Computer Networks
A_400487
Lecture 2
Chapter 2: The Physical LayerLayered architecture makes
the system easier to underston
Real-world networks do not
content this architectureImpact on the system
The system easier to underston
Real-world networks do not
content this architectureImpact on the system
The system easier to underston
Real-world networks do not
content this architectureImpact on the system
The system easier to underston
The system easier to underston easier to underston
The system easier to underston easi

Layered architecture

From a service to a signal, and back again

Different channel, different properties

Bit rate

Non-functional propertie can enable new

.... ሯ

Number of bits per second. Depends on protocol, channel bandwidth, and other factors. Delay How long does it take a bit to get to the end? Storage Capacity How many bits can the channel hold at once? Capacity = Bit rate × Delay

Error Rate (Noise, Attenuation) What is the probability of a bit flipping?

Physical Layer Lecture

- 1. Physical Properties of Different Mediums
- 2. Communication Speed Limits
- 3. Digital Modulation
- 4. Multiplexing

Optical fiber

Commonly used for:

- 1. Long-distance network backbones.
- 2. Wired Metropolitan Area Networks (MANs).
- 3. High-performance LANs.

Fiber is becoming increasingly popular in multiple application domains

Bandwidth in the order of 100 GHz.

Wireless transmission

Different frequencies means different properties.

Example?

(dis)advantage compared to wired transmission?

- 1. Radiowave
- AM radio FM radio
- 2. Microwave
- Satellite dishes 3. Infrared
- Remote controls
- 4. Visible light
- 5. ...

Wireless transmission

Different frequencies means different properties.

- 1. Radiowave AM radio FM radio
- 2. Microwave Satellite dishes
- 3. Infrared
- Remote controls 4. Visible light
- 5. ...

Radio

AM radio ($f \approx 1 MHz$) FM radio ($f \approx 100 MHz$)

Physical Layer Lecture

- 1. Physical Properties of Different Mediums
- 2. Communication Speed Limits
- 3. Digital Modulation
- 4. Multiplexing

Nyquist's theorem

Computing the *maximum data rate* for a noiseless channel

 $R = 2B \times \log_2(V)$

Signal level not used Consider the signal and channel from before (4 signal levels, SookHz bandwidth). What happens if the SNR is 40dB? $R = B \log_2 \left(1 + \frac{S}{N}\right)$ B = 500,000 $\frac{S}{N} = 40dB = 10^{\frac{10}{10}} = 10,000$ $R = 500,000 \log_2(1 + 10,000)$ $R = 500,000 \log_2(1 +$

Representing Bits Using Signals

Baseband transmission

Q: Can you think of a	proble	em wi	th this	appro	bach?	
Idea: send signals that repre-	sent o	ne or i	more	bits.		
Bit stream:	1	1	0	0	1	
Non-Return to Zero:			1		-v	
Manchester encoding:	~_	ј хо	R	ப	-v	
clock:		டு	ப	ப	பா	
ght Jesse rvlet 2024						

Baseband transmission

Non-Return to Zero has **clock recovery** problems. Manchester encoding halves the available *bandwidth.*

	Q: Can yo	ou think of a	a bette	er solu	ution?		
Bit stream:		1	1	0	0	1	
NRZ Invert:							+V -V
right Jesse ervliet 2024							

Digital modulation: Passband transmission

Passband transmission

Low-frequency signals not always practical.

Not practical for wireless channels:

- 1. Antenna size
- 2. Interference
 - Noise
 Other channel users!

opyright Jesse onkervliet 2024

Sending multiple bits per symbol

Physical Layer Lecture

- 1. Physical Properties of Different Mediums
- 2. Communication Speed Limits
- 3. Digital Modulation
- 4. Multiplexing

Copyright Jessi Donkervliet 202

Multiplexing

Key concept: resource sharing

Simplex and Duplex Channels

Simplex channels only allow data to pass through in one direction.

Duplex channels allow data to pass through in both directions at the same time.

Q: Can you think of a simple way to build a duplex channel? Half-duplex channels allow data in both directions, but not at the same time.

Time Division Multiplexing

Code Division Multiplexing

Stations send at the same time, at the same frequency

Receiver figures out who sent what

- ${\boldsymbol{\cdot}}$ If a station sends 1, the receiver computes 1
- If a station sends ${\bf nothing},$ receiver computes ${\bf 0}$
- If a station sends ${\bf 0},$ the receiver computes -1

opyright Jesse onkervliet 2024

0 0 -2 2

4

Code Division Multiplexing Code Division Multiplexing Multiple A n Multiple A Every bit is split into chips. Each station is Every bit is split into chips. Each station is assigned a *chip sequence* S = 0 0 - 2 2assigned a *chip* sequence. S = 0 0 - 2 20 - 0 + 2 + 21 1 -1 -1 1 1 1 -1 -1 1 Α А $B \cdot S$ 4 $A \cdot S$ - -1 -1 1 1 0 - 0 - 2 + 2в в -1 -1 1 1 If a station sends 1, the receiver computes If a station sends nothing, 0 1 -1 1 -1 С С 0 1 -1 1 -1 1. the receiver computes 0.

How Does Static Multiplexing Affect

How Does Static Multiplexing Affect Apps: WIFIK Wie Straming WIE Str

Real-World Examples

Fiber to the Home

Uses Time Division Multiplexing for upstream data. Modems have to *request* upstream slots.

SONET (Synchronous Optical NETwork)

Worldwide standard for carrying digital signals on optical trunks.

Uses Time Division Multiplexing An STS-1 line sends 810-byte frames every 125µs.

(52Mbps) Time kept by a master clock. (A synchronous system.)

Uses Frequency Division Multiplexing Multiple STS-1 lines are combined on a single fiber to

Multiple STS-1 lines are combined on a single fiber to use the available bandwidth.

Physical Layer Summary

- 1. Different transmission mediums have different properties
- **2. Digital Modulation** to translate bits to and from analog signals
- **3. Multiplexing** to send multiple signals through one medium