fundamental
speed limits

18



Copyright Jesse 

Donkervliet 2024

Properties of Waves

19

𝑦 𝑡 = 𝐴 ⋅ sin 2𝜋𝑓𝑡 + 𝜑

Q: What are properties of waves?

Properties:

1.Amplitude (𝐴)
2.Frequency (𝑓)
3.Phase   (𝜑)

Q: Which properties can we modulate simultaneously?

Frequency and 

phase are not 

independent
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Nyquist’s theorem

Computing the maximum data rate for a 
noiseless channel

𝑅 = 2𝐵 × log2 𝑉

𝑅 = maximum data rate

𝐵 = bandwidth

𝑉 = number of discrete signal levels

20

Measured in bits/s

Measured in Hz
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Nyquist’s theorem
An intuition

101010101010101

21

𝑅 = 2𝐵 × log2 𝑉𝑅 = 2𝐵 × log2 𝑉

11

00

01

10

For a binary signal, V=2
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Nyquist’s Theorem Example

Signal that uses 4 signal levels over a wired channel with 500kHz 
bandwidth

𝑅 = 2𝐵 × log2 𝑉
𝐵 = 500,000 𝑉 = 4
𝑅 = 2 × 500,000 × log2 4
𝑅 = 2,000,000
𝑅 = 2Mbps

22

Q: Can we exceed the 

maximum Nyquist data rate? 

Under what assumptions 

does this model hold?
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Shannon’s theorem

In practice, noise reduces the maximum data rate. 

𝑅 = 𝐵 × log2 1 +
𝑆

𝑁

The signal to noise ratio ( Τ𝑆 𝑁 or SNR) is expressed in decibel. 
SNR of 40 dB means Τ𝑆 𝑁 = 104

24

Q: Why use decibels?
I.e., Signal power is 10,000 

times stronger than Noise power

Q: Should we reduce noise or 

increase bandwidth?

Shannon’s Theorem + signal 
attenuation → limited cable length
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Shannon’s Theorem Example

Consider the signal and channel from before (4 signal levels, 
500kHz bandwidth). What happens if the SNR is 40dB?

𝑅 = 𝐵 log2 1 +
𝑆

𝑁
𝐵 = 500,000
𝑆

𝑁
= 40dB = 10

40
10 = 10,000

𝑅 = 500,000 log2 1 + 10,000
𝑅 ≈ 500,000 × 13 = 6,500,000bps = 6.5Mbps

25

Signal level not used!

log2 10001 ≈ 13.29 ≈ 13
210 = 1024, 23 = 8, 24 = 16

213 = 8192, 214 = 16348
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Physical Layer Lecture

1. Physical Properties of Different Mediums

2. Communication Speed Limits

3. Digital Modulation

4. Multiplexing

26
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Digital Modulation
Translating Between Bits and Signals

27

Key responsibility of the physical layer
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Digital Modulation

28

Q: How to communicate bit strings 

(e.g., 101011101) between computer 

systems?

Bits and Bytes

11010101

Waves and Signals Bits and Bytes

11010101

Modulation Demodulation

Put information onto a carrier signal Extract information from a carrier signal
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Digital Modulation:
Baseband Transmission

29
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Representing Bits Using Signals

30

Data

01100010

Q: Why send an approximation?

Q: How close must the approximation be?

An approximation 

of the original 

signal
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Baseband transmission

Idea: send signals that represent one or more bits.

Bit stream:      1   1   0   0   1

Non-Return to Zero:

Manchester encoding:

  

  clock:

31

Q: Can you think of a problem with this approach?

+V

-V

+V

-V

XOR
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Baseband transmission

Non-Return to Zero has clock recovery problems.

Manchester encoding halves the available bandwidth.

32

Q: Can you think of a better solution?

Bit stream:      1   1   0   0   1

NRZ Invert:

+V

-V
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4B/5B encoding

Use a translation table to map sequences
of 4 data bits to 5-bit codewords.

33

0000

1111

1010

11110

11101

10110

Data Codeword

Q: What are the (dis)advantages of this approach?

Q: Could we use a different mapping?
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Scrambling

XOR the data with a random bit sequence.

E.g., use sequence 1110101.

34

0001010

Codeword

1110101

11111111

Data

Sequence
XOR

Q: What are the (dis)advantages of this approach?
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Digital modulation:
Passband transmission

35
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Passband transmission

Low-frequency signals not always practical.

Not practical for wireless channels:

1. Antenna size

2. Interference
• Noise

• Other channel users!

36

Q: Why not?



Copyright Jesse 

Donkervliet 2024

Passband transmission

Solution: move from [0, B] Hz to [S, S+B] Hz.

37

The passband

Frequency can be 0 Hz Minimum frequency of 𝑆 Hz
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Baseband, Passband, and Bandwidth*

*Analog bandwidth (Hz)

38

frequency0Hz

Frequency band Frequency band

Starts at 0Hz → 
Baseband

Starts above 0Hz → 
Passband

Bandwidth

Q: How to differentiate 

the bits in passband?
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Digital Modulation

39

0     1     0
Binary signal

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

time → …
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Sending multiple bits per symbol

40

Binary Phase Shift Keying 

(BPSK)

0180

90

270

BPSK

2 symbols

1 bit/symbol

time → 
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time → 

Sending multiple bits per symbol

41

Quadrature Phase Shift Keying 

(QPSK)

QPSK

4 symbols

2 bit/symbol

0180

90

270

01

11 10

00 01 11 10

00 Gray encoding

Every adjacent pair 

of symbols only 

differs by one bit
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Physical Layer Lecture

1. Physical Properties of Different Mediums

2. Communication Speed Limits

3. Digital Modulation

4. Multiplexing

42
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Multiplexing
Key concept: resource sharing

43
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Multiplexing

Sending multiple signals via a single medium

44

Signals Medium MediumSignals

Medium

Mux/Demux

Q: Why (not) do this?

Recursive 
multiplexing
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Simplex and Duplex Channels

Simplex channels only allow data to pass through in one 
direction.

Duplex channels allow data to pass through in both directions at 
the same time. 

Half-duplex channels allow data in both directions, but not at 
the same time.

45

Q: Can you think of a simple way to build a duplex channel?
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Frequency Division Multiplexing

All stations send
at the same time,
at different frequencies.

46

Frequency

A

B

C

A B C

Frequency

Frequency

Frequency

Signals at the same 
frequency interfere 

with each other

4G

ADSL

…
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Time Division Multiplexing

Stations take turns on a fixed schedule. Widely used in 
telephone/cellular systems

47

data

data

data

Guard time protects 
against small 

variations in timing

time →

Q: Why these gaps?

Q: How does each station know when to send?
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Code Division Multiplexing

Stations send at the same time, at the same 
frequency

Receiver figures out who sent what

• If a station sends 1, the receiver computes 1

• If a station sends nothing, receiver computes 0

• If a station sends 0, the receiver computes -1

48

Also called “Code Division Multiple Access” (CDMA)
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

49

Also called “Code Division Multiple Access” (CDMA)

1 0

1 -1 -1  1 -1  1  1 -1A

A’s chip sequence Inverted chip sequence
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

50

Also called “Code Division Multiple Access” (CDMA)

1 -1 -1  1

-1 -1  1  1

1 -1  1 -1

-1  1  1 -1A

B

C

1 0

1  1 -1 -1

-1  1 -1  1
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

51

Also called “Code Division Multiple Access” (CDMA)

1 -1 -1  1

-1 -1  1  1

1 -1  1 -1

-1  1  1 -1A

B

C

1 0

1  1 -1 -1

-1  1 -1  1

1

-

0
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

52

Also called “Code Division Multiple Access” (CDMA)

1 -1 -1  1A

B

C -1  1 -1  1

1

-

0

+ 0  0 -2  2
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Code Division Multiplexing

Stations send at the same time, at the same 
frequency.

Receiver figures out who sent what.

• If a station sends 1, the receiver computes 1.

• If a station sends nothing, receiver computes 0.

• If a station sends 0, the receiver computes -1.

53

Also called “Code Division Multiple Access” (CDMA)
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

54

Also called “Code Division Multiple Access” (CDMA)

A

B

C

1

-

0

0  0 -2  2
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

55

Also called “Code Division Multiple Access” (CDMA)

A

B

C

1

-

0

0  0 -2  2

1 -1 -1  1

-1 -1  1  1

1 -1  1 -1

1

𝐴 ⋅ 𝑆

𝑆 =

0 − 0 + 2 + 2

4
=

4

4
= 1

If a station sends 1,

the receiver computes 

1.
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Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

56

Also called “Code Division Multiple Access” (CDMA)

A

B

C

1

-

0

0  0 -2  2

1 -1 -1  1

-1 -1  1  1

1 -1  1 -1

1

𝐵 ⋅ 𝑆

𝑆 =

0 − 0 − 2 + 2

4
=

0

4
= 0

If a station sends nothing,

the receiver computes 0.



Copyright Jesse 

Donkervliet 2024

Code Division Multiplexing

Every bit is split into chips. Each station is 
assigned a chip sequence.

57

Also called “Code Division Multiple Access” (CDMA)

A

B

C

1

-

0

0  0 -2  2

1 -1 -1  1

-1 -1  1  1

1 -1  1 -1

1

𝐶 ⋅ 𝑆

𝑆 =

0 − 0 − 2 − 2

4
=

−4

4
= −1

If a station sends 0,

the receiver computes -1.
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Code Division Multiplexing

Requirements:

1. Inner product of sequence with itself is 1
(e.g., 𝐴 ⋅ 𝐴 = 1)

2. All chip sequences are pairwise orthogonal
(e.g., 𝐴 ⋅ 𝐵 = 0)

58

Also called “Code Division Multiple Access” (CDMA)
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Q: Differences Between FDM, TDM, CDM? Do they matter?
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How Does Static Multiplexing Affect 
Apps?

60

A, video B, video C, www D, email

A

B

C

D

Inefficient resource usage
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How Does Static Multiplexing Affect 
Apps?

61

A B C D

A

B

C

D

…

Video streaming 

no longer works
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Real-World Examples

62
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Internet over telephone system

63

Bandwidth bottleneck at twisted pair

Fiber

Twisted PairQ: Why not twisted pair?

Q: What 

happens here?Backbone Network

End Office
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Local loop
Digital Subscriber Lines

DSL broadband sends data over the local loop to 
the local office using frequencies that are not used 
for POTS.

64

Uses (Orthogonal) Frequency Division Multiplexing

Networks no 

longer used 

primarily for voice

POTS = Plain Old Telephone System
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Fiber to the Home

65

Fiber

Fiber

TDM

Backbone Network

Optical

splitter/combiner

Uses Time Division Multiplexing for upstream data.

Modems have to request upstream slots.

Q: Can you think of

a (dis)advantage of 

this approach?

Requesting slots 

improves efficiency. 

Similar to STDM

Shared channel. Home 

modems need to time 

carefully when to send
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SONET
(Synchronous Optical NETwork)

Worldwide standard for carrying digital signals on 
optical trunks.

Uses Time Division Multiplexing
An STS-1 line sends 810-byte frames every 125µs. 
(52Mbps)
Time kept by a master clock. (A synchronous system.)

Uses Frequency Division Multiplexing
Multiple STS-1 lines are combined on a single fiber to 
use the available bandwidth.

66
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SONET

67

Header (overhead) interleaved with data (SPE)

Every square is 
one byte

Bytes are sent 

left-to-right,

top-to-bottom
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Physical Layer Summary

1. Different transmission mediums have 
different properties

2. Digital Modulation to translate bits to 
and from analog signals

3. Multiplexing to send multiple signals 
through one medium

68
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