
Playing together with 4 Billion People:
Creating Large-Scale Modifiable Virtual
Worlds for Digital Societies

j.j.r.donkervliet@vu.nl

https://www.jdonkervliet.com

Jesse Donkervliet

My publications

mailto:j.j.r.donkervliet@vu.nl
https://www.jdonkervliet.com/

Our Society Benefits from Games

Slide has contributions from Jerom van der Sar and Alexandru Iosup

2

Take Minecraft

• Over 125 million people

play Minecraft every month

• 40,000+ mods

• 100+ games “like M’craft.”

Generally Beneficial Features

• Entertainment

• Education

• Activism

• Social Interaction

Games are Massively Popular;
MVEs are the Most Popular Games
• 3.3B players in 2023, 3.8B forecasted
for 2027

• $188B annual gaming market revenue

Source: Newzoo https://newzoo.com/resources/rankings/top-20-pc-games

3

Top Monthly Active Users (MAU)

https://newzoo.com/resources/rankings/top-20-pc-games

4

Me as a Gamer:
Exploring Worlds and Playing Together

5

Source: Razorien/CCP Games

PHENOMENON: PERFORMANCE
DROPS IN VIRTUAL WORLDS

7

Source: http://bit.ly/EveOnline21Crash

http://bit.ly/EveOnline21Crash

Why Are MVEs Difficult to Scale?
client

translate

render

client

player

simulation

world

simulation

NPC

simulation

world

generation

persistent

storage

game

config.

n
e
tw

o
rk

in
g

message

queue

simulator

key

presses

player

actions

state

updates

frames

player state

updates

world state

updates

NPC state

updates

1
2

3

4

5a

5b

5c

6

7

MVE server

. . .

8

Why Are MVEs Difficult to Scale?

9

Why Are MVEs Difficult to Scale?

Images: Ready Player One, Zoom, Overleaf, Google Docs

10

In this talk
1. Benchmarking Modifiable Virtual Worlds (Yardstick)

2. Dynamic Consistency Management (Dyconits)

3. Serverless offloading for MVEs (Servo)

4. Performance Analysis of Virtual Reality Hardware (Dizi)

11

Meterstick: Benchmarking
Performance Variability in Cloud and

Self-hosted Minecraft-like Games

Ir. Jesse Donkervliet

Prof. dr. ir. Alexandru Iosup

Jerrit Eickhoff

jerrit.eickhoff@gmail.com

M.Sc. @ TU Delft, AtLarge Research

https://atlarge-research.com/opencraft/

ICPE 2023
Coimbra, Portugal

Source and data available!
Meterstick: https://github.com/atlarge-research/Meterstick
Data: https://zenodo.org/record/7657838

https://atlarge-research.com/opencraft/
https://github.com/atlarge-research/Meterstick
https://zenodo.org/record/7657838

13

A single player crashing the game!? How can this be?

15

Server-Client Architecture

Minecraft-like Game Workload Model

High Volume

Low Volume

Frequent
Updates

Infrequent
Updates

Terrain Players

Entities Assumed Game State
Volume and Update

Frequency
Meta-State1

Backups

1: State concerning functional operation of the game server rather than game
features, such as administrative logs or user authentication tokens.

Player Workload

16

Eve Online 13,700 player battle
causes performance disruptions

Sources: Polygon

Player Avatars Sparse

Players Avatars Dense

https://www.polygon.com/2021/1/5/22214982/eve-online-world-record-massacre-m2-xfe-ghost-titans

Environment-Based Workloads

19

• “Programmed” to automatically perform some in-
game task

Sources: Reddit, Reddit

Operational 16-bit, 1Hz computerLogic GatesAutomatic resource processing

• Player-constructed structures consisting of dynamic
elements

Simulated Constructs

https://www.reddit.com/r/redstone/comments/gl2l9n/logic_gates_in_minecraft/
https://www.reddit.com/r/Minecraft/comments/ccv2xn/i_built_a_redstone_computer_with_gpu/

Meterstick Benchmark: Design

20

• Collects relevant application and system metrics

• Deploys Minecraft-like Games experiments on
commercial clouds

• Uses player-emulation for player contribution to
workload

• Supports environment-based workloads

Steps:

1. Deployment
2. Experiments
3. Data retrieval

Meterstick Benchmark: Design

21

• Currently supports Minecraft-like games utilizing the
Minecraft protocol

Minecraft server implementations

Popular1 mod packs
Same server technology for different games!

1: Ranges from 150 thousand to 2 million downloads, with some individual
mods reaching 223 million downloads. See TechicPack and CurseForge

• Workloads, Player Emulation, and Metric
Externalization tied, directly or indirectly, to
application protocol

https://www.technicpack.net/modpacks/sort-by/popular?page=1
https://www.curseforge.com/minecraft/mc-mods

Instability Ratio (ISR)

22

𝑏 = minimum delay between ticks
𝑡𝑖 = duration of 𝑖𝑡ℎ tick
𝑁𝑎 = actual number of ticks
𝑁𝑒 = expected number of ticks

𝑰𝑺𝑹 =
σ

𝑖=1
𝑁𝑎 | max 𝑏, 𝑡𝑖 − max(𝑏, 𝑡𝑖−1)|

𝑁𝑒 × 2𝑏

• Stability > lowest latency for online gaming [1-3]

Sources:
1: How sensitive are online gamers to network quality? Chen et al. Commun. ACM 49, 11 (2006)
2: Player Perception of Delays and Jitter in Character Responsiveness, Normoyle et al. SAP2014
3: Empirical study of subjective quality for Massive Multiplayer Games, Ries & Rupp, IEEE (2008)

0

20

40

60

80

0 100 200 300

Ti
ck

 d
u

ra
ti

o
n

 (
m

s)

Time (ms)

Tick duration over time

𝑏

0
200
400
600
800

1000

0 10 20 30 40Ti
ck

 d
u

ra
ti

o
n

 (
m

s)

Time (S)

Trace resulting in ISR = 0.0075

0 10 20 30 40
Time (S)

Trace resulting in ISR = 0.3675

Same tick durations, different order

𝑁𝑒 × 𝑏

𝑡𝑖−1

𝑡𝑖

• Normalized measure of instability given a trace of
tick durations, based on cycle-to-cycle jitter.

• Order dependent

Instability Ratio (ISR)

23

𝑏 = minimum delay between ticks
𝑡𝑖 = duration of 𝑖𝑡ℎ tick
𝑁𝑎 = actual number of ticks
𝑁𝑒 = expected number of ticks

𝑰𝑺𝑹 =
σ

𝑖=1
𝑁𝑎 | max 𝑏, 𝑡𝑖 − max(𝑏, 𝑡𝑖−1)|

𝑁𝑒 × 2𝑏

• 𝑰𝑺𝑹 = 0 if all ticks below 𝑏!

0

20

40

60

80

0 100 200 300

Ti
ck

 d
u

ra
ti

o
n

 (
m

s)

Time (ms)

Tick duration over time

𝑏

𝑁𝑒 × 𝑏

𝑡𝑖−1

𝑡𝑖

• 𝑰𝑺𝑹 = 0 if all ticks are the same!

• Not meant to be used as standalone performance
metric!

Overloaded!

Tick duration = 𝑏

0

200

400

600

800

1000

1200

1000 3000 5000

Ti
ck

 d
u

ra
ti

o
n

 (
m

s)

Time (ms)

Trace resulting in ISR = 0

𝑏

Minecraft Forge PaperMC

Experiment - Setup

24

Minecraft-like Games

Environments

DAS5
Cluster

Amazon Web
Services

Azure

Full list of cloud service Minecraft-like game hosting recommendations, and community
simulated constructs, available in technical report: https://arxiv.org/abs/2112.06963

2vCPU: AWS: T3.Large, Azure: Standard_D2_v3

*Only one player, stationary

Workload Name Description

Control* Freshly generated world

TNT* Fast entity actions, terrain updates

Farm* Many simulated constructs

Lag* Simulated construct stress test

Players 25 moving players in small area

Workloads:

Service vCPU[#] CPU Speed [GHz]

Server.pro 2 2.4

Skynode 2 3.6

Hostinger 3 NP

Ferox Hosting Not reported Not reported

MelonCube Not reported 3.4

Azure 2 Variable

AWS 1 Variable

Hardware
Guidelines:

Default Mods Performance

https://arxiv.org/abs/2112.06963

Environment-based workloads cause significant
performance instability

25

Player action response time on AWS

Sources for Noticeable, Unplayable thresholds:
1: Analysis of factors affecting players' performance and perception in multiplayer games, Dick et al. Netgames 2005
2: Are 100 ms Fast Enough? Characterizing Latency Perception Thresholds in Mouse-Based Interaction, Forch et al. EPCE 2017

Whiskers to 5th, 95th percentiles

Lag workload
missing, crashed!

Cloud environments cause significant performance
variability

26

Variation of Instability Ratio and Tick time over 50 iterations of Players workload
Whiskers to 1.5 x IQR

Dyconits: Scaling Minecraft-like
Services through Dynamically

Managed Inconsistency

jesse.donkervliet@vu.nl

@jdonkervliet

https://atlarge-research.com/opencraft/

Jesse Donkervliet, Jim Cuijpers, Alexandru Iosup

mailto:j.j.r.donkervliet@vu.nl
https://atlarge-research.com/opencraft/

Scalability Challenge
Minecraft supports 126 million active monthly players, but
only by using isolated instances that do not scale
beyond a few hundred players.1

Sources:
1: Yardstick: A benchmark for minecraft-like services, Jerom van der Sar et al. ICPE2019.

https://www.nme.com/news/music/minecraft-music-festival-block-by-blockwest-postponed-after-servers-crash-2653948
35

https://www.nme.com/news/music/minecraft-music-festival-block-by-blockwest-postponed-after-servers-crash-2653948

Interest Management
Intuition: only update state players are interested in

36

Frequent state updates

Infrequent state updates

Area of Interest

Player avatar

Other avatars

Limitations of Interest
Management

Existing approaches consider only staleness, or are not
dynamic
1. Staleness

(how old is this update?)
2. Numerical error

(how large is the impact of this update?)

Does the system require inconsistency to support the current
workload?

37

Inconsistency
In Online Games, state
is replicated across
multiple machines

Changing state takes
time to propagate to all
replicas

Imbattable: Justice et légumes frais
by Pascal Jousselin 38

Inconsistency in Online Games
Can lead to bad player experiences:

•Rubber banding

• “ h h ”

•Complex failures →

https://www.polygon.com/2021/1/5/22214982/eve-online-world-record-massacre-m2-
xfe-ghost-titans 39

“Both during and after the fight, players
experienced things that don’t happen under
normal circumstances,” CCP said in its blog
post. “Things like ships disappearing, ships
reappearing, ships not appearing in the right
systems — even after going through the jump
tunnel.”
--- from Polygon.com

Image: Razorien/CCP Games

https://www.polygon.com/2021/1/5/22214982/eve-online-world-record-massacre-m2-xfe-ghost-titans
https://www.polygon.com/2021/1/5/22214982/eve-online-world-record-massacre-m2-xfe-ghost-titans

Hiding Inconsistency
Games can hide inconsistencies in entity locations
using dead reckoning

Slide from Alexandru Iosup

40

Smed et al., A Review of Networking and Multiplayer
Computer Games. TR454, 2002.
http://staff.cs.utu.fi/~jounsmed/papers/TR454.pdf

t = time

p = position

v = velocity

Jump
Smooth

http://staff.cs.utu.fi/~jounsmed/papers/TR454.pdf

Virtual World without Dyconits

42

Server Client

Tick: 1

Virtual World without Dyconits

43

Server Client

Tick: 2

Server receives update

Virtual World without Dyconits

44

Server Client

Tick: 3

Update sent to client

Virtual World without Dyconits

45

Server Client

Tick: 4

Virtual World without Dyconits

46

Server Client

Tick: 5

Virtual World without Dyconits

47

Server Client

Tick: 5

Numerical Error Bound: 3

Virtual World with Dyconits

48

Server Client

Tick: 1

Virtual World with Dyconits

49

Server Client

Tick: 1

Error = 1

Numerical Error Bound: 3

Virtual World with Dyconits

50

Server Client

Tick: 2

Error = 2

Numerical Error Bound: 3

Virtual World with Dyconits

51

Server Client

Tick: 3

Error = 3

Numerical Error Bound: 3

Virtual World with Dyconits

52

Server Client

Tick: 4

Error = 0

Numerical Error Bound: 3

Design of Dyconit Middleware

partition
state

Dyconit
policy

staleness: 1000

numerical: 1

client:

game state

game simulators

world
simulation

player
simulation

NPC
simulation

0.8

Dyconit middleware

Modifiable Virtual Environment

networking

client:

staleness: 0

numerical: 0

 Dyconit "Player One"

3

2

Legend:

quantify
inconsistency

update
bounds

state updatecontrol flowdata flow

1

4 5 6

7

53

Dyconits:
Switch Policies Dynamically

X

X

A B C
D
E

F G H
I

J
K

L
M

O
P

Q
R

2345678

N

1

54

1000

1000

1000

10001000 1000 1000

000

000

000

X

X

I
J

K
L

A,B,C
D,E,F

M,N,O

P,Q,R

8 7 6 5 4 3 2
1

1000

0

X

X

BA C
D
E

F HG
I

J
K

L
M

N
O
P

Q
R

1,2,3,45,6,7,8

0

(a) Baseline policy (ZERO) (b) Area Of Interest policy (b) Interest Set policy (IS)

Experiment Setup
Real-world experiments on DAS-5 super computer
One node for MVE server, one node per 50 emulated clients

Jerom van der Sar, Jesse Donkervliet, Alexandru Iosup,
Yardstick: A Benchmark for Minecraft-like Services, ICPE 2019 56

= 1 physical node YS = 50 emulated players

Each node equipped with:

• dual 8-core 2.4 GHz CPU

• 64 GiB of memory

• InfiniBand network with

max. throughput of 48

Gbps

MVE
server

YSYS YS YS…

Dyconits

https://www.atlarge-research.com/jvdsar
https://www.atlarge-research.com/jdonkervliet
https://www.atlarge-research.com/aiosup
https://atlarge-research.com/pdfs/jvdsar-yardstick-benchmark-icpe-2019.pdf

Dyconits Bound Inconsistency

IS
ISN

ZERO

0 2 4 6 8

numerical error (×10
4
 in−game meters)

IS
ISN

ZERO

0 4 8 12 16

staleness (×10
5
 ms)

IS

ISN

ZERO

0 25 50 75 100

tick duration (ms)

57

≈0.55 to 1.5 meters error per player per avatar

Up to 7.5 seconds error per player

Dyconits Can Dynamically
Trade off Consistency for Performance

58

s
e

tu
p

Z
E

R
O

/I
S

Z
E

R
O

/I
S

Z
E

R
O

/I
S

Game overloaded

0

20

40

60

0 100 200 300

time (s)

ti
c
k
 d

u
ra

ti
o

n
 (

m
s
)

Dyconit policy

ZERO

ZERO/IS

Dyconits Improve Scalability

60

+11%

+44%IS

ISN

AOI

ZERO

0 100 200 300 400 500

number of players

D
y
c
o
n

it
 p

o
lic

y

Main Contributions
1. Design of Dyconits to

address scalability issues

2. Prototype of a Minecraft-
like game using Dyconits;
Game and Dyconits code
publicly available

3. Real-world experiments to
evaluate scalability

Opencraft: https://github.com/atlarge-research/opencraft
Dyconits: https://github.com/atlarge-research/opencraft-dyconits 61

partition
state

Dyconit
policy

staleness: 1000

numerical: 1

client:

game state

game simulators

world
simulation

player
simulation

NPC
simulation

0.8

Dyconit middleware

Modifiable Virtual Environment

networking

client:

staleness: 0

numerical: 0

 Dyconit "Player One"

3

2

Legend:

quantify
inconsistency

update
bounds

state updatecontrol flowdata flow

1

4 5 6

7

https://github.com/atlarge-research/opencraft
https://github.com/atlarge-research/opencraft-dyconits
https://github.com/atlarge-research/opencraft
https://github.com/atlarge-research/opencraft-dyconits

Servo: Increasing the Scalability of
Modifiable Virtual Environments Using
Serverless Computing

j.j.r.donkervliet@vu.nl

@jdonkervliet

https://www.jdonkervliet.com

Jesse Donkervliet, Javier Ron, Junyan Li, Tiberiu Iancu,

Cristina L. Abad, Alexandru Iosup

mailto:j.j.r.donkervliet@vu.nl
https://www.jdonkervliet.com/

What is Function as a Service (FaaS)?

73

App

increase resources

Physical Machine

Datacenter

Dep.

OS

VM

App

Dep.

OS

VM

OS

VM

Hypervisor

App

Dep.

new machine: 10.142.0.41

run Function

result

Infrastructure as a Service

Function as a Service

Properties:

• Functions can scale automatically

• Resource management done by cloud

operator

Limitations:

• Functions can only run for a limited time

• Functions cannot (easily) communicate

How to leverage serverless for online games?

Servo System Overview

74

Fine-Grained Comp. Offloading

75

Speculative Offloading

76

Trade-off between Latency and
Number of Invocations

77

Speculative Offloading

78

Invoke Early to Improve Efficiency

79

Servo Can Increase Virtual
World Scalability

80

Servo Can Increase Virtual
World Complexity

81

Servo can Scale Computationally
Intensive Virtual Environments

82

Can My WiFi Handle the Metaverse?
 P f Ev Of M ’
Flagship Virtual Reality Hardware

jesse.donkervliet@vu.nl

@jdonkervliet

https://www.jdonkervliet.com

Jesse Donkervliet,* Matthijs Jansen,*

Animesh Trivedi, Alexandru Iosup

* Both authors contributed equally to this work

mailto:j.j.r.donkervliet@vu.nl
https://www.jdonkervliet.com/

92

How to Deploy Metaverse
Infrastructure?

94

Experiment Setup

95

#1 Local

Experiment Setup

96

#2 Wired

Experiment Setup

97

#3 Wireless

Experiment Design Goals
Q1 What is the performance and resource usage of
VR applications on state-of-the-art VR hardware?

Q2 What are the advantages and disadvantages of
VR workload offloading compared to native
processing on VR headsets?

Q3 What are the network requirements to enable
wireless compute offloading for VR?

98

Resource Usage for
All Tested Setups

99

Good Performance for
All Tested Setups

100

Experiment Design Goals
Q1 What is the performance and resource usage of
VR applications on state-of-the-art VR hardware?

Q2 What are the advantages and disadvantages of
VR workload offloading compared to native
processing on VR headsets?

Q3 What are the network requirements to enable
wireless compute offloading for VR?

101

Older WiFi Types Support VR Streaming

102

Performance Deteriorates Quickly
When WiFi Signals Are Obstructed

103

104

Performance Deteriorates Quickly
When WiFi Signals Are Obstructed

Towards a Workload Trace Archive for
Metaverse Applications

jesse.donkervliet@vu.nl

@jdonkervliet

https://www.jdonkervliet.com

Radu pș , Damla Ural, Paul Daniëlse, Vlad-Andrei

Cursaru, Eames Trinh, Jesse Donkervliet, Alexandru Iosup

mailto:j.j.r.donkervliet@vu.nl
https://www.jdonkervliet.com/

How to Deploy Metaverse
Infrastructure?

Figure source: Can My WiFi Handle the Metaverse? A Performance Evaluation Of Meta’s Flagship Virtual Reality
Hardware, Jesse Donkervliet, Matthijs Jansen, Animesh Trivedi, Alexandru Iosup (2023), ICPE HotCloudPerf 2023 107

How to answer this question?

1. Performing real-world experiments with
VR devices is labor intensive, devices are
scarce and expensive

2. No publicly available datasets to explore

3. No simulators for the metaverse

108

How to Deploy Metaverse
Infrastructure?

This talk

1. We design a tracing system to simplify and
partially automate performing real-world
experiments with VR devices

2. Through real-world experiments, we create an
initial dataset for metaverse systems

3. Future work: use datasets to create a simulator
to explore metaverse system behavior for a
fraction of the cost (time, money)

109

Our Approach

User Input Tracing
with Record-n-Replay

110

Node

App

1.5 RnR tracer

1. Poll for input

2. Simulate and
render frame

3. Send frame to display

Input
trace

archive
≥72 Hz

(<14 ms per iteration)

Perf. monitorPoll performance counters (1 Hz)

Experiment Setup

111

Node

App

1.5 RnR tracer

1. Poll for input

2. Simulate and
render frame

3. Send frame to display

Input
trace

archive
≥72 Hz

(<14 ms per iteration)

Perf. monitorPoll performance counters (1 Hz)
Network

emulation

Record and Replay has low overhead

112

Record and Replay Input with High
Timing Accuracy

113

VR streaming
playable with
(relatively) low
bandwidth

114

Blending Reality Increases Power Use

115

Blending Reality Increases Power Use

116

Ongoing Work
1. Vision for large-scale MVEs for

digital societies

2. Workload trace archive and
simulator for virtual reality

3. Large-scale modifiable virtual
world as research platform

Jesse Donkervliet, Animesh Trivedi, Alexandru Iosup (2020) Towards Supporting Millions of
Users in Modifiable Virtual Environments by Redesigning Minecraft-Like Games as Serverless
Systems 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud'20) 117

The Opencraft Research Team

118

Alexandru Iosup

Project Lead
Jesse Donkervliet

Tech Lead

Jerom van der Sar

Honours student

Ernst van der Hoeven

External

Javier Ron

MSc student

(part of)

Vlad Cursaru

MSc student
Elena Stroiu

BSc student
Evelina N ţ

Honours student

Misha Rigot

MSc student

Ean-Dan Tjon-Joek-Tjien

MSc student

Jerrit Eickhoff

MSc student

Tiberiu Iancu

Honours student
Jim Cuijpers

MSc student

Chris Esterhuyse

MSc student

Victor Gavrilovici

BSc student

Damla Ural

MSc student
Eames Trinh

MSc student

Paul Daniëlse

MSc student

Radu pş

MSc student

Guivari Dzar Amri

BSc student

Gleb Mishchenko

Honours student

Further Reading

Dyconits: Scaling Minecraft-like Services through Dynamically Managed
Inconsistency, Jesse Donkervliet, Jim Cuijpers, Alexandru Iosup,
ICDCS 2021

Towards Supporting Millions of Users in Modifiable Virtual Environments
by Redesigning Minecraft-Like Games as Serverless Systems, Jesse
Donkervliet, Animesh Trivedi, Alexandru Iosup, HotCloud 2020

119

Can My WiFi Handle the Metaverse? A Performance Evaluation Of Meta’s Flagship

Virtual Reality Hardware, Jesse Donkervliet, Matthijs Jansen, Animesh Trivedi,

Alexandru Iosup, ICPE HotCloudPerf 2023

Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecraft-

like Games, Jerrit Eickhoff, Jesse Donkervliet, Alexandru Iosup, ICPE 2023

Servo: Increasing the Scalability of Modifiable Virtual Environments Using Serverless

Computing, Jesse Donkervliet, Javier Ron, Junyan Li, Tiberiu Iancu, Cristina L. Abad,

Alexandru Iosup, ICDCS 2023

https://atlarge-research.com/pdfs/icdcs21-dyconit-paper.pdf
https://atlarge-research.com/pdfs/icdcs21-dyconit-paper.pdf
https://atlarge-research.com/pdfs/hotcloud20-paper-donkervliet.pdf
https://atlarge-research.com/pdfs/hotcloud20-paper-donkervliet.pdf
https://atlarge-research.com/pdfs/2023-jansen-measuringthemetaverse.pdf
https://atlarge-research.com/pdfs/2023-jansen-measuringthemetaverse.pdf
https://atlarge-research.com/pdfs/2023-jeickhoff-Meterstick-ICPE2023.pdf
https://atlarge-research.com/pdfs/2023-jeickhoff-Meterstick-ICPE2023.pdf
https://atlarge-research.com/pdfs/2023-donkervliet-icdcs-servo.pdf
https://atlarge-research.com/pdfs/2023-donkervliet-icdcs-servo.pdf

	Intro
	Slide 1
	Slide 2: Our Society Benefits from Games
	Slide 3: Games are Massively Popular; MVEs are the Most Popular Games
	Slide 4
	Slide 5: Me as a Gamer: Exploring Worlds and Playing Together
	Slide 7: PHENOMENON: PERFORMANCE DROPS IN VIRTUAL WORLDS
	Slide 8: Why Are MVEs Difficult to Scale?
	Slide 9: Why Are MVEs Difficult to Scale?
	Slide 10: Why Are MVEs Difficult to Scale?
	Slide 11: In this talk

	Yardstick and Meterstick
	Slide 12: Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecraft-like Games
	Slide 13
	Slide 15: A single player crashing the game!? How can this be?
	Slide 16: Player Workload
	Slide 19: Environment-Based Workloads
	Slide 20: Meterstick Benchmark: Design
	Slide 21: Meterstick Benchmark: Design
	Slide 22: Instability Ratio (ISR)
	Slide 23: Instability Ratio (ISR)
	Slide 24: Experiment - Setup
	Slide 25: Environment-based workloads cause significant performance instability
	Slide 26: Cloud environments cause significant performance variability

	Dyconits
	Slide 33
	Slide 35: Scalability Challenge
	Slide 36: Interest Management
	Slide 37: Limitations of Interest Management
	Slide 38: Inconsistency
	Slide 39: Inconsistency in Online Games
	Slide 40: Hiding Inconsistency
	Slide 42: Virtual World without Dyconits
	Slide 43: Virtual World without Dyconits
	Slide 44: Virtual World without Dyconits
	Slide 45: Virtual World without Dyconits
	Slide 46: Virtual World without Dyconits
	Slide 47: Virtual World without Dyconits
	Slide 48: Virtual World with Dyconits
	Slide 49: Virtual World with Dyconits
	Slide 50: Virtual World with Dyconits
	Slide 51: Virtual World with Dyconits
	Slide 52: Virtual World with Dyconits
	Slide 53: Design of Dyconit Middleware
	Slide 54: Dyconits: Switch Policies Dynamically
	Slide 56: Experiment Setup
	Slide 57: Dyconits Bound Inconsistency
	Slide 58: Dyconits Can Dynamically Trade off Consistency for Performance
	Slide 60: Dyconits Improve Scalability
	Slide 61: Main Contributions

	Servo
	Slide 70
	Slide 73: What is Function as a Service (FaaS)?
	Slide 74: Servo System Overview
	Slide 75: Fine-Grained Comp. Offloading
	Slide 76: Speculative Offloading
	Slide 77: Trade-off between Latency and Number of Invocations
	Slide 78: Speculative Offloading
	Slide 79: Invoke Early to Improve Efficiency
	Slide 80: Servo Can Increase Virtual World Scalability
	Slide 81: Servo Can Increase Virtual World Complexity
	Slide 82: Servo can Scale Computationally Intensive Virtual Environments

	MetaQuestVR
	Slide 91
	Slide 92
	Slide 94: How to Deploy Metaverse Infrastructure?
	Slide 95: Experiment Setup
	Slide 96: Experiment Setup
	Slide 97: Experiment Setup
	Slide 98: Experiment Design Goals
	Slide 99: Resource Usage for All Tested Setups
	Slide 100: Good Performance for All Tested Setups
	Slide 101: Experiment Design Goals
	Slide 102: Older WiFi Types Support VR Streaming
	Slide 103: Performance Deteriorates Quickly When WiFi Signals Are Obstructed
	Slide 104: Performance Deteriorates Quickly When WiFi Signals Are Obstructed

	Dizi
	Slide 106
	Slide 107: How to Deploy Metaverse Infrastructure?
	Slide 108: How to Deploy Metaverse Infrastructure?
	Slide 109: Our Approach
	Slide 110: User Input Tracing with Record-n-Replay
	Slide 111: Experiment Setup
	Slide 112: Record and Replay has low overhead
	Slide 113: Record and Replay Input with High Timing Accuracy
	Slide 114: VR streaming playable with (relatively) low bandwidth
	Slide 115: Blending Reality Increases Power Use
	Slide 116: Blending Reality Increases Power Use

	Vision
	Slide 117: Ongoing Work

	Outro
	Slide 118: The Opencraft Research Team
	Slide 119: Further Reading

