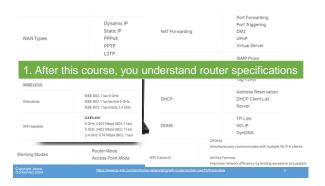
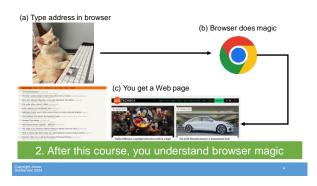
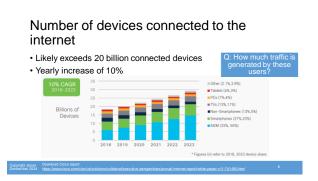
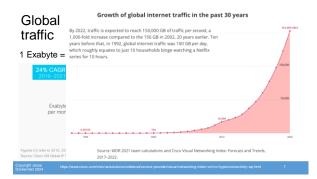

Computer Networks X_400487

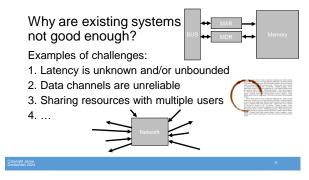

Lecture 1: Introduction to Computer Networks

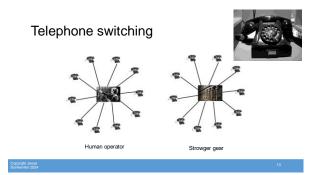

Welcome! Lecture starts at 15:30

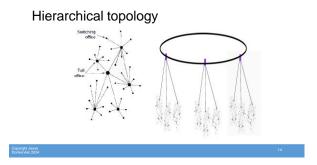




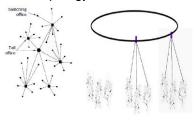








Early telephone system



12

Hierarchical topology

resilient systems

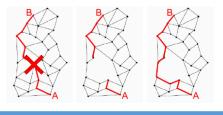
- US military asked RAND Corporation to design a better system (in 1960).
- Paul Baran (RAND employee) designed a fault tolerant network.
- Military asked AT&T to build it.

Military is a big fan of

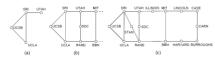
- They refused...
- Baran's design was forgotten...
- But design improved upon by NPL, built by ARPA.

Network designed by the National Physical Laboratory

- NPL paper cited Baran but went further 🗈
- · Divided files into chunks called packets
- · Store-and-forward packet switching network



The ARPANET A mesh-structured network


The ARPANET Fault tolerance

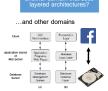
The ARPANET Growth over time

Growth of the ARPANET.

- (a) December 1969.
- (b) July 1970.
- (c) March 1971.

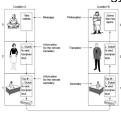
Copyright Jesse

The ARPANET Network state in 1973


right Jussie 21 Privint 2024 21

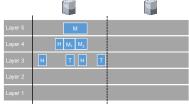
Layered architecture

Can be found in...



Q: Why use a a layered architecture?

Copyright Jesse 23 Derkerviet 2024


Layered architecture in computer networks: an analogy

Copyright Jesse Donkervliet 2024

4

Layered architecture in computer networks: an overview

Copyright Jesse 25
Derkenfelt 2024

Illusion of direct communication

How scale affects networks design

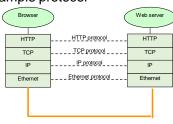
Personal Area Network (PAN)

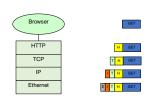
- Example: Bluetooth Local Area Network (LAN)
- Examples: WiFi (802.11)
 Metropolitan Area Network (MAN)
 Wide Area Network (WAN)

The Internet

	Interprocessor distance	Processors located in same	Example
	1 m	Square meter	Personal area network
	10 m	Room]]
	100 m	Building	Local area network
	1 km	Campus	
	10 km	City	Metropolitan area network
١	100 km	Country	1)
	1000 km	Continent	Wide area network
	10,000 km	Planet	The Internet

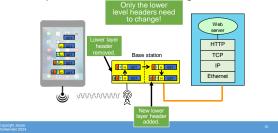
How the medium affects network design





Copyright Je Donkervliet

An example protocol



Encapsulation in a protocol stack

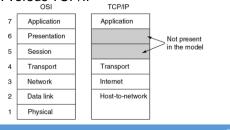
ight Jesse 30 nviet 2024

The power of a layered design

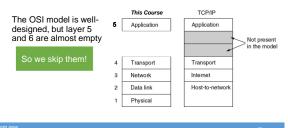
Multiple reference models for computer networks

Each models has both advantages and disadvantages.

OSI model

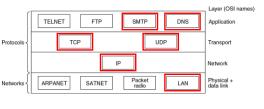

- 1. Design by committee.
- 2. Strictly separated layers.

TCP/IP model

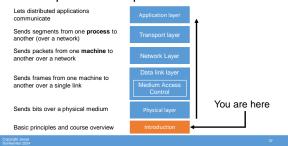

- 1. Widely used in practice.
- 2. Low generality.
- 3. Poor separation of concerns and interface design.

pyright Jesse

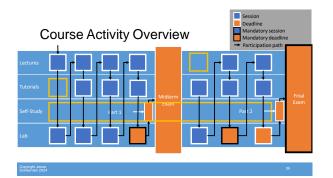
OSI versus TCP/IP

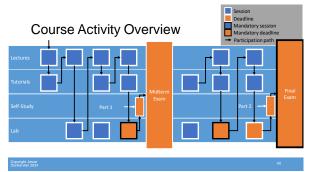

The model used in this course

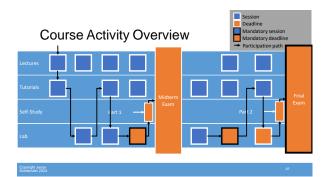
The OSI reference model



Protocols and Networks from the TCP/IP model




Copyright Jesse Conkerviet 2024


Roadmap of the Computer Networks Course

How Am I Graded?

$$grade = \frac{exam + lab + in class + self study}{1000}$$

* You cannot pass the course without passing the mandatory lab assignment.

Copyright Jesse 42

Lectures

Collect points by:

- Giving good answers to questions
- Answering correctly questions from the in-lecture quizzes

First quiz is today!

Copyright Jess Donkervilet 200

Tutorials: Plenary Practice Sessions

Please use:

- Pen
- Paper

Do not use:

- Calculators
- Al Chatbots
- · Other external tools

Copyright Jesse

44

Self-Study: Completing Book Exercises

Complete exercises from the book in a group.

Earn more points by completing more chapters.

opyright Jesse onkervliet 202

Self-Study Checkpoints

Graded at two "checkpoints."

Part 1:

• If you successfully completed 2 chapters, you receive +500 points.

Part 2:

- If you complete 2 more chapters, you receive +500 points.
- If you complete 4 more chapters, you receive +1000 points.

Copyright Jes Donkerviet 2

How to Participate in the Self-Study?

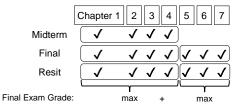
Join a Self-Study group on Canvas. **Deadline: 12 April.**

Submit your Self-Study Plan. *Deadline: 12 April.*

We recommend starting as soon as possible, and not wait for this deadline

opyright Jesse onkervliet 202

Exams


- •Midterm (April 22) and Final (May 31)
- Computer-based (TestVision)
- Multiple-choice questions
- Every correctly answered question earns you 300 points

Getting 60% on the exam is not sufficient to pass the course!

Register for the exam on VUne

Copyright Jesse Donkervliet 2024

Exam Content and Grades

Lab Logistics

Lab

Labs on Wednesdays and Fridays.

Use the Canvas groups page to enroll for the one of the sessions.

Lab

Lab Guide specifies several optional assignments

Assignment 1 and 2 are mandatory For assignment descriptions,

see the Lab Guide on Canvas.

Lab

Collect points by Completing Lab assignments.

- Small reward for the mandatory assignments
- · Larger rewards for the optional assignments

How to Participate in the Lab?

1. On Canvas, create a CodeGrade group for each assignment

- Complete the assignment(s)
 Submit the assignment(s) on Canvas
 Enqueue **during** the lab to discuss your solution with a TA

Show and explain your solution for the two mandatory assignments during a lab session in **week 4** and **week 7** at the latest, respectively

Show and explain your solution for other assignments during a lab session during or in week 8 at the latest

Assignments uploaded to Canvas are not accepted without without TA approval obtained during the lab

Lab Logistics

Important:

- 1. The assignments may take more than 4 hours to complete.
- 2. Getting your assignment approved takes time.

Complete the assignments before the day of their deadline!

How to Hand in Lab Assignments

Submission System:

- Complete assignment.
- Upload code/report to Canvas.
- Enter Queue →
- Wait for, and discuss with,
 - Assignment approved. -or-X Go to step 1.

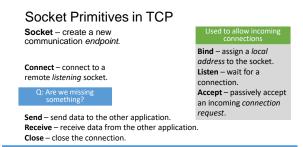
How to Hand in Lab Assignments

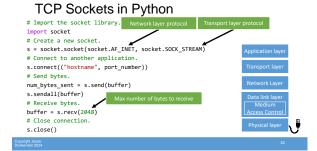
We use a queue, which means First-Come, First-Serve (FCFS) Important:

- 1. Queue closes **before** the end of the lab session.
- Closed queue not a valid excuse for not completing assignments.

Lab Assignments

Getting Started




Network layer services

Sends segments from one process to another (over a network) Sends packets from one machine to another over a network Data link layer Sends frames from one machine to another over a single link Sends bits over a physical medium

Network layer services

Sends segments from one process to another (over a network)

Q: What does this mean for your application? TCP provides a reliable byte-stream 1. The program waits until s.recv(2048) data is available H E L L O - F R O M J E S

- 2. It may return an
- arbitrary number of bytes

s.recv(2048) S E \n W H O \n s.recv(2048) S E N D E C H O B O T H s.recv(2048) E L L O W O R L D \n

Threading Python

Import threading library. import threading # A regular call to print. print("Hello", "World") # A threaded call to print. t = threading.Thread(target=print, args=("Hello", "World")) # Run target in new thread. t.start() # Wait 100ms for thread to finish. t.join(0.1)

Course Material

Course Material:

- 1. Course Slides
- 2. Book: Computer Networks, **6th** edition, Andrew S. Tanenbaum, Nick Feamster, and David J. Wetherall

Other Computer Networks Books

Peterson and Davie Available for free at https://book.systemsapproach.org

Kurose and Ross

11

How to Study (for this Course)

consuming (Do exercises, write programs, quiz yourself, etc.) Learn how to study effectively

Example books: Make It Stick, How to Become a Straight-A Student

How to Contact the Team?

Talk to us at the lab/lecture/tutorial

• Expected response time: minutes

Canvas discussion board

• Expected response time: hours Mail us at compnet2024.beta@vu.nl

· Expected response time: days

Next steps

- 1. Participate in the Entry Quiz! Earn your first points!
- 2. Read the course syllabus (10 pages)
- 3. Obtain a copy of the book!
- 4. Find a lab partner.

The lab is done in teams of 2 students.

- 1. Register your group on Canvas
- 2. Can't find a partner? Look for one on the Canvas discussion board
- 3. Contact the Computer Networks team
- 5. Start looking for a self-study team

Next stop: Physical Layer

Next Monday -